summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/denali.c
blob: 9e0429aa198949903a6ddc0dbb32fa4e2125a247 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
/*
 * Copyright (C) 2014       Panasonic Corporation
 * Copyright (C) 2013-2014, Altera Corporation <www.altera.com>
 * Copyright (C) 2009-2010, Intel Corporation and its suppliers.
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <nand.h>
#include <asm/errno.h>
#include <asm/io.h>

#include "denali.h"

#define NAND_DEFAULT_TIMINGS	-1

static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;

/* We define a macro here that combines all interrupts this driver uses into
 * a single constant value, for convenience. */
#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
			INTR_STATUS__ECC_TRANSACTION_DONE | \
			INTR_STATUS__ECC_ERR | \
			INTR_STATUS__PROGRAM_FAIL | \
			INTR_STATUS__LOAD_COMP | \
			INTR_STATUS__PROGRAM_COMP | \
			INTR_STATUS__TIME_OUT | \
			INTR_STATUS__ERASE_FAIL | \
			INTR_STATUS__RST_COMP | \
			INTR_STATUS__ERASE_COMP | \
			INTR_STATUS__ECC_UNCOR_ERR | \
			INTR_STATUS__INT_ACT | \
			INTR_STATUS__LOCKED_BLK)

/* indicates whether or not the internal value for the flash bank is
 * valid or not */
#define CHIP_SELECT_INVALID	-1

#define SUPPORT_8BITECC		1

/*
 * this macro allows us to convert from an MTD structure to our own
 * device context (denali) structure.
 */
#define mtd_to_denali(m) container_of(m->priv, struct denali_nand_info, nand)

/* These constants are defined by the driver to enable common driver
 * configuration options. */
#define SPARE_ACCESS		0x41
#define MAIN_ACCESS		0x42
#define MAIN_SPARE_ACCESS	0x43

#define DENALI_UNLOCK_START	0x10
#define DENALI_UNLOCK_END	0x11
#define DENALI_LOCK		0x21
#define DENALI_LOCK_TIGHT	0x31
#define DENALI_BUFFER_LOAD	0x60
#define DENALI_BUFFER_WRITE	0x62

#define DENALI_READ	0
#define DENALI_WRITE	0x100

/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE	0
#define ADDR_CYCLE	1
#define STATUS_CYCLE	2

/* this is a helper macro that allows us to
 * format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)

/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
							uint32_t irq_mask)
{
	uint32_t intr_status_reg;

	intr_status_reg = INTR_STATUS(denali->flash_bank);

	writel(irq_mask, denali->flash_reg + intr_status_reg);
}

static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
	uint32_t intr_status_reg;

	intr_status_reg = INTR_STATUS(denali->flash_bank);

	return readl(denali->flash_reg + intr_status_reg);
}

static void clear_interrupts(struct denali_nand_info *denali)
{
	uint32_t status;

	status = read_interrupt_status(denali);
	clear_interrupt(denali, status);

	denali->irq_status = 0;
}

static void denali_irq_enable(struct denali_nand_info *denali,
							uint32_t int_mask)
{
	int i;

	for (i = 0; i < denali->max_banks; ++i)
		writel(int_mask, denali->flash_reg + INTR_EN(i));
}

static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
	unsigned long timeout = 1000000;
	uint32_t intr_status;

	do {
		intr_status = read_interrupt_status(denali) & DENALI_IRQ_ALL;
		if (intr_status & irq_mask) {
			denali->irq_status &= ~irq_mask;
			/* our interrupt was detected */
			break;
		}
		udelay(1);
		timeout--;
	} while (timeout != 0);

	if (timeout == 0) {
		/* timeout */
		printf("Denali timeout with interrupt status %08x\n",
		       read_interrupt_status(denali));
		intr_status = 0;
	}
	return intr_status;
}

/*
 * Certain operations for the denali NAND controller use an indexed mode to
 * read/write data. The operation is performed by writing the address value
 * of the command to the device memory followed by the data. This function
 * abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
				uint32_t address, uint32_t data)
{
	writel(address, denali->flash_mem + INDEX_CTRL_REG);
	writel(data, denali->flash_mem + INDEX_DATA_REG);
}

/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
				 uint32_t address, uint32_t *pdata)
{
	writel(address, denali->flash_mem + INDEX_CTRL_REG);
	*pdata = readl(denali->flash_mem + INDEX_DATA_REG);
}

/* We need to buffer some data for some of the NAND core routines.
 * The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
	denali->buf.head = 0;
	denali->buf.tail = 0;
}

static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
	denali->buf.buf[denali->buf.tail++] = byte;
}

/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__RST_COMP |
			    INTR_STATUS__TIME_OUT;

	clear_interrupts(denali);

	writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);

	irq_status = wait_for_irq(denali, irq_mask);
	if (irq_status & INTR_STATUS__TIME_OUT)
		debug("reset bank failed.\n");
}

/* Reset the flash controller */
static uint32_t denali_nand_reset(struct denali_nand_info *denali)
{
	uint32_t i;

	for (i = 0; i < denali->max_banks; i++)