1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
|
/*
* Freescale GPMI NFC NAND Flash Driver
*
* Copyright (C) 2008 Embedded Alley Solutions, Inc.
*
* Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/mtd/mtd.h>
#include "gpmi_nfc_gpmi.h"
#include "gpmi_nfc_bch.h"
#include <linux/mtd/nand.h>
#include <linux/types.h>
#include <asm/apbh_dma.h>
#include <asm/io.h>
#include <common.h>
#ifdef CONFIG_ARCH_MMU
#include <asm/arch/mmu.h>
#endif
#define MIN_PROP_DELAY_IN_NS (5)
#define MAX_PROP_DELAY_IN_NS (9)
#define NFC_DMA_DESCRIPTOR_COUNT (4)
static struct mxs_dma_desc *dma_desc[NFC_DMA_DESCRIPTOR_COUNT];
static struct gpmi_nfc_timing safe_timing = {
.m_u8DataSetup = 80,
.m_u8DataHold = 60,
.m_u8AddressSetup = 25,
.m_u8HalfPeriods = 0,
.m_u8SampleDelay = 6,
.m_u8NandTimingState = 0,
.m_u8tREA = -1,
.m_u8tRLOH = -1,
.m_u8tRHOH = -1,
};
/**
* init() - Initializes the NFC hardware.
*
* @this: Per-device data.
*/
static int init(void)
{
int error = 0, i;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Initialize DMA. */
MTDDEBUG(MTD_DEBUG_LEVEL1, "dma_desc: 0x%08x, ",
(unsigned int)dma_desc);
for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; ++i) {
dma_desc[i] = mxs_dma_alloc_desc();
if (NULL == dma_desc[i]) {
for (i -= 1; i >= 0; --i)
mxs_dma_free_desc(dma_desc[i]);
error = -ENOMEM;
}
MTDDEBUG(MTD_DEBUG_LEVEL1,
"dma_desc[%d]: 0x%08x, ",
i, (unsigned int)dma_desc[i]);
}
MTDDEBUG(MTD_DEBUG_LEVEL1, "\n");
if (error)
return error;
mxs_dma_init();
/* Reset the GPMI block. */
gpmi_nfc_reset_block((void *)(CONFIG_GPMI_REG_BASE + HW_GPMI_CTRL0), 1);
/* Choose NAND mode. */
REG_CLR(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_GPMI_MODE);
/* Set the IRQ polarity. */
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY);
/* Disable write protection. */
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_DEV_RESET);
/* Select BCH ECC. */
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_BCH_MODE);
memcpy(&gpmi_nfc_hal.timing, &safe_timing,
sizeof(struct gpmi_nfc_timing));
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return 0;
}
/**
* set_geometry() - Configures the NFC geometry.
*
* @this: Per-device data.
*/
static int set_geometry(struct mtd_info *mtd)
{
u32 block_count;
u32 block_size;
u32 metadata_size;
u32 ecc_strength;
u32 page_size;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Translate the abstract choices into register fields. */
block_count = GPMI_NFC_ECC_CHUNK_CNT(mtd->writesize) - 1;
#if defined(CONFIG_GPMI_NFC_V2)
block_size = GPMI_NFC_CHUNK_DATA_CHUNK_SIZE >> 2;
#else
block_size = GPMI_NFC_CHUNK_DATA_CHUNK_SIZE;
#endif
metadata_size = GPMI_NFC_METADATA_SIZE;
ecc_strength =
gpmi_nfc_get_ecc_strength(mtd->writesize, mtd->oobsize) >> 1;
page_size = mtd->writesize + mtd->oobsize;
/*
* Reset the BCH block. Notice that we pass in true for the just_enable
* flag. This is because the soft reset for the version 0 BCH block
* doesn't work and the version 1 BCH block is similar enough that we
* suspect the same (though this has not been officially tested). If you
* try to soft reset a version 0 BCH block, it becomes unusable until
* the next hard reset.
*/
#if defined(CONFIG_GPMI_NFC_V2)
gpmi_nfc_reset_block((void *)CONFIG_BCH_REG_BASE + HW_BCH_CTRL, 0);
#else
gpmi_nfc_reset_block((void *)CONFIG_BCH_REG_BASE + HW_BCH_CTRL, 1);
#endif
/* Configure layout 0. */
writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) |
BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) |
BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength) |
BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size),
CONFIG_BCH_REG_BASE + HW_BCH_FLASH0LAYOUT0);
writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) |
BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength) |
BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size),
CONFIG_BCH_REG_BASE + HW_BCH_FLASH0LAYOUT1);
/* Set *all* chip selects to use layout 0. */
writel(0, CONFIG_BCH_REG_BASE + HW_BCH_LAYOUTSELECT);
/* Enable interrupts. */
REG_SET(CONFIG_BCH_REG_BASE, HW_BCH_CTRL,
BM_BCH_CTRL_COMPLETE_IRQ_EN);
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return 0;
}
/**
* ns_to_cycles - Converts time in nanoseconds to cycles.
*
* @ntime: The time, in nanoseconds.
* @period: The cycle period, in nanoseconds.
