1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/*
* (C) Copyright 2007
* Developed for DENX Software Engineering GmbH.
*
* Author: Pavel Kolesnikov <concord@emcraft.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif
#include <common.h>
#include <watchdog.h>
#if defined(CONFIG_440EPX) || defined(CONFIG_440GRX)
#include <post.h>
#if CONFIG_POST & CONFIG_SYS_POST_ECC
/*
* MEMORY ECC test
*
* This test performs the checks ECC facility of memory.
*/
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/io.h>
#include <asm/ppc440.h>
DECLARE_GLOBAL_DATA_PTR;
const static uint8_t syndrome_codes[] = {
0xF4, 0XF1, 0XEC, 0XEA, 0XE9, 0XE6, 0XE5, 0XE3,
0XDC, 0XDA, 0XD9, 0XD6, 0XD5, 0XD3, 0XCE, 0XCB,
0xB5, 0XB0, 0XAD, 0XAB, 0XA8, 0XA7, 0XA4, 0XA2,
0X9D, 0X9B, 0X98, 0X97, 0X94, 0X92, 0X8F, 0X8A,
0x75, 0x70, 0X6D, 0X6B, 0X68, 0X67, 0X64, 0X62,
0X5E, 0X5B, 0X58, 0X57, 0X54, 0X52, 0X4F, 0X4A,
0x34, 0x31, 0X2C, 0X2A, 0X29, 0X26, 0X25, 0X23,
0X1C, 0X1A, 0X19, 0X16, 0X15, 0X13, 0X0E, 0X0B,
0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
};
#define ECC_START_ADDR 0x10
#define ECC_STOP_ADDR 0x2000
#define ECC_PATTERN 0x01010101
#define ECC_PATTERN_CORR 0x11010101
#define ECC_PATTERN_UNCORR 0x61010101
inline static void disable_ecc(void)
{
uint32_t value;
sync(); /* Wait for any pending memory accesses to complete. */
mfsdram(DDR0_22, value);
mtsdram(DDR0_22, (value & ~DDR0_22_CTRL_RAW_MASK)
| DDR0_22_CTRL_RAW_ECC_DISABLE);
}
inline static void clear_and_enable_ecc(void)
{
uint32_t value;
sync(); /* Wait for any pending memory accesses to complete. */
mfsdram(DDR0_00, value);
mtsdram(DDR0_00, value | DDR0_00_INT_ACK_ALL);
mfsdram(DDR0_22, value);
mtsdram(DDR0_22, (value & ~DDR0_22_CTRL_RAW_MASK)
| DDR0_22_CTRL_RAW_ECC_ENABLE);
}
static uint32_t get_ecc_status(void)
{
uint32_t int_status;
#if defined(DEBUG)
uint8_t syndrome;
uint32_t hdata, ldata, haddr, laddr;
uint32_t value;
#endif
mfsdram(DDR0_00, int_status);
int_status &= DDR0_00_INT_STATUS_MASK;
#if defined(DEBUG)
if (int_status & (DDR0_00_INT_STATUS_BIT0 | DDR0_00_INT_STATUS_BIT1)) {
mfsdram(DDR0_32, laddr);
mfsdram(DDR0_33, haddr);
haddr &= 0x00000001;
if (int_status & DDR0_00_INT_STATUS_BIT1)
debug("Multiple accesses");
else
debug("A single access");
debug(" outside the defined physical memory space detected\n"
" addr = 0x%01x%08x\n", haddr, laddr);
}
if (int_status & (DDR0_00_INT_STATUS_BIT2 | DDR0_00_INT_STATUS_BIT3)) {
unsigned int bit;
mfsdram(DDR0_23, value);
syndrome = (value >> 16) & 0xff;
for (bit = 0; bit < sizeof(syndrome_codes); bit++)
if (syndrome_codes[bit] == syndrome)
break;
mfsdram(DDR0_38, laddr);
mfsdram(DDR0_39, haddr);
haddr &= 0x00000001;
mfsdram(DDR0_40, ldata);
mfsdram(DDR0_41, hdata);
if (int_status & DDR0_00_INT_STATUS_BIT3)
debug("Multiple correctable ECC events");
else
debug("Single correctable ECC event");
debug(" detected\n 0x%01x%08x - 0x%08x%08x, bit - %d\n",
haddr, laddr, hdata, ldata, bit);
}
if (int_status & (DDR0_00_INT_STATUS_BIT4 | DDR0_00_INT_STATUS_BIT5)) {
mfsdram(DDR0_23, value);
syndrome = (value >> 8) & 0xff;
mfsdram(DDR0_34, laddr);
mfsdram(DDR0_35, haddr);
haddr &= 0x00000001;
mfsdram(DDR0_36, ldata);
mfsdram(DDR0_37, hdata);
if (int_status & DDR0_00_INT_STATUS_BIT5)
debug("Multiple uncorrectable ECC events");
