1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
|
/*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <netdev.h>
#include <pci.h>
#undef DEBUG_SROM
#undef DEBUG_SROM2
#undef UPDATE_SROM
/* PCI Registers.
*/
#define PCI_CFDA_PSM 0x43
#define CFRV_RN 0x000000f0 /* Revision Number */
#define WAKEUP 0x00 /* Power Saving Wakeup */
#define SLEEP 0x80 /* Power Saving Sleep Mode */
#define DC2114x_BRK 0x0020 /* CFRV break between DC21142 & DC21143 */
/* Ethernet chip registers.
*/
#define DE4X5_BMR 0x000 /* Bus Mode Register */
#define DE4X5_TPD 0x008 /* Transmit Poll Demand Reg */
#define DE4X5_RRBA 0x018 /* RX Ring Base Address Reg */
#define DE4X5_TRBA 0x020 /* TX Ring Base Address Reg */
#define DE4X5_STS 0x028 /* Status Register */
#define DE4X5_OMR 0x030 /* Operation Mode Register */
#define DE4X5_SICR 0x068 /* SIA Connectivity Register */
#define DE4X5_APROM 0x048 /* Ethernet Address PROM */
/* Register bits.
*/
#define BMR_SWR 0x00000001 /* Software Reset */
#define STS_TS 0x00700000 /* Transmit Process State */
#define STS_RS 0x000e0000 /* Receive Process State */
#define OMR_ST 0x00002000 /* Start/Stop Transmission Command */
#define OMR_SR 0x00000002 /* Start/Stop Receive */
#define OMR_PS 0x00040000 /* Port Select */
#define OMR_SDP 0x02000000 /* SD Polarity - MUST BE ASSERTED */
#define OMR_PM 0x00000080 /* Pass All Multicast */
/* Descriptor bits.
*/
#define R_OWN 0x80000000 /* Own Bit */
#define RD_RER 0x02000000 /* Receive End Of Ring */
#define RD_LS 0x00000100 /* Last Descriptor */
#define RD_ES 0x00008000 /* Error Summary */
#define TD_TER 0x02000000 /* Transmit End Of Ring */
#define T_OWN 0x80000000 /* Own Bit */
#define TD_LS 0x40000000 /* Last Segment */
#define TD_FS 0x20000000 /* First Segment */
#define TD_ES 0x00008000 /* Error Summary */
#define TD_SET 0x08000000 /* Setup Packet */
/* The EEPROM commands include the alway-set leading bit. */
#define SROM_WRITE_CMD 5
#define SROM_READ_CMD 6
#define SROM_ERASE_CMD 7
#define SROM_HWADD 0x0014 /* Hardware Address offset in SROM */
#define SROM_RD 0x00004000 /* Read from Boot ROM */
#define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
#define EE_WRITE_0 0x4801
#define EE_WRITE_1 0x4805
#define EE_DATA_READ 0x08 /* EEPROM chip data out. */
#define SROM_SR 0x00000800 /* Select Serial ROM when set */
#define DT_IN 0x00000004 /* Serial Data In */
#define DT_CLK 0x00000002 /* Serial ROM Clock */
#define DT_CS 0x00000001 /* Serial ROM Chip Select */
#define POLL_DEMAND 1
#ifdef CONFIG_TULIP_FIX_DAVICOM
#define RESET_DM9102(dev) {\
unsigned long i;\
i=INL(dev, 0x0);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
}
#else
#define RESET_DE4X5(dev) {\
int i;\
i=INL(dev, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i | BMR_SWR, DE4X5_BMR);\
udelay(1000);\
OUTL(dev, i, DE4X5_BMR);\
udelay(1000);\
for (i=0;i<5;i++) {INL(dev, DE4X5_BMR); udelay(10000);}\
udelay(1000);\
}
#endif
#define START_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr |= OMR_ST | OMR_SR;\
OUTL(dev, omr, DE4X5_OMR); /* Enable the TX and/or RX */\