* @min: The minimum allowable number of cycles.
*/
static u32 ns_to_cycles(u32 time, u32 period, u32 min)
{
u32 k;
/*
* Compute the minimum number of cycles that entirely contain the
* given time.
*/
k = (time + period - 1) / period;
return max(k, min);
}
static int calculte_hw_timing(struct mtd_info *mtd,
struct gpmi_nfc_timing *nfc_timing,
struct gpmi_nfc_timing *hw_timing)
{
struct nand_chip *chip = mtd->priv;
struct gpmi_nfc_info *gpmi_info = chip->priv;
struct nfc_hal *nfc = gpmi_info->nfc;
u8 improved_timing_is_available;
u32 clock_frequency_in_hz;
u32 clock_period_in_ns;
u8 dll_use_half_periods;
u32 dll_delay_shift;
u32 max_sample_delay_in_ns;
u32 address_setup_in_cycles;
u32 data_setup_in_ns;
u32 data_setup_in_cycles;
u32 data_hold_in_cycles;
s32 ideal_sample_delay_in_ns;
u32 sample_delay_factor;
s32 tEYE;
u32 min_prop_delay_in_ns = MIN_PROP_DELAY_IN_NS;
u32 max_prop_delay_in_ns = MAX_PROP_DELAY_IN_NS;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/*
* If there are multiple chips, we need to relax the timings to allow
* for signal distortion due to higher capacitance.
*/
if (chip->numchips > 2) {
nfc_timing->m_u8DataSetup += 10;
nfc_timing->m_u8DataHold += 10;
nfc_timing->m_u8AddressSetup += 10;
} else {
nfc_timing->m_u8DataSetup += 5;
nfc_timing->m_u8DataHold += 5;
nfc_timing->m_u8AddressSetup += 5;
}
/* Check if improved timing information is available. */
improved_timing_is_available =
(nfc_timing->m_u8tREA >= 0) &&
(nfc_timing->m_u8tRLOH >= 0) &&
(nfc_timing->m_u8tRHOH >= 0) ;
/* Inspect the clock. */
clock_frequency_in_hz = mxc_get_clock(MXC_GPMI_CLK);
clock_period_in_ns = 1000000000 / clock_frequency_in_hz;
/*
* The NFC quantizes setup and hold parameters in terms of clock cycles.
* Here, we quantize the setup and hold timing parameters to the
* next-highest clock period to make sure we apply at least the
* specified times.
*
* For data setup and data hold, the hardware interprets a value of zero
* as the largest possible delay. This is not what's intended by a zero
* in the input parameter, so we impose a minimum of one cycle.
*/
data_setup_in_cycles = ns_to_cycles(nfc_timing->m_u8DataSetup,
clock_period_in_ns, 1);
data_hold_in_cycles = ns_to_cycles(nfc_timing->m_u8DataHold,
clock_period_in_ns, 1);
address_setup_in_cycles = ns_to_cycles(nfc_timing->m_u8AddressSetup,
clock_period_in_ns, 0);
/*
* The clock's period affects the sample delay in a number of ways:
*
* (1) The NFC HAL tells us the maximum clock period the sample delay
* DLL can tolerate. If the clock period is greater than half that
* maximum, we must configure the DLL to be driven by half periods.
*
* (2) We need to convert from an ideal sample delay, in ns, to a
* "sample delay factor," which the NFC uses. This factor depends on
* whether we're driving the DLL with full or half periods.
* Paraphrasing the reference manual:
*
* AD = SDF x 0.125 x RP
*
* where:
*
* AD is the applied delay, in ns.
* SDF is the sample delay factor, which is dimensionless.
* RP is the reference period, in ns, which is a full clock period
* if the DLL is being driven by full periods, or half that if
* the DLL is being driven by half periods.
*
* Let's re-arrange this in a way that's more useful to us:
*
* 8
* SDF = AD x ----
* RP
*
* The reference period is either the clock period or half that, so this
* is:
*
* 8 AD x DDF
* SDF = AD x ----- = --------
* f x P P
*
* where:
*
* f is 1 or 1/2, depending on how we're driving the DLL.
* P is the clock period.
* DDF is the DLL Delay Factor, a dimensionless value that
* incorporates all the constants in the conversion.
*
* DDF will be either 8 or 16, both of which are powers of two. We can
* reduce the cost of this conversion by using bit shifts instead of
* multiplication or division. Thus:
*
* AD << DDS
* SDF = ---------
* P
*
* or
*
* AD = (SDF >> DDS) x P
*
* where:
*
* DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF.
*/
if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) {
dll_use_half_periods = 0;
dll_delay_shift = 3 + 1;
} else {
dll_use_half_periods = 1;
dll_delay_shift = 3;
}
/*
* Compute the maximum sample delay the NFC allows, under current
* conditions. If the clock is running too slowly, no sample delay is
* possible.
*/
if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns)
max_sample_delay_in_ns = 0;
else {
/*
* Compute the delay implied by the largest sample delay factor
* the NFC allows.
*/
max_sample_delay_in_ns =
(nfc->max_sample_delay_factor * clock_period_in_ns) >>
dll_delay_shift;
/*
* Check if the implied sample delay larger than the NFC
* actually allows.
