summaryrefslogtreecommitdiff
path: root/post/drivers/memory.c
blob: d25e3235ca105ef8d5daec4782eb7180cff89271 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
/*
 * (C) Copyright 2002
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>

/* Memory test
 *
 * General observations:
 * o The recommended test sequence is to test the data lines: if they are
 *   broken, nothing else will work properly.  Then test the address
 *   lines.  Finally, test the cells in the memory now that the test
 *   program knows that the address and data lines work properly.
 *   This sequence also helps isolate and identify what is faulty.
 *
 * o For the address line test, it is a good idea to use the base
 *   address of the lowest memory location, which causes a '1' bit to
 *   walk through a field of zeros on the address lines and the highest
 *   memory location, which causes a '0' bit to walk through a field of
 *   '1's on the address line.
 *
 * o Floating buses can fool memory tests if the test routine writes
 *   a value and then reads it back immediately.  The problem is, the
 *   write will charge the residual capacitance on the data bus so the
 *   bus retains its state briefely.  When the test program reads the
 *   value back immediately, the capacitance of the bus can allow it
 *   to read back what was written, even though the memory circuitry
 *   is broken.  To avoid this, the test program should write a test
 *   pattern to the target location, write a different pattern elsewhere
 *   to charge the residual capacitance in a differnt manner, then read
 *   the target location back.
 *
 * o Always read the target location EXACTLY ONCE and save it in a local
 *   variable.  The problem with reading the target location more than
 *   once is that the second and subsequent reads may work properly,
 *   resulting in a failed test that tells the poor technician that
 *   "Memory error at 00000000, wrote aaaaaaaa, read aaaaaaaa" which
 *   doesn't help him one bit and causes puzzled phone calls.  Been there,
 *   done that.
 *
 * Data line test:
 * ---------------
 * This tests data lines for shorts and opens by forcing adjacent data
 * to opposite states. Because the data lines could be routed in an
 * arbitrary manner the must ensure test patterns ensure that every case
 * is tested. By using the following series of binary patterns every
 * combination of adjacent bits is test regardless of routing.
 *
 *     ...101010101010101010101010
 *     ...110011001100110011001100
 *     ...111100001111000011110000
 *     ...111111110000000011111111
 *
 * Carrying this out, gives us six hex patterns as follows:
 *
 *     0xaaaaaaaaaaaaaaaa
 *     0xcccccccccccccccc
 *     0xf0f0f0f0f0f0f0f0
 *     0xff00ff00ff00ff00
 *     0xffff0000ffff0000
 *     0xffffffff00000000
 *
 * To test for short and opens to other signals on our boards, we
 * simply test with the 1's complemnt of the paterns as well, resulting
 * in twelve patterns total.
 *
 * After writing a test pattern. a special pattern 0x0123456789ABCDEF is
 * written to a different address in case the data lines are floating.
 * Thus, if a byte lane fails, you will see part of the special
 * pattern in that byte lane when the test runs.  For example, if the
 * xx__xxxxxxxxxxxx byte line fails, you will see aa23aaaaaaaaaaaa
 * (for the 'a' test pattern).
 *
 * Address line test:
 * ------------------
 *  This function performs a test to verify that all the address lines
 *  hooked up to the RAM work properly.  If there is an address line
 *  fault, it usually shows up as two different locations in the address
 *  map (related by the faulty address line) mapping to one physical
 *  memory storage location.  The artifact that shows up is writing to
 *  the first location "changes" the second location.
 *
 * To test all address lines, we start with the given base address and
 * xor the address with a '1' bit to flip one address line.  For each
 * test, we shift the '1' bit left to test the next address line.
 *
 * In the actual code, we start with address sizeof(ulong) since our
 * test pattern we use is a ulong and thus, if we tried to test lower
 * order address bits, it wouldn't work because our pattern would
 * overwrite itself.
 *
 * Example for a 4 bit address space with the base at 0000:
 *   0000 <- base
 *   0001 <- test 1
 *   0010 <- test 2
 *   0100 <- test 3
 *   1000 <- test 4
 * Example for a 4 bit address space with the base at 0010:
 *   0010 <- base
 *   0011 <- test 1
 *   0000 <- (below the base address, skipped)
 *   0110 <- test 2
 *   1010 <- test 3
 *
 * The test locations are successively tested to make sure that they are
 * not "mirrored" onto the base address due to a faulty address line.
 * Note that the base and each test location are related by one address
 * line flipped.  Note that the base address need not be all zeros.
 *
 * Memory tests 1-4:
 * -----------------
 * These tests verify RAM using sequential writes and reads
 * to/from RAM. There are several test cases that use different patterns to
 * verify RAM. Each test case fills a region of RAM with one pattern and
 * then reads the region back and compares its contents with the pattern.
 * The following patterns are used:
 *
 *  1a) zero pattern (0x00000000)
 *  1b) negative pattern (0xffffffff)
 *  1c) checkerboard pattern (0x55555555)
 *  1d) checkerboard pattern (0xaaaaaaaa)
 *  2)  bit-flip pattern ((1 << (offset % 32))
 *  3)  address pattern (offset)
 *  4)  address pattern (~offset)
 *
 * Being run in normal mode, the test verifies only small 4Kb
 * regions of RAM around each 1Mb boundary. For example, for 64Mb
 * RAM the following areas are verified: 0x00000000-0x00000800,
 * 0x000ff800-0x00100800, 0x001ff800-0x00200800, ..., 0x03fff800-
 * 0x04000000. If the test is run in slow-test mode, it verifies
 * the whole RAM.
 */