else
debug("Single uncorrectable ECC event");
debug(" detected\n 0x%01x%08x - 0x%08x%08x, "
"syndrome - 0x%02x\n",
haddr, laddr, hdata, ldata, syndrome);
}
if (int_status & DDR0_00_INT_STATUS_BIT6)
debug("DRAM initialization complete\n");
#endif /* defined(DEBUG) */
return int_status;
}
static int test_ecc(uint32_t ecc_addr)
{
uint32_t value;
volatile uint32_t *const ecc_mem = (volatile uint32_t *)ecc_addr;
int ret = 0;
WATCHDOG_RESET();
debug("Entering test_ecc(0x%08x)\n", ecc_addr);
/* Set up correct ECC in memory */
disable_ecc();
clear_and_enable_ecc();
out_be32(ecc_mem, ECC_PATTERN);
out_be32(ecc_mem + 1, ECC_PATTERN);
ppcDcbf((u32)ecc_mem);
/* Verify no ECC error reading back */
value = in_be32(ecc_mem);
disable_ecc();
if (ECC_PATTERN != value) {
debug("Data read error (no-error case): "
"expected 0x%08x, read 0x%08x\n", ECC_PATTERN, value);
ret = 1;
}
value = get_ecc_status();
if (0x00000000 != value) {
/* Expected no ECC status reported */
debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",
0x00000000, value);
ret = 1;
}
/* Test for correctable error by creating a one-bit error */
out_be32(ecc_mem, ECC_PATTERN_CORR);
ppcDcbf((u32)ecc_mem);
clear_and_enable_ecc();
value = in_be32(ecc_mem);
disable_ecc();
/* Test that the corrected data was read */
if (ECC_PATTERN != value) {
debug("Data read error (correctable-error case): "
"expected 0x%08x, read 0x%08x\n", ECC_PATTERN, value);
ret = 1;
}
value = get_ecc_status();
if ((DDR0_00_INT_STATUS_BIT2 | DDR0_00_INT_STATUS_BIT7) != value) {
/* Expected a single correctable error reported */
debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",
DDR0_00_INT_STATUS_BIT2, value);
ret = 1;
}
/* Test for uncorrectable error by creating a two-bit error */
out_be32(ecc_mem, ECC_PATTERN_UNCORR);
ppcDcbf((u32)ecc_mem);
clear_and_enable_ecc();
value = in_be32(ecc_mem);
disable_ecc();
/* Test that the corrected data was read */
if (ECC_PATTERN_UNCORR != value) {
debug("Data read error (uncorrectable-error case): "
"expected 0x%08x, read 0x%08x\n", ECC_PATTERN_UNCORR,
value);
ret = 1;
}
value = get_ecc_status();
if ((DDR0_00_INT_STATUS_BIT4 | DDR0_00_INT_STATUS_BIT7) != value) {
/* Expected a single uncorrectable error reported */
debug("get_ecc_status(): expected 0x%08x, got 0x%08x\n",
DDR0_00_INT_STATUS_BIT4, value);
ret = 1;
}
/* Remove error from SDRAM and enable ECC. */
out_be32(ecc_mem, ECC_PATTERN);
ppcDcbf((u32)ecc_mem);
clear_and_enable_ecc();
return ret;
}
int ecc_post_test(int flags)
{
int ret = 0;
uint32_t value;
uint32_t iaddr;
mfsdram(DDR0_22, value);
if (0x3 != DDR0_22_CTRL_RAW_DECODE(value)) {
debug("SDRAM ECC not enabled, skipping ECC POST.\n");
return 0;
}
/* Mask all interrupts. */
mfsdram(DDR0_01, value);
mtsdram(DDR0_01, (value & ~DDR0_01_INT_MASK_MASK)
| DDR0_01_INT_MASK_ALL_OFF);
for (iaddr = ECC_START_ADDR; iaddr <= ECC_STOP_ADDR; iaddr += iaddr) {
ret = test_ecc(iaddr);
if (ret)
break;
}
/*
* Clear possible errors resulting from ECC testing. (If not done, we
* we could get an interrupt later on when exceptions are enabled.)
*/
set_mcsr(get_mcsr());
debug("ecc_post_test() returning %d\n", ret);
return ret;
}
#endif /* CONFIG_POST & CONFIG_SYS_POST_ECC */
#endif /* defined(CONFIG_440EPX) || defined(CONFIG_440GRX) */
|