*/
if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns)
max_sample_delay_in_ns = nfc->max_dll_delay_in_ns;
}
/*
* Check if improved timing information is available. If not, we have to
* use a less-sophisticated algorithm.
*/
if (!improved_timing_is_available) {
/*
* Fold the read setup time required by the NFC into the ideal
* sample delay.
*/
ideal_sample_delay_in_ns = nfc_timing->m_u8SampleDelay +
nfc->internal_data_setup_in_ns;
/*
* The ideal sample delay may be greater than the maximum
* allowed by the NFC. If so, we can trade off sample delay time
* for more data setup time.
*
* In each iteration of the following loop, we add a cycle to
* the data setup time and subtract a corresponding amount from
* the sample delay until we've satisified the constraints or
* can't do any better.
*/
while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
data_setup_in_cycles++;
ideal_sample_delay_in_ns -= clock_period_in_ns;
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
}
/*
* Compute the sample delay factor that corresponds most closely
* to the ideal sample delay. If the result is too large for the
* NFC, use the maximum value.
*
* Notice that we use the ns_to_cycles function to compute the
* sample delay factor. We do this because the form of the
* computation is the same as that for calculating cycles.
*/
sample_delay_factor =
ns_to_cycles(
ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
/* Skip to the part where we return our results. */
goto rtn_rslt;
}
/*
* If control arrives here, we have more detailed timing information,
* so we can use a better algorithm.
*/
/*
* Fold the read setup time required by the NFC into the maximum
* propagation delay.
*/
max_prop_delay_in_ns += nfc->internal_data_setup_in_ns;
/*
* Earlier, we computed the number of clock cycles required to satisfy
* the data setup time. Now, we need to know the actual nanoseconds.
*/
data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles;
/*
* Compute tEYE, the width of the data eye when reading from the NAND
* Flash. The eye width is fundamentally determined by the data setup
* time, perturbed by propagation delays and some characteristics of the
* NAND Flash device.
*
* start of the eye = max_prop_delay + tREA
* end of the eye = min_prop_delay + tRHOH + data_setup
*/
tEYE = (int)min_prop_delay_in_ns + (int)nfc_timing->m_u8tRHOH+
(int)data_setup_in_ns;
tEYE -= (int)max_prop_delay_in_ns + (int)nfc_timing->m_u8tREA;
/*
* The eye must be open. If it's not, we can try to open it by
* increasing its main forcer, the data setup time.
*
* In each iteration of the following loop, we increase the data setup
* time by a single clock cycle. We do this until either the eye is
* open or we run into NFC limits.
*/
while ((tEYE <= 0) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
}
/*
* When control arrives here, the eye is open. The ideal time to sample
* the data is in the center of the eye:
*
* end of the eye + start of the eye
* --------------------------------- - data_setup
* 2
*
* After some algebra, this simplifies to the code immediately below.
*/
ideal_sample_delay_in_ns =
((int)max_prop_delay_in_ns +
(int)nfc_timing->m_u8tREA+
(int)min_prop_delay_in_ns +
(int)nfc_timing->m_u8tRHOH-
(int)data_setup_in_ns) >> 1;
/*
* The following figure illustrates some aspects of a NAND Flash read:
*
*
* __ _____________________________________
* RDN \_________________/
*
* <---- tEYE ----->
* /-----------------\
* Read Data ----------------------------< >---------
* \-----------------/
* ^ ^ ^ ^
* | | | |
* |<--Data Setup -->|<--Delay Time -->| |
* | | | |
* | | |
* | |<-- Quantized Delay Time -->|
* | | |
*
*
* We have some issues we must now address:
*
* (1) The *ideal* sample delay time must not be negative. If it is, we
* jam it to zero.
*
* (2) The *ideal* sample delay time must not be greater than that
* allowed by the NFC. If it is, we can increase the data setup
* time, which will reduce the delay between the end of the data
* setup and the center of the eye. It will also make the eye
* larger, which might help with the next issue...
*
* (3) The *quantized* sample delay time must not fall either before the
* eye opens or after it closes (the latter is the problem
* illustrated in the above figure).
*/
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
/*
* Extend the data setup as needed to reduce the ideal sample delay
* below the maximum permitted by the NFC.
*/
while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
/*
* Decrease the ideal sample delay by one half cycle, to keep it
* in the middle of the eye.
*/
ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
}
/*
* Compute the sample delay factor that corresponds to the ideal sample
* delay. If the result is too large, then use the maximum allowed
* value.
*
* Notice that we use the ns_to_cycles function to compute the sample
* delay factor. We do this because the form of the computation is the
* same as that for calculating cycles.
*/
sample_delay_factor =
ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
/*
* These macros conveniently encapsulate a computation we'll use to
* continuously evaluate whether or not the data sample delay is inside
* the eye.