}
#define STOP_DE4X5(dev) {\
s32 omr; \
omr = INL(dev, DE4X5_OMR);\
omr &= ~(OMR_ST|OMR_SR);\
OUTL(dev, omr, DE4X5_OMR); /* Disable the TX and/or RX */ \
}
#define NUM_RX_DESC PKTBUFSRX
#ifndef CONFIG_TULIP_FIX_DAVICOM
#define NUM_TX_DESC 1 /* Number of TX descriptors */
#else
#define NUM_TX_DESC 4
#endif
#define RX_BUFF_SZ PKTSIZE_ALIGN
#define TOUT_LOOP 1000000
#define SETUP_FRAME_LEN 192
#define ETH_ALEN 6
struct de4x5_desc {
volatile s32 status;
u32 des1;
u32 buf;
u32 next;
};
static struct de4x5_desc rx_ring[NUM_RX_DESC] __attribute__ ((aligned(32))); /* RX descriptor ring */
static struct de4x5_desc tx_ring[NUM_TX_DESC] __attribute__ ((aligned(32))); /* TX descriptor ring */
static int rx_new; /* RX descriptor ring pointer */
static int tx_new; /* TX descriptor ring pointer */
static char rxRingSize;
static char txRingSize;
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static void sendto_srom(struct eth_device* dev, u_int command, u_long addr);
static int getfrom_srom(struct eth_device* dev, u_long addr);
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr,int cmd,int cmd_len);
static int do_read_eeprom(struct eth_device *dev,u_long ioaddr,int location,int addr_len);
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value);
static void update_srom(struct eth_device *dev, bd_t *bis);
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index);
static void read_hw_addr(struct eth_device* dev, bd_t * bis);
#endif /* CONFIG_TULIP_FIX_DAVICOM */
static void send_setup_frame(struct eth_device* dev, bd_t * bis);
static int dc21x4x_init(struct eth_device* dev, bd_t* bis);
static int dc21x4x_send(struct eth_device *dev, void *packet, int length);
static int dc21x4x_recv(struct eth_device* dev);
static void dc21x4x_halt(struct eth_device* dev);
#ifdef CONFIG_TULIP_SELECT_MEDIA
extern void dc21x4x_select_media(struct eth_device* dev);
#endif
#if defined(CONFIG_E500)
#define phys_to_bus(a) (a)
#else
#define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
#endif
static int INL(struct eth_device* dev, u_long addr)
{
return le32_to_cpu(*(volatile u_long *)(addr + dev->iobase));
}
static void OUTL(struct eth_device* dev, int command, u_long addr)
{
*(volatile u_long *)(addr + dev->iobase) = cpu_to_le32(command);
}
static struct pci_device_id supported[] = {
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST },
{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142 },
#ifdef CONFIG_TULIP_FIX_DAVICOM
{ PCI_VENDOR_ID_DAVICOM, PCI_DEVICE_ID_DAVICOM_DM9102A },
#endif
{ }
};
int dc21x4x_initialize(bd_t *bis)
{
int idx=0;
int card_number = 0;
unsigned int cfrv;
unsigned char timer;
pci_dev_t devbusfn;
unsigned int iobase;
unsigned short status;
struct eth_device* dev;
while(1) {
devbusfn = pci_find_devices(supported, idx++);
if (devbusfn == -1) {
break;
}
/* Get the chip configuration revision register. */
pci_read_config_dword(devbusfn, PCI_REVISION_ID, &cfrv);
#ifndef CONFIG_TULIP_FIX_DAVICOM
if ((cfrv & CFRV_RN) < DC2114x_BRK ) {
printf("Error: The chip is not DC21143.\n");