#include <post.h>
#include <watchdog.h>

#if CONFIG_POST & (CONFIG_SYS_POST_MEMORY | CONFIG_SYS_POST_MEM_REGIONS)

DECLARE_GLOBAL_DATA_PTR;

/*
 * Define INJECT_*_ERRORS for testing error detection in the presence of
 * _good_ hardware.
 */
#undef  INJECT_DATA_ERRORS
#undef  INJECT_ADDRESS_ERRORS

#ifdef INJECT_DATA_ERRORS
#warning "Injecting data line errors for testing purposes"
#endif

#ifdef INJECT_ADDRESS_ERRORS
#warning "Injecting address line errors for testing purposes"
#endif


/*
 * This function performs a double word move from the data at
 * the source pointer to the location at the destination pointer.
 * This is helpful for testing memory on processors which have a 64 bit
 * wide data bus.
 *
 * On those PowerPC with FPU, use assembly and a floating point move:
 * this does a 64 bit move.
 *
 * For other processors, let the compiler generate the best code it can.
 */
static void move64(const unsigned long long *src, unsigned long long *dest)
{
#if defined(CONFIG_MPC8260) || defined(CONFIG_MPC824X)
	asm ("lfd  0, 0(3)\n\t" /* fpr0	  =  *scr	*/
	 "stfd 0, 0(4)"		/* *dest  =  fpr0	*/
	 : : : "fr0" );		/* Clobbers fr0		*/
    return;
#else
	*dest = *src;
#endif
}

/*
 * This is 64 bit wide test patterns.  Note that they reside in ROM
 * (which presumably works) and the tests write them to RAM which may
 * not work.
 *
 * The "otherpattern" is written to drive the data bus to values other
 * than the test pattern.  This is for detecting floating bus lines.
 *
 */
const static unsigned long long pattern[] = {
	0xaaaaaaaaaaaaaaaaULL,
	0xccccccccccccccccULL,
	0xf0f0f0f0f0f0f0f0ULL,
	0xff00ff00ff00ff00ULL,
	0xffff0000ffff0000ULL,
	0xffffffff00000000ULL,
	0x00000000ffffffffULL,
	0x0000ffff0000ffffULL,
	0x00ff00ff00ff00ffULL,
	0x0f0f0f0f0f0f0f0fULL,
	0x3333333333333333ULL,
	0x5555555555555555ULL
};
const unsigned long long otherpattern = 0x0123456789abcdefULL;


