summaryrefslogtreecommitdiff
path: root/test-cli/test/helpers/cv_display_test.py
blob: 73216672821df2360878a23a81bb3210d952056f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import cv2
import numpy as np
import subprocess




def adjust_gamma(image, gamma=1.0):
    invGamma = 1.0 / gamma
    table = np.array([((i / 255.0) ** invGamma) * 255
                          for i in np.arange(0, 256)]).astype("uint8")
    return cv2.LUT(image, table)

def pattern_detect(cam_device=0):

    # RETURN 0 only if the test is ok
    msg="0"
    # Capture the corresponding camera device [0,1]
    #capture = cv2.VideoCapture(0)
    camid = subprocess.check_output("ls /dev/v4l/by-id/usb-Creative_Technology*", stderr=subprocess.STDOUT, shell=True)
    camid = camid.decode('ascii').rstrip()
    capture = cv2.VideoCapture(camid)
    try:
        _, image = capture.read()
    except:
        msg="Camera error"
        print(msg)
        return msg

    # If the USB cam is not connected the capture image doesn't not have size atribbute
    if not hasattr(image, 'shape'):
        msg = "USB camera connection error"
        print(msg)
        return msg
    else:
        size_img=image.shape
    # Create little squares of each color section
    # The size of the suare will be 1/6 of the total Y size on the y axis
    # and 1/25 of the total X size on the x axis
    y1 = int(size_img[0] / 2 - size_img[0] / 12)
    y2 = int(size_img[0] / 2 + size_img[0] / 12)

    # Square for RED COLOR
    xr1 = int(size_img[1] / 6 - size_img[1] / 25)
    xr2 = int(size_img[1] / 6 + size_img[1] / 25)
    red_cal = image[y1:y2, xr1:xr2]
    # Square for GREEN COLOR
    xg1 = int(size_img[1] / 2 - size_img[1] / 25)
    xg2 = int(size_img[1] / 2 + size_img[1] / 25)
    green_cal = image[y1:y2, xg1:xg2]
    # Square for BLUE COLOR
    xb1 = int(5 * size_img[1] / 6 - size_img[1] / 25)
    xb2 = int(5 * size_img[1] / 6 + size_img[1] / 25)
    blue_cal = image[y1:y2, xb1:xb2]
    # Get the average color in the box as repeting the np.average funtion
    # Average color for red
    avg_color_per_row = np.average(red_cal, axis=0)
    avg_color_rawr = np.average(avg_color_per_row, axis=0)
    # Average color for green
    avg_color_per_row = np.average(green_cal, axis=0)
    avg_color_rawg = np.average(avg_color_per_row, axis=0)
    # Average color for blue
    avg_color_per_row = np.average(blue_cal, axis=0)
    avg_color_rawb = np.average(avg_color_per_row, axis=0)

    # In cas  of the illumintion is not correct, it is performed a gamma filter in order to
    # correct this illumination problem
    # After testing the gamma factor correction is computed with the green color
    # gamma = gamma_factor / blue+red into green part
    # gamma factor = 50-100
    #gamma = (100 / (avg_color_rawg[0] + avg_color_rawg[2] + 1))
    gamma=1
    # Adjust the image acording to this gamma value
    adjusted = adjust_gamma(image, gamma=gamma)
#    adjusted=image
    cv2.imwrite( "/home/root/result_hdmi_img.jpg", adjusted);
    # Calculate again the average color using the gamma adjusted image
    # Crop the gamma adjusted image for wach color section
    red_cal = adjusted[y1:y2, xr1:xr2]
    green_cal = adjusted[y1:y2, xg1:xg2]
    blue_cal = adjusted[y1:y2, xb1:xb2]
    # Calculate the average for the red
    avg_color_per_row = np.average(red_cal, axis=0)
    avg_color_red = np.average(avg_color_per_row, axis=0)
    # Calculate the average for the green
    avg_color_per_row = np.average(green_cal, axis=0)
    avg_color_green = np.average(avg_color_per_row, axis=0)
    # Calculate the average for the blue
    avg_color_per_row = np.average(blue_cal, axis=0)
    avg_color_blue = np.average(avg_color_per_row, axis=0)
    # In order to count colour use the hsv conversion
    hsv = cv2.cvtColor(adjusted, cv2.COLOR_BGR2HSV)
    # Create a mask for each color, definig the upper and lower bound of each color in hsv space
    # Create the blue mask with the bounds
    lower_blue = np.array([100, 50, 50])
    upper_blue = np.array([130, 255, 255])
    mask_b = cv2.inRange(hsv, lower_blue, upper_blue)
    # Create the green mask with the bounds
    lower_green = np.array([50, 50, 50])
    upper_green = np.array([80, 255, 255])
    mask_g = cv2.inRange(hsv, lower_green, upper_green)
    # Create the red mask with the bounds. In this case we use a composed mask, sum of two different
    # group of bounds
    # First red mask
    lower_red = np.array([0, 50, 50])
    upper_red = np.array([10, 255, 255])
    mask0 = cv2.inRange(hsv, lower_red, upper_red)
    # Second red mask
    lower_red = np.array([170, 50, 50])
    upper_red = np.array([180, 255, 255])
    mask1 = cv2.inRange(hsv, lower_red, upper_red)
    # compose both masks
    mask_r = mask0 + mask1
    # mask_r = cv2.inRange(hsv, lower_red, upper_red)
    # Perform a morphological open to expand
#    kernel = np.ones((5, 5), np.uint8)
#    closing_r = cv2.morphologyEx(mask_r, cv2.MORPH_OPEN, kernel)
#    closing_b = cv2.morphologyEx(mask_b, cv2.MORPH_OPEN, kernel)
#    closing_g = cv2.morphologyEx(mask_g, cv2.MORPH_OPEN, kernel)
    # Count the number of pixels that are not of the corresponding color (black)
#    count_r = cv2.countNonZero(closing_r)
#    count_b = cv2.countNonZero(closing_b)
#    count_g = cv2.countNonZero(closing_g)
    #-----------
    count_r = cv2.countNonZero(mask_r)
    count_b = cv2.countNonZero(mask_b)
    count_g = cv2.countNonZero(mask_g)
    #-------
    if (count_r < 5):
        msg = "RED COUNT FAIL"
        return msg
    if (count_g < 5):
        msg = "GREEN COUNT FAIL"
        return msg
    if (count_b < 5):
        msg = "BLUE COUNT FAIL"
        return msg
    if (avg_color_red[2] < 150 or avg_color_rawr[2] < 200):
        msg = "AVG RED COUNT FAIL"
        return msg
    if (avg_color_green[1] < 200 or avg_color_rawg[1] < 200):
        msg = "AVG GREEN COUNT FAIL"
        return msg
    if (avg_color_blue[0] < 200 or avg_color_rawb[0] < 200):
        msg = "AVG BLUE COUNT FAIL"
        return msg
    return msg