continue;
}
#endif
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
status |=
#ifdef CONFIG_TULIP_USE_IO
PCI_COMMAND_IO |
#else
PCI_COMMAND_MEMORY |
#endif
PCI_COMMAND_MASTER;
pci_write_config_word(devbusfn, PCI_COMMAND, status);
pci_read_config_word(devbusfn, PCI_COMMAND, &status);
#ifdef CONFIG_TULIP_USE_IO
if (!(status & PCI_COMMAND_IO)) {
printf("Error: Can not enable I/O access.\n");
continue;
}
#else
if (!(status & PCI_COMMAND_MEMORY)) {
printf("Error: Can not enable MEMORY access.\n");
continue;
}
#endif
if (!(status & PCI_COMMAND_MASTER)) {
printf("Error: Can not enable Bus Mastering.\n");
continue;
}
/* Check the latency timer for values >= 0x60. */
pci_read_config_byte(devbusfn, PCI_LATENCY_TIMER, &timer);
if (timer < 0x60) {
pci_write_config_byte(devbusfn, PCI_LATENCY_TIMER, 0x60);
}
#ifdef CONFIG_TULIP_USE_IO
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_0, &iobase);
iobase &= PCI_BASE_ADDRESS_IO_MASK;
#else
/* read BAR for memory space access */
pci_read_config_dword(devbusfn, PCI_BASE_ADDRESS_1, &iobase);
iobase &= PCI_BASE_ADDRESS_MEM_MASK;
#endif
debug ("dc21x4x: DEC 21142 PCI Device @0x%x\n", iobase);
dev = (struct eth_device*) malloc(sizeof *dev);
if (!dev) {
printf("Can not allocalte memory of dc21x4x\n");
break;
}
memset(dev, 0, sizeof(*dev));
#ifdef CONFIG_TULIP_FIX_DAVICOM
sprintf(dev->name, "Davicom#%d", card_number);
#else
sprintf(dev->name, "dc21x4x#%d", card_number);
#endif
#ifdef CONFIG_TULIP_USE_IO
dev->iobase = pci_io_to_phys(devbusfn, iobase);
#else
dev->iobase = pci_mem_to_phys(devbusfn, iobase);
#endif
dev->priv = (void*) devbusfn;
dev->init = dc21x4x_init;
dev->halt = dc21x4x_halt;
dev->send = dc21x4x_send;
dev->recv = dc21x4x_recv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
udelay(10 * 1000);
#ifndef CONFIG_TULIP_FIX_DAVICOM
read_hw_addr(dev, bis);
#endif
eth_register(dev);
card_number++;
}
return card_number;
}
static int dc21x4x_init(struct eth_device* dev, bd_t* bis)
{
int i;
int devbusfn = (int) dev->priv;
/* Ensure we're not sleeping. */
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, WAKEUP);
#ifdef CONFIG_TULIP_FIX_DAVICOM
RESET_DM9102(dev);
#else
RESET_DE4X5(dev);
#endif
if ((INL(dev, DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
printf("Error: Cannot reset ethernet controller.\n");
return -1;
}
#ifdef CONFIG_TULIP_SELECT_MEDIA
dc21x4x_select_media(dev);
#else
OUTL(dev, OMR_SDP | OMR_PS | OMR_PM, DE4X5_OMR);
#endif
for (i = 0; i < NUM_RX_DESC; i++) {
rx_ring[i].status = cpu_to_le32(R_OWN);
rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
rx_ring[i].buf = cpu_to_le32(phys_to_bus((u32) NetRxPackets[i]));
#ifdef CONFIG_TULIP_FIX_DAVICOM
rx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &rx_ring[(i+1) % NUM_RX_DESC]));
#else
rx_ring[i].next = 0;
#endif
}
for (i=0; i < NUM_TX_DESC; i++) {
tx_ring[i].status = 0;
tx_ring[i].des1 = 0;
tx_ring[i].buf = 0;
#ifdef CONFIG_TULIP_FIX_DAVICOM
tx_ring[i].next = cpu_to_le32(phys_to_bus((u32) &tx_ring[(i+1) % NUM_TX_DESC]));
#else
tx_ring[i].next = 0;
#endif
}
rxRingSize = NUM_RX_DESC;