*/
#define IDEAL_DELAY ((int)ideal_sample_delay_in_ns)
#define QUANTIZED_DELAY \
((int) ((sample_delay_factor * clock_period_in_ns) >> \
dll_delay_shift))
#define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY))
#define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1))
/*
* While the quantized sample time falls outside the eye, reduce the
* sample delay or extend the data setup to move the sampling point back
* toward the eye. Do not allow the number of data setup cycles to
* exceed the maximum allowed by the NFC.
*/
while (SAMPLE_IS_NOT_WITHIN_THE_EYE &&
(data_setup_in_cycles < nfc->max_data_setup_cycles)) {
/*
* If control arrives here, the quantized sample delay falls
* outside the eye. Check if it's before the eye opens, or after
* the eye closes.
*/
if (QUANTIZED_DELAY > IDEAL_DELAY) {
/*
* If control arrives here, the quantized sample delay
* falls after the eye closes. Decrease the quantized
* delay time and then go back to re-evaluate.
*/
if (sample_delay_factor != 0)
sample_delay_factor--;
continue;
}
/*
* If control arrives here, the quantized sample delay falls
* before the eye opens. Shift the sample point by increasing
* data setup time. This will also make the eye larger.
*/
/* Give a cycle to data setup. */
data_setup_in_cycles++;
/* Synchronize the data setup time with the cycles. */
data_setup_in_ns += clock_period_in_ns;
/* Adjust tEYE accordingly. */
tEYE += clock_period_in_ns;
/*
* Decrease the ideal sample delay by one half cycle, to keep it
* in the middle of the eye.
*/
ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1);
/* ...and one less period for the delay time. */
ideal_sample_delay_in_ns -= clock_period_in_ns;
/* Jam a negative ideal sample delay to zero. */
if (ideal_sample_delay_in_ns < 0)
ideal_sample_delay_in_ns = 0;
/*
* We have a new ideal sample delay, so re-compute the quantized
* delay.
*/
sample_delay_factor =
ns_to_cycles(
ideal_sample_delay_in_ns << dll_delay_shift,
clock_period_in_ns, 0);
if (sample_delay_factor > nfc->max_sample_delay_factor)
sample_delay_factor = nfc->max_sample_delay_factor;
}
/* Control arrives here when we're ready to return our results. */
rtn_rslt:
hw_timing->m_u8DataSetup = data_setup_in_cycles;
hw_timing->m_u8DataHold = data_hold_in_cycles;
hw_timing->m_u8AddressSetup = address_setup_in_cycles;
hw_timing->m_u8HalfPeriods = dll_use_half_periods;
hw_timing->m_u8SampleDelay = sample_delay_factor;
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return 0;
}
/**
* set_timing() - Configures the NFC timing.
*
* @this: Per-device data.
* @timing: The timing of interest.
*/
static int set_timing(struct mtd_info *mtd,
const struct gpmi_nfc_timing *timing)
{
struct nand_chip *chip = mtd->priv;
struct gpmi_nfc_info *gpmi_info = chip->priv;
struct nfc_hal *nfc = gpmi_info->nfc;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Accept the new timing. */
nfc->timing = *timing;
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return 0;
}
/**
* get_timing() - Retrieves the NFC hardware timing.
*
* @this: Per-device data.
* @clock_frequency_in_hz: The clock frequency, in Hz, during the current
* I/O transaction. If no I/O transaction is in
* progress, this is the clock frequency during the
* most recent I/O transaction.
* @hardware_timing: The hardware timing configuration in effect during
* the current I/O transaction. If no I/O transaction
* is in progress, this is the hardware timing
* configuration during the most recent I/O
* transaction.
*/
static void get_timing(struct mtd_info *mtd,
unsigned long *clock_frequency_in_hz,
struct gpmi_nfc_timing *hardware_timing)
{
struct nand_chip *chip = mtd->priv;
struct gpmi_nfc_info *gpmi_info = chip->priv;
struct nfc_hal *nfc = gpmi_info->nfc;
u32 register_image;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Return the clock frequency. */
*clock_frequency_in_hz = nfc->clock_frequency_in_hz;
/* Retrieve the hardware timing. */
register_image = REG_RD(CONFIG_GPMI_REG_BASE, HW_GPMI_TIMING0);
hardware_timing->m_u8DataSetup =
(register_image & BM_GPMI_TIMING0_DATA_SETUP) >>
BP_GPMI_TIMING0_DATA_SETUP;
hardware_timing->m_u8DataHold =
(register_image & BM_GPMI_TIMING0_DATA_HOLD) >>
BP_GPMI_TIMING0_DATA_HOLD;
hardware_timing->m_u8AddressSetup =
(register_image & BM_GPMI_TIMING0_ADDRESS_SETUP) >>
BP_GPMI_TIMING0_ADDRESS_SETUP;
register_image = REG_RD(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1);
hardware_timing->m_u8HalfPeriods =
(register_image & BM_GPMI_CTRL1_HALF_PERIOD) >>
BP_GPMI_CTRL1_HALF_PERIOD;
hardware_timing->m_u8SampleDelay =
(register_image & BM_GPMI_CTRL1_RDN_DELAY) >>
BP_GPMI_CTRL1_RDN_DELAY;
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
}
/**
* exit() - Shuts down the NFC hardware.
*
* @this: Per-device data.