static int memory_post_dataline(unsigned long long * pmem)
{
	unsigned long long temp64 = 0;
	int num_patterns = ARRAY_SIZE(pattern);
	int i;
	unsigned int hi, lo, pathi, patlo;
	int ret = 0;

	for ( i = 0; i < num_patterns; i++) {
		move64(&(pattern[i]), pmem++);
		/*
		 * Put a different pattern on the data lines: otherwise they
		 * may float long enough to read back what we wrote.
		 */
		move64(&otherpattern, pmem--);
		move64(pmem, &temp64);

#ifdef INJECT_DATA_ERRORS
		temp64 ^= 0x00008000;
#endif

		if (temp64 != pattern[i]){
			pathi = (pattern[i]>>32) & 0xffffffff;
			patlo = pattern[i] & 0xffffffff;

			hi = (temp64>>32) & 0xffffffff;
			lo = temp64 & 0xffffffff;

			post_log("Memory (date line) error at %08x, "
				  "wrote %08x%08x, read %08x%08x !\n",
					  pmem, pathi, patlo, hi, lo);
			ret = -1;
		}
	}
	return ret;
}

static int memory_post_addrline(ulong *testaddr, ulong *base, ulong size)
{
	ulong *target;
	ulong *end;
	ulong readback;
	ulong xor;
	int   ret = 0;

	end = (ulong *)((ulong)base + size);	/* pointer arith! */
	xor = 0;
	for(xor = sizeof(ulong); xor > 0; xor <<= 1) {
		target = (ulong *)((ulong)testaddr ^ xor);
		if((target >= base) && (target < end)) {
			*testaddr = ~*target;
			readback  = *target;

#ifdef INJECT_ADDRESS_ERRORS
			if(xor == 0x00008000) {
				readback = *testaddr;
			}
#endif
			if(readback == *testaddr) {
				post_log("Memory (address line) error at %08x<->%08x, "
					"XOR value %08x !\n",
					testaddr, target, xor);
				ret = -1;
			}
		}
	}
	return ret;
}

static int memory_post_test1(unsigned long start,
			      unsigned long size,
			      unsigned long val)
{
	unsigned long i;
	ulong *mem = (ulong *) start;
	ulong readback;
	int ret = 0;

	for (i = 0; i < size / sizeof (ulong); i++) {
		mem[i] = val;
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
		readback = mem[i];
		if (readback != val) {
			post_log("Memory error at %08x, "
				  "wrote %08x, read %08x !\n",
					  mem + i, val, readback);

			ret = -1;
			break;
		}
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	return ret;
}

static int memory_post_test2(unsigned long start, unsigned long size)
{
	unsigned long i;
	ulong *mem = (ulong *) start;
	ulong readback;
	int ret = 0;

	for (i = 0; i < size / sizeof (ulong); i++) {
		mem[i] = 1 << (i % 32);
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
		readback = mem[i];
		if (readback != (1 << (i % 32))) {
			post_log("Memory error at %08x, "
				  "wrote %08x, read %08x !\n",
					  mem + i, 1 << (i % 32), readback);

			ret = -1;
			break;
		}
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	return ret;
}

static int memory_post_test3(unsigned long start, unsigned long size)
{
	unsigned long i;
	ulong *mem = (ulong *) start;
	ulong readback;
	int ret = 0;

	for (i = 0; i < size / sizeof (ulong); i++) {
		mem[i] = i;
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
		readback = mem[i];
		if (readback != i) {
			post_log("Memory error at %08x, "
				  "wrote %08x, read %08x !\n",
					  mem + i, i, readback);

			ret = -1;
			break;
		}
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	return ret;
}

static int memory_post_test4(unsigned long start, unsigned long size)
{
	unsigned long i;
	ulong *mem = (ulong *) start;
	ulong readback;
	int ret = 0;