txRingSize = NUM_TX_DESC;
/* Write the end of list marker to the descriptor lists. */
rx_ring[rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
tx_ring[txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
/* Tell the adapter where the TX/RX rings are located. */
OUTL(dev, phys_to_bus((u32) &rx_ring), DE4X5_RRBA);
OUTL(dev, phys_to_bus((u32) &tx_ring), DE4X5_TRBA);
START_DE4X5(dev);
tx_new = 0;
rx_new = 0;
send_setup_frame(dev, bis);
return 0;
}
static int dc21x4x_send(struct eth_device *dev, void *packet, int length)
{
int status = -1;
int i;
if (length <= 0) {
printf("%s: bad packet size: %d\n", dev->name, length);
goto Done;
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) packet));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_LS | TD_FS | length);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf(".%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) & TD_ES) {
#if 0 /* test-only */
printf("TX error status = 0x%08X\n",
le32_to_cpu(tx_ring[tx_new].status));
#endif
tx_ring[tx_new].status = 0x0;
goto Done;
}
status = length;
Done:
tx_new = (tx_new+1) % NUM_TX_DESC;
return status;
}
static int dc21x4x_recv(struct eth_device* dev)
{
s32 status;
int length = 0;
for ( ; ; ) {
status = (s32)le32_to_cpu(rx_ring[rx_new].status);
if (status & R_OWN) {
break;
}
if (status & RD_LS) {
/* Valid frame status.
*/
if (status & RD_ES) {
/* There was an error.
*/
printf("RX error status = 0x%08X\n", status);
} else {
/* A valid frame received.
*/
length = (le32_to_cpu(rx_ring[rx_new].status) >> 16);
/* Pass the packet up to the protocol
* layers.
*/
NetReceive(NetRxPackets[rx_new], length - 4);
}
/* Change buffer ownership for this frame, back
* to the adapter.
*/
rx_ring[rx_new].status = cpu_to_le32(R_OWN);
}
/* Update entry information.
*/
rx_new = (rx_new + 1) % rxRingSize;
}
return length;
}
static void dc21x4x_halt(struct eth_device* dev)
{
int devbusfn = (int) dev->priv;
STOP_DE4X5(dev);
OUTL(dev, 0, DE4X5_SICR);
pci_write_config_byte(devbusfn, PCI_CFDA_PSM, SLEEP);
}
static void send_setup_frame(struct eth_device* dev, bd_t *bis)
{
int i;
char setup_frame[SETUP_FRAME_LEN];
char *pa = &setup_frame[0];
memset(pa, 0xff, SETUP_FRAME_LEN);
for (i = 0; i < ETH_ALEN; i++) {
*(pa + (i & 1)) = dev->enetaddr[i];
if (i & 0x01) {
pa += 4;
}
}
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx error buffer not ready\n", dev->name);
goto Done;
}
}
tx_ring[tx_new].buf = cpu_to_le32(phys_to_bus((u32) &setup_frame[0]));
tx_ring[tx_new].des1 = cpu_to_le32(TD_TER | TD_SET| SETUP_FRAME_LEN);
tx_ring[tx_new].status = cpu_to_le32(T_OWN);
OUTL(dev, POLL_DEMAND, DE4X5_TPD);
for(i = 0; tx_ring[tx_new].status & cpu_to_le32(T_OWN); i++) {
if (i >= TOUT_LOOP) {
printf("%s: tx buffer not ready\n", dev->name);
goto Done;
}
}
if (le32_to_cpu(tx_ring[tx_new].status) != 0x7FFFFFFF) {
printf("TX error status2 = 0x%08X\n", le32_to_cpu(tx_ring[tx_new].status));
}
tx_new = (tx_new+1) % NUM_TX_DESC;
Done:
return;
}
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
/* SROM Read and write routines.