*/
static void exit(struct mtd_info *mtd)
{
int i;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
for (i = 0; i < NFC_DMA_DESCRIPTOR_COUNT; ++i)
mxs_dma_free_desc(dma_desc[i]);
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
}
/**
* begin() - Begin NFC I/O.
*
* @this: Per-device data.
*/
static void begin(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
struct gpmi_nfc_info *gpmi_info = chip->priv;
struct nfc_hal *nfc = gpmi_info->nfc;
struct gpmi_nfc_timing hw_timing;
#if defined(CONFIG_GPMI_NFC_V0)
u32 clock_period_in_ns;
u32 register_image;
u32 dll_wait_time_in_us;
#endif
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Get the timing information we need. */
nfc->clock_frequency_in_hz = mxc_get_clock(MXC_GPMI_CLK);
#if defined(CONFIG_GPMI_NFC_V0)
clock_period_in_ns = 1000000000 / nfc->clock_frequency_in_hz;
#endif
calculte_hw_timing(mtd, &(nfc->timing), &hw_timing);
#if defined(CONFIG_GPMI_NFC_V0)
/* Set up all the simple timing parameters. */
register_image =
BF_GPMI_TIMING0_ADDRESS_SETUP(hw_timing.m_u8AddressSetup) |
BF_GPMI_TIMING0_DATA_HOLD(hw_timing.m_u8DataHold) |
BF_GPMI_TIMING0_DATA_SETUP(hw_timing.m_u8DataSetup) ;
writel(register_image, CONFIG_GPMI_REG_BASE + HW_GPMI_TIMING0);
/*
* HEY - PAY ATTENTION!
*
* DLL_ENABLE must be set to zero when setting RDN_DELAY or HALF_PERIOD.
*/
REG_CLR(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_DLL_ENABLE)
/* Clear out the DLL control fields. */
REG_CLR(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_RDN_DELAY);
REG_CLR(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_HALF_PERIOD);
/* If no sample delay is called for, return immediately. */
if (!hw.sample_delay_factor)
return;
/* Configure the HALF_PERIOD flag. */
if (hw.use_half_periods)
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_HALF_PERIOD);
/* Set the delay factor. */
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BF_GPMI_CTRL1_RDN_DELAY(hw_timing.sample_delay_factor));
/* Enable the DLL. */
REG_SET(CONFIG_GPMI_REG_BASE, HW_GPMI_CTRL1,
BM_GPMI_CTRL1_DLL_ENABLE);
/*
* After we enable the GPMI DLL, we have to wait 64 clock cycles before
* we can use the GPMI.
*
* Calculate the amount of time we need to wait, in microseconds.
*/
dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000;
if (!dll_wait_time_in_us)
dll_wait_time_in_us = 1;
/* Wait for the DLL to settle. */
udelay(dll_wait_time_in_us);
#endif
/* Apply the hardware timing. */
/* Coming soon - the clock handling code isn't ready yet. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
}
/**
* end() - End NFC I/O.
*
* @this: Per-device data.
*/
static void end(struct mtd_info *mtd)
{
/* Disable the clock. */
}
/**
* clear_bch() - Clears a BCH interrupt.
*
* @this: Per-device data.
*/
static void clear_bch(struct mtd_info *mtd)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
REG_CLR(CONFIG_BCH_REG_BASE, HW_BCH_CTRL,
BM_BCH_CTRL_COMPLETE_IRQ);
MTDDEBUG(MTD_DEBUG_LEVEL3, "<=%s\n", __func__);
}
/**
* is_ready() - Returns the ready/busy status of the given chip.
*
* @this: Per-device data.
* @chip: The chip of interest.
*/
static int is_ready(struct mtd_info *mtd, unsigned int target_chip)
{
u32 mask;
u32 register_image;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
/* Extract and return the status. */
#if defined(CONFIG_GPMI_NFC_V0)
mask = BM_GPMI_DEBUG_READY0 << target_chip;
register_image = REG_RD(CONFIG_GPMI_REG_BASE, HW_GPMI_DEBUG);
#else
mask = BF_GPMI_STAT_READY_BUSY(1 << 0);
register_image = REG_RD(CONFIG_GPMI_REG_BASE, HW_GPMI_STAT);
#endif
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return register_image & mask;
}
/**
* send_command() - Sends a command and associated addresses.
*
* @this: Per-device data.
* @chip: The chip of interest.
* @buffer: The physical address of a buffer that contains the command bytes.
* @length: The number of bytes in the buffer.