	for (i = 0; i < size / sizeof (ulong); i++) {
		mem[i] = ~i;
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	for (i = 0; i < size / sizeof (ulong) && !ret; i++) {
		readback = mem[i];
		if (readback != ~i) {
			post_log("Memory error at %08x, "
				  "wrote %08x, read %08x !\n",
					  mem + i, ~i, readback);

			ret = -1;
			break;
		}
		if (i % 1024 == 0)
			WATCHDOG_RESET();
	}

	return ret;
}

static int memory_post_test_lines(unsigned long start, unsigned long size)
{
	int ret = 0;

	ret = memory_post_dataline((unsigned long long *)start);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_addrline((ulong *)start, (ulong *)start,
				size);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_addrline((ulong *)(start+size-8),
				(ulong *)start, size);
	WATCHDOG_RESET();

	return ret;
}

static int memory_post_test_patterns(unsigned long start, unsigned long size)
{
	int ret = 0;

	ret = memory_post_test1(start, size, 0x00000000);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test1(start, size, 0xffffffff);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test1(start, size, 0x55555555);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test1(start, size, 0xaaaaaaaa);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test2(start, size);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test3(start, size);
	WATCHDOG_RESET();
	if (!ret)
		ret = memory_post_test4(start, size);
	WATCHDOG_RESET();

	return ret;
}

static int memory_post_test_regions(unsigned long start, unsigned long size)
{
	unsigned long i;
	int ret = 0;

	for (i = 0; i < (size >> 20) && (!ret); i++) {
		if (!ret)
			ret = memory_post_test_patterns(start + (i << 20),
				0x800);
		if (!ret)
			ret = memory_post_test_patterns(start + (i << 20) +
				0xff800, 0x800);
	}

	return ret;
}

static int memory_post_tests(unsigned long start, unsigned long size)
{
	int ret = 0;

	ret = memory_post_test_lines(start, size);
	if (!ret)
		ret = memory_post_test_patterns(start, size);

	return ret;
}

/*
 * !! this is only valid, if you have contiguous memory banks !!
 */
__attribute__((weak))
int arch_memory_test_prepare(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
	bd_t *bd = gd->bd;

	*vstart = CONFIG_SYS_SDRAM_BASE;
	*size = (gd->ram_size >= 256 << 20 ?
			256 << 20 : gd->ram_size) - (1 << 20);

	/* Limit area to be tested with the board info struct */
	if ((*vstart) + (*size) > (ulong)bd)
		*size = (ulong)bd - *vstart;

	return 0;
}

__attribute__((weak))
int arch_memory_test_advance(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
	return 1;
}

__attribute__((weak))
int arch_memory_test_cleanup(u32 *vstart, u32 *size, phys_addr_t *phys_offset)
{
	return 0;
}

__attribute__((weak))
void arch_memory_failure_handle(void)
{
	return;
}

int memory_regions_post_test(int flags)
{
	int ret = 0;
	phys_addr_t phys_offset = 0;
	u32 memsize, vstart;

	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);

	ret = memory_post_test_lines(vstart, memsize);
	if (!ret)
		ret = memory_post_test_regions(vstart, memsize);

	return ret;
}

int memory_post_test(int flags)
{
	int ret = 0;
	phys_addr_t phys_offset = 0;
	u32 memsize, vstart;

	arch_memory_test_prepare(&vstart, &memsize, &phys_offset);

	do {
		if (flags & POST_SLOWTEST) {
			ret = memory_post_tests(vstart, memsize);
		} else {			/* POST_NORMAL */
			ret = memory_post_test_regions(vstart, memsize);
		}
	} while (!ret &&
		!arch_memory_test_advance(&vstart, &memsize, &phys_offset));

	arch_memory_test_cleanup(&vstart, &memsize, &phys_offset);
	if (ret)
		arch_memory_failure_handle();

	return ret;
}

#endif /* CONFIG_POST&(CONFIG_SYS_POST_MEMORY|CONFIG_SYS_POST_MEM_REGIONS) */