*/
static void
sendto_srom(struct eth_device* dev, u_int command, u_long addr)
{
OUTL(dev, command, addr);
udelay(1);
}
static int
getfrom_srom(struct eth_device* dev, u_long addr)
{
s32 tmp;
tmp = INL(dev, addr);
udelay(1);
return tmp;
}
/* Note: this routine returns extra data bits for size detection. */
static int do_read_eeprom(struct eth_device *dev, u_long ioaddr, int location, int addr_len)
{
int i;
unsigned retval = 0;
int read_cmd = location | (SROM_READ_CMD << addr_len);
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM read at %d ", location);
#endif
/* Shift the read command bits out. */
for (i = 4 + addr_len; i >= 0; i--) {
short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval, ioaddr);
udelay(10);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | dataval | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
}
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
#ifdef DEBUG_SROM2
printf(" :%X:", getfrom_srom(dev, ioaddr) & 15);
#endif
for (i = 16; i > 0; i--) {
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev, ioaddr) & 15);
#endif
retval = (retval << 1) | ((getfrom_srom(dev, ioaddr) & EE_DATA_READ) ? 1 : 0);
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
udelay(10);
}
/* Terminate the EEPROM access. */
sendto_srom(dev, SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM2
printf(" EEPROM value at %d is %5.5x.\n", location, retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
/* This executes a generic EEPROM command, typically a write or write
* enable. It returns the data output from the EEPROM, and thus may
* also be used for reads.
*/
#if defined(UPDATE_SROM) || !defined(CONFIG_TULIP_FIX_DAVICOM)
static int do_eeprom_cmd(struct eth_device *dev, u_long ioaddr, int cmd, int cmd_len)
{
unsigned retval = 0;
#ifdef DEBUG_SROM
printf(" EEPROM op 0x%x: ", cmd);
#endif
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS | DT_CLK, ioaddr);
/* Shift the command bits out. */
do {
short dataval = (cmd & (1 << cmd_len)) ? EE_WRITE_1 : EE_WRITE_0;
sendto_srom(dev,dataval, ioaddr);
udelay(10);
#ifdef DEBUG_SROM2
printf("%X", getfrom_srom(dev,ioaddr) & 15);
#endif
sendto_srom(dev,dataval | DT_CLK, ioaddr);
udelay(10);
retval = (retval << 1) | ((getfrom_srom(dev,ioaddr) & EE_DATA_READ) ? 1 : 0);
} while (--cmd_len >= 0);
sendto_srom(dev,SROM_RD | SROM_SR | DT_CS, ioaddr);
/* Terminate the EEPROM access. */
sendto_srom(dev,SROM_RD | SROM_SR, ioaddr);
#ifdef DEBUG_SROM
printf(" EEPROM result is 0x%5.5x.\n", retval);
#endif
return retval;
}
#endif /* UPDATE_SROM || !CONFIG_TULIP_FIX_DAVICOM */
#ifndef CONFIG_TULIP_FIX_DAVICOM
static int read_srom(struct eth_device *dev, u_long ioaddr, int index)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
return do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD << ee_addr_size) | index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static int write_srom(struct eth_device *dev, u_long ioaddr, int index, int new_value)