*/
static int send_command(struct mtd_info *mtd, unsigned chip,
dma_addr_t buffer, unsigned int length)
{
struct mxs_dma_desc **d = dma_desc;
s32 dma_channel;
s32 error;
u32 command_mode;
u32 address;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
MTDDEBUG(MTD_DEBUG_LEVEL2, "Chip: %d DMA Buf: 0x%08x Length: %d\n",
chip, buffer, length);
/* Compute the DMA channel. */
dma_channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + chip;
/* A DMA descriptor that sends out the command. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
address = BV_GPMI_CTRL0_ADDRESS__NAND_CLE;
MTDDEBUG(MTD_DEBUG_LEVEL2, "1st Command: mode: %d, address: %d, ",
command_mode, address);
/* reset the cmd bits fieled */
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = DMA_READ;
#if defined(CONFIG_GPMI_NFC_V2)
(*d)->cmd.cmd.bits.chain = 0;
#else
(*d)->cmd.cmd.bits.chain = 1;
#endif
(*d)->cmd.cmd.bits.irq = 1;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 1;
#if defined(CONFIG_GPMI_NFC_V2)
(*d)->cmd.cmd.bits.halt_on_terminate = 1;
#else
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
#endif
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 3;
(*d)->cmd.cmd.bits.bytes = length;
#ifdef CONFIG_ARCH_MMU
(*d)->cmd.address = iomem_to_phys(buffer);
#else
(*d)->cmd.address = buffer;
#endif
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BM_GPMI_CTRL0_ADDRESS_INCREMENT |
BF_GPMI_CTRL0_XFER_COUNT(length) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] = 0;
MTDDEBUG(MTD_DEBUG_LEVEL2, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, PIO Words[2]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Go! */
error = mxs_dma_go(dma_channel);
if (error)
printf("[%s] DMA error\n", __func__);
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return error;
}
/**
* send_data() - Sends data to the given chip.
*
* @this: Per-device data.
* @chip: The chip of interest.
* @buffer: The physical address of a buffer that contains the data.
* @length: The number of bytes in the buffer.
*/
static int send_data(struct mtd_info *mtd, unsigned chip,
dma_addr_t buffer, unsigned length)
{
struct mxs_dma_desc **d = dma_desc;
int dma_channel;
int error = 0;
u32 command_mode;
u32 address;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
MTDDEBUG(MTD_DEBUG_LEVEL1, "Chip: %d DMA Buf: 0x%08x Length: %d\n",
chip, buffer, length);
/* Compute the DMA channel. */
dma_channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + chip;
/* A DMA descriptor that writes a buffer out. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
MTDDEBUG(MTD_DEBUG_LEVEL1, "1st Command: mode: %d, address: %d, ",
command_mode, address);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = DMA_READ;
(*d)->cmd.cmd.bits.chain = 0;
(*d)->cmd.cmd.bits.irq = 1;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 4;
(*d)->cmd.cmd.bits.bytes = length;
#ifdef CONFIG_ARCH_MMU
(*d)->cmd.address = iomem_to_phys(buffer);
#else
(*d)->cmd.address = buffer;
#endif
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(length) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] = 0;
(*d)->cmd.pio_words[3] = 0;
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, PIO Words[2]: 0x%08x, "
"PIO Words[3]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2],
(unsigned int)(*d)->cmd.pio_words[3]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Go! */
error = mxs_dma_go(dma_channel);
if (error)
printf("[%s] DMA error\n", __func__);
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return error;
}
/**
* read_data() - Receives data from the given chip.
*
* @this: Per-device data.
* @chip: The chip of interest.
* @buffer: The physical address of a buffer that will receive the data.
* @length: The number of bytes to read.
*/
static int read_data(struct mtd_info *mtd, unsigned chip,
dma_addr_t buffer, unsigned int length)
{
struct mxs_dma_desc **d = dma_desc;
int dma_channel;
int error = 0;
uint32_t command_mode;
uint32_t address;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
MTDDEBUG(MTD_DEBUG_LEVEL1, "Chip: %d DMA Buf: 0x%08x Length: %d\n",
chip, buffer, length);
/* Compute the DMA channel. */
dma_channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + chip;
/* A DMA descriptor that reads the data. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
MTDDEBUG(MTD_DEBUG_LEVEL1, "1st Command: mode: %d, address: %d, ",
command_mode, address);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = DMA_WRITE;
#if !defined(CONFIG_GPMI_NFC_V0)
(*d)->cmd.cmd.bits.chain = 0;
(*d)->cmd.cmd.bits.irq = 1;
#else
(*d)->cmd.cmd.bits.chain = 1;
(*d)->cmd.cmd.bits.irq = 0;
#endif
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 1;
#if defined(CONFIG_GPMI_NFC_V2)
(*d)->cmd.cmd.bits.halt_on_terminate = 1;
#else
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
#endif
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 1;
(*d)->cmd.cmd.bits.bytes = length;
#ifdef CONFIG_ARCH_MMU
(*d)->cmd.address = iomem_to_phys(buffer);
#else
(*d)->cmd.address = buffer;
#endif
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(length) ;
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
#if !defined(CONFIG_GPMI_NFC_V2)
/*
* A DMA descriptor that waits for the command to end and the chip to
* become ready.
*
* I think we actually should *not* be waiting for the chip to become
* ready because, after all, we don't care. I think the original code
* did that and no one has re-thought it yet.
