1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
/*
* (C) Copyright 2009
* Magnus Lilja <lilja.magnus@gmail.com>
*
* (C) Copyright 2008
* Maxim Artamonov, <scn1874 at yandex.ru>
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr at denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm-arm/arch/mx31-regs.h>
#include <asm/io.h>
#include <fsl_nfc.h>
static struct fsl_nfc_regs *nfc;
static void nfc_wait_ready(void)
{
uint32_t tmp;
while (!(readw(&nfc->nand_flash_config2) & NFC_INT))
;
/* Reset interrupt flag */
tmp = readw(&nfc->nand_flash_config2);
tmp &= ~NFC_INT;
writew(tmp, &nfc->nand_flash_config2);
}
static void nfc_nand_init(void)
{
/* unlocking RAM Buff */
writew(0x2, &nfc->configuration);
/* hardware ECC checking and correct */
writew(NFC_ECC_EN, &nfc->nand_flash_config1);
}
static void nfc_nand_command(unsigned short command)
{
writew(command, &nfc->flash_cmd);
writew(NFC_CMD, &nfc->nand_flash_config2);
nfc_wait_ready();
}
static void nfc_nand_page_address(unsigned int page_address)
{
unsigned int page_count;
writew(0x00, &nfc->flash_cmd);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
/* code only for 2kb flash */
if (CONFIG_SYS_NAND_PAGE_SIZE == 0x800) {
writew(0x00, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
}
page_count = CONFIG_SYS_NAND_SIZE / CONFIG_SYS_NAND_PAGE_SIZE;
if (page_address <= page_count) {
page_count--; /* transform 0x01000000 to 0x00ffffff */
do {
writew(page_address & 0xff, &nfc->flash_add);
writew(NFC_ADDR, &nfc->nand_flash_config2);
nfc_wait_ready();
page_address = page_address >> 8;
page_count = page_count >> 8;
} while (page_count);
}
}
static void nfc_nand_data_output(void)
{
int i;
/*
* The NAND controller requires four output commands for
* large page devices.
*/
for (i = 0; i < (CONFIG_SYS_NAND_PAGE_SIZE / 512); i++) {
writew(NFC_ECC_EN, &nfc->nand_flash_config1);
writew(i, &nfc->buffer_address); /* read in i:th buffer */
writew(NFC_OUTPUT, &nfc->nand_flash_config2);
nfc_wait_ready();
}
}
static int nfc_nand_check_ecc(void)
{
return readw(&nfc->ecc_status_result);
}
static int nfc_read_page(unsigned int page_address, unsigned char *buf)
{
int i;
u32 *src;
u32 *dst;
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page_address);
if (CONFIG_SYS_NAND_PAGE_SIZE == 0x800)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
if (nfc_nand_check_ecc())
return -1;
src = &nfc->main_area0[0];
dst = (u32 *)buf;
/* main copy loop from NAND-buffer to SDRAM memory */
for (i = 0; i < (CONFIG_SYS_NAND_PAGE_SIZE / 4); i++) {
writel(readl(src), dst);
src++;
dst++;
}
return 0;
}
static int is_badblock(int pagenumber)
{
int page = pagenumber;
u32 badblock;
u32 *src;
/* Check the first two pages for bad block markers */
for (page = pagenumber; page < pagenumber + 2; page++) {
writew(0, &nfc->buffer_address); /* read in first 0 buffer */
nfc_nand_command(NAND_CMD_READ0);
nfc_nand_page_address(page);
if (CONFIG_SYS_NAND_PAGE_SIZE == 0x800)
nfc_nand_command(NAND_CMD_READSTART);
nfc_nand_data_output(); /* fill the main buffer 0 */
src = &nfc->spare_area0[0];
/*
* IMPORTANT NOTE: The nand flash controller uses a non-
* standard layout for large page devices. This can
* affect the position of the bad block marker.
*/
/* Get the bad block marker */
badblock = readl(&src[CONFIG_SYS_NAND_BAD_BLOCK_POS / 4]);
badblock >>= 8 * (CONFIG_SYS_NAND_BAD_BLOCK_POS % 4);
badblock &= 0xff;
/* bad block marker verify */
if (badblock != 0xff)
return 1; /* potential bad block */
}
return 0;
}
static int nand_load(unsigned int from, unsigned int size, unsigned char *buf)
{
int i;
unsigned int page;
unsigned int maxpages = CONFIG_SYS_NAND_SIZE /
CONFIG_SYS_NAND_PAGE_SIZE;
nfc = (void *)NFC_BASE_ADDR;
nfc_nand_init();
/* Convert to page number */
page = from / CONFIG_SYS_NAND_PAGE_SIZE;
i = 0;
while (i < (size / CONFIG_SYS_NAND_PAGE_SIZE)) {
if (nfc_read_page(page, buf) < 0)
return -1;
page++;
i++;
buf = buf + CONFIG_SYS_NAND_PAGE_SIZE;
/*
* Check if we have crossed a block boundary, and if so
* check for bad block.
*/
if (!(page % CONFIG_SYS_NAND_PAGE_COUNT)) {
/*
* Yes, new block. See if this block is good. If not,
* loop until we find i good block.
*/
while (is_badblock(page)) {
page = page + CONFIG_SYS_NAND_PAGE_COUNT;
/* Check i we've reached the end of flash. */
if (page >= maxpages)
return -1;
}
}
}
return 0;
}
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
void nand_boot(void)
{
__attribute__((noreturn)) void (*uboot)(void);
nfc = (void *)NFC_BASE_ADDR;
/*
* CONFIG_SYS_NAND_U_BOOT_OFFS and CONFIG_SYS_NAND_U_BOOT_SIZE must
* be aligned to full pages
*/
if (!nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST)) {
/* Copy from NAND successful, start U-boot */
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
uboot();
} else {
/* Unrecoverable error when copying from NAND */
hang();
}
}
/*
* Called in case of an exception.
*/
void hang(void)
{
/* Loop forever */
while (1) ;
}
|