{
int ee_addr_size = do_read_eeprom(dev, ioaddr, 0xff, 8) & 0x40000 ? 8 : 6;
int i;
unsigned short newval;
udelay(10*1000); /* test-only */
#ifdef DEBUG_SROM
printf("ee_addr_size=%d.\n", ee_addr_size);
printf("Writing new entry 0x%4.4x to offset %d.\n", new_value, index);
#endif
/* Enable programming modes. */
do_eeprom_cmd(dev, ioaddr, (0x4f << (ee_addr_size-4)), 3+ee_addr_size);
/* Do the actual write. */
do_eeprom_cmd(dev, ioaddr,
(((SROM_WRITE_CMD<<ee_addr_size)|index) << 16) | new_value,
3 + ee_addr_size + 16);
/* Poll for write finished. */
sendto_srom(dev, SROM_RD | SROM_SR | DT_CS, ioaddr);
for (i = 0; i < 10000; i++) /* Typical 2000 ticks */
if (getfrom_srom(dev, ioaddr) & EE_DATA_READ)
break;
#ifdef DEBUG_SROM
printf(" Write finished after %d ticks.\n", i);
#endif
/* Disable programming. */
do_eeprom_cmd(dev, ioaddr, (0x40 << (ee_addr_size-4)), 3 + ee_addr_size);
/* And read the result. */
newval = do_eeprom_cmd(dev, ioaddr,
(((SROM_READ_CMD<<ee_addr_size)|index) << 16)
| 0xffff, 3 + ee_addr_size + 16);
#ifdef DEBUG_SROM
printf(" New value at offset %d is %4.4x.\n", index, newval);
#endif
return 1;
}
#endif
#ifndef CONFIG_TULIP_FIX_DAVICOM
static void read_hw_addr(struct eth_device *dev, bd_t *bis)
{
u_short tmp, *p = (u_short *)(&dev->enetaddr[0]);
int i, j = 0;
for (i = 0; i < (ETH_ALEN >> 1); i++) {
tmp = read_srom(dev, DE4X5_APROM, ((SROM_HWADD >> 1) + i));
*p = le16_to_cpu(tmp);
j += *p++;
}
if ((j == 0) || (j == 0x2fffd)) {
memset (dev->enetaddr, 0, ETH_ALEN);
debug ("Warning: can't read HW address from SROM.\n");
goto Done;
}
return;
Done:
#ifdef UPDATE_SROM
update_srom(dev, bis);
#endif
return;
}
#endif /* CONFIG_TULIP_FIX_DAVICOM */
#ifdef UPDATE_SROM
static void update_srom(struct eth_device *dev, bd_t *bis)
{
int i;
static unsigned short eeprom[0x40] = {
0x140b, 0x6610, 0x0000, 0x0000, /* 00 */
0x0000, 0x0000, 0x0000, 0x0000, /* 04 */
0x00a3, 0x0103, 0x0000, 0x0000, /* 08 */
0x0000, 0x1f00, 0x0000, 0x0000, /* 0c */
0x0108, 0x038d, 0x0000, 0x0000, /* 10 */
0xe078, 0x0001, 0x0040, 0x0018, /* 14 */
0x0000, 0x0000, 0x0000, 0x0000, /* 18 */
0x0000, 0x0000, 0x0000, 0x0000, /* 1c */
0x0000, 0x0000, 0x0000, 0x0000, /* 20 */
0x0000, 0x0000, 0x0000, 0x0000, /* 24 */
0x0000, 0x0000, 0x0000, 0x0000, /* 28 */
0x0000, 0x0000, 0x0000, 0x0000, /* 2c */
0x0000, 0x0000, 0x0000, 0x0000, /* 30 */
0x0000, 0x0000, 0x0000, 0x0000, /* 34 */
0x0000, 0x0000, 0x0000, 0x0000, /* 38 */
0x0000, 0x0000, 0x0000, 0x4e07, /* 3c */
};
uchar enetaddr[6];
/* Ethernet Addr... */
if (!eth_getenv_enetaddr("ethaddr", enetaddr))
return;
eeprom[0x0a] = (enetaddr[1] << 8) | enetaddr[0];
eeprom[0x0b] = (enetaddr[3] << 8) | enetaddr[2];
eeprom[0x0c] = (enetaddr[5] << 8) | enetaddr[4];
for (i=0; i<0x40; i++) {
write_srom(dev, DE4X5_APROM, i, eeprom[i]);
}
}
#endif /* UPDATE_SROM */
|