*/
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
MTDDEBUG(MTD_DEBUG_LEVEL2, "2nd Command: mode: %d, address: %d\n",
command_mode, address);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 0;
(*d)->cmd.cmd.bits.irq = 1;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 4;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(0) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] = 0;
(*d)->cmd.pio_words[3] = 0;
MTDDEBUG(MTD_DEBUG_LEVEL2, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, "
"PIO Words[2]: 0x%08x, "
"PIO Words[3]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2],
(unsigned int)(*d)->cmd.pio_words[3]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
#endif
/* Go! */
error = mxs_dma_go(dma_channel);
if (error)
printf("[%s] DMA error\n", __func__);
#ifdef CONFIG_MTD_DEBUG
{
int i;
dma_addr_t *tmp_buf_ptr = (dma_addr_t *)buffer;
printf("Buffer:");
for (i = 0; i < length; ++i)
printf("0x%08x ", tmp_buf_ptr[i]);
printf("\n");
}
#endif
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return error;
}
int wait_for_bch_completion(u32 timeout)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
while ((!(REG_RD(CONFIG_BCH_REG_BASE, HW_BCH_CTRL) & 0x1)) &&
--timeout)
;
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return (timeout > 0) ? 0 : 1;
}
/**
* send_page() - Sends a page, using ECC.
*
* @this: Per-device data.
* @chip: The chip of interest.
* @payload: The physical address of the payload buffer.
* @auxiliary: The physical address of the auxiliary buffer.
*/
static int send_page(struct mtd_info *mtd, unsigned chip,
dma_addr_t payload, dma_addr_t auxiliary)
{
struct mxs_dma_desc **d = dma_desc;
int dma_channel;
int error = 0;
uint32_t command_mode;
uint32_t address;
uint32_t ecc_command;
uint32_t buffer_mask;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
MTDDEBUG(MTD_DEBUG_LEVEL1, "Chip: %d DMA Buf payload: 0x%08x "
"auxiliary: 0x%08x\n",
chip, payload, auxiliary);
/* Compute the DMA channel. */
dma_channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + chip;
/* A DMA descriptor that does an ECC page read. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
#if defined(CONFIG_GPMI_NFC_V0)
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
#else
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__ENCODE;
#endif
buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
MTDDEBUG(MTD_DEBUG_LEVEL1, "1st Command: mode: %d, address: %d, "
"ecc command: %d, buffer_mask: %d",
command_mode, address, ecc_command, buffer_mask);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 0;
(*d)->cmd.cmd.bits.irq = 1;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 6;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(0) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] =
BM_GPMI_ECCCTRL_ENABLE_ECC |
BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ;
(*d)->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize);
#ifdef CONFIG_ARCH_MMU
(*d)->cmd.pio_words[4] = iomem_to_phys(payload);
(*d)->cmd.pio_words[5] = iomem_to_phys(auxiliary);
#else
(*d)->cmd.pio_words[4] = payload;
(*d)->cmd.pio_words[5] = auxiliary;
#endif
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, "
"PIO Words[2]: 0x%08x, "
"PIO Words[3]: 0x%08x, "
"PIO Words[4]: 0x%08x, "
"PIO Words[5]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2],
(unsigned int)(*d)->cmd.pio_words[3],
(unsigned int)(*d)->cmd.pio_words[4],
(unsigned int)(*d)->cmd.pio_words[5]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Go! */
error = mxs_dma_go(dma_channel);
if (error)
printf("[%s] DMA error\n", __func__);
error = wait_for_bch_completion(10000);
error = (error) ? -ETIMEDOUT : 0;
if (error)
printf("[%s] bch timeout!!!\n", __func__);
clear_bch(NULL);
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return error;
}
/**
* read_page() - Reads a page, using ECC.
*
* @this: Per-device data.
* @chip: The chip of interest.
* @payload: The physical address of the payload buffer.
* @auxiliary: The physical address of the auxiliary buffer.
*/
static int read_page(struct mtd_info *mtd, unsigned chip,
dma_addr_t payload, dma_addr_t auxiliary)
{
struct mxs_dma_desc **d = dma_desc;
s32 dma_channel;
s32 error = 0;
u32 command_mode;
u32 address;
u32 ecc_command;
u32 buffer_mask;
u32 page_size = mtd->writesize + mtd->oobsize;
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s =>\n", __func__);
MTDDEBUG(MTD_DEBUG_LEVEL1, "Chip: %d DMA Buf payload: 0x%08x "
"auxiliary: 0x%08x\n",
chip, payload, auxiliary);
/* Compute the DMA channel. */
dma_channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + chip;
/* Wait for the chip to report ready. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
MTDDEBUG(MTD_DEBUG_LEVEL1, "1st Command: mode: %d, address: %d",
command_mode, address);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 1;
(*d)->cmd.cmd.bits.irq = 0;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
#if !defined(CONFIG_GPMI_NFC_V0)
(*d)->cmd.cmd.bits.dec_sem = 0;
#else
(*d)->cmd.cmd.bits.dec_sem = 1;
#endif
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 1;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(0) ;
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Enable the BCH block and read. */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
#if defined(CONFIG_GPMI_NFC_V0)
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
#else
ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__DECODE;
#endif
buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
MTDDEBUG(MTD_DEBUG_LEVEL1, "2nd Command: mode: %d, address: %d, "
"ecc command: %d, buffer_mask: %d",
command_mode, address, ecc_command, buffer_mask);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 1;
(*d)->cmd.cmd.bits.irq = 0;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
#if !defined(CONFIG_GPMI_NFC_V0)
(*d)->cmd.cmd.bits.dec_sem = 0;
#else
(*d)->cmd.cmd.bits.dec_sem = 1;
#endif
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 6;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(page_size) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] =
BM_GPMI_ECCCTRL_ENABLE_ECC |
BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) |
BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask) ;
(*d)->cmd.pio_words[3] = page_size;
#ifdef CONFIG_ARCH_MMU
(*d)->cmd.pio_words[4] = iomem_to_phys(payload);
(*d)->cmd.pio_words[5] = iomem_to_phys(auxiliary);
#else
(*d)->cmd.pio_words[4] = payload;
(*d)->cmd.pio_words[5] = auxiliary;
#endif
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, "
"PIO Words[2]: 0x%08x, "
"PIO Words[3]: 0x%08x, "
"PIO Words[4]: 0x%08x, "
"PIO Words[5]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2],
(unsigned int)(*d)->cmd.pio_words[3],
(unsigned int)(*d)->cmd.pio_words[4],
(unsigned int)(*d)->cmd.pio_words[5]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Disable the BCH block */
command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
MTDDEBUG(MTD_DEBUG_LEVEL1, "3rd Command: mode: %d, address: %d",
command_mode, address);
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 1;
(*d)->cmd.cmd.bits.irq = 0;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 1;
#if !defined(CONFIG_GPMI_NFC_V0)
(*d)->cmd.cmd.bits.dec_sem = 0;
#else
(*d)->cmd.cmd.bits.dec_sem = 1;
#endif
(*d)->cmd.cmd.bits.wait4end = 1;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 3;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
(*d)->cmd.pio_words[0] =
BF_GPMI_CTRL0_COMMAND_MODE(command_mode) |
BM_GPMI_CTRL0_WORD_LENGTH |
BF_GPMI_CTRL0_CS(chip) |
BF_GPMI_CTRL0_ADDRESS(address) |
BF_GPMI_CTRL0_XFER_COUNT(page_size) ;
(*d)->cmd.pio_words[1] = 0;
(*d)->cmd.pio_words[2] = 0;
MTDDEBUG(MTD_DEBUG_LEVEL1, "PIO Words[0]: 0x%08x, "
"PIO Words[1]: 0x%08x, "
"PIO Words[2]: 0x%08x\n",
(unsigned int)(*d)->cmd.pio_words[0],
(unsigned int)(*d)->cmd.pio_words[1],
(unsigned int)(*d)->cmd.pio_words[2]);
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Deassert the NAND lock and interrupt. */
(*d)->cmd.cmd.data = 0;
(*d)->cmd.cmd.bits.command = NO_DMA_XFER;
(*d)->cmd.cmd.bits.chain = 0;
(*d)->cmd.cmd.bits.irq = 1;
(*d)->cmd.cmd.bits.nand_lock = 0;
(*d)->cmd.cmd.bits.nand_wait_4_ready = 0;
(*d)->cmd.cmd.bits.dec_sem = 1;
(*d)->cmd.cmd.bits.wait4end = 0;
(*d)->cmd.cmd.bits.halt_on_terminate = 0;
(*d)->cmd.cmd.bits.terminate_flush = 0;
(*d)->cmd.cmd.bits.pio_words = 0;
(*d)->cmd.cmd.bits.bytes = 0;
(*d)->cmd.address = 0;
mxs_dma_desc_append(dma_channel, (*d));
d++;
/* Go! */
error = mxs_dma_go(dma_channel);
if (error)
printf("[%s] DMA error\n", __func__);
error = wait_for_bch_completion(10000);
error = (error) ? -ETIMEDOUT : 0;
if (error)
printf("[%s] bch timeout!!!\n", __func__);
clear_bch(NULL);
/* Return success. */
MTDDEBUG(MTD_DEBUG_LEVEL3, "<= %s\n", __func__);
return error;
}
/* This structure represents the NFC HAL for this version of the hardware. */
struct nfc_hal gpmi_nfc_hal = {
#if defined(CONFIG_GPMI_NFC_V0)
.version = 0,
.description = "4-chip GPMI and BCH",
.max_chip_count = 4,
#else
#if defined(CONFIG_GPMI_NFC_V1)
.version = 1,
#else
.version = 2,
#endif
.description = "8-chip GPMI and BCH",
.max_chip_count = 8,
#endif
.max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >>
BP_GPMI_TIMING0_DATA_SETUP),
.internal_data_setup_in_ns = 0,
.max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >>
BP_GPMI_CTRL1_RDN_DELAY),
.max_dll_clock_period_in_ns = 32,
.max_dll_delay_in_ns = 16,
.init = init,
.set_geometry = set_geometry,
.set_timing = set_timing,
.get_timing = get_timing,
.exit = exit,
.begin = begin,
.end = end,
.clear_bch = clear_bch,
.is_ready = is_ready,
.send_command = send_command,
.send_data = send_data,
.read_data = read_data,
.send_page = send_page,
.read_page = read_page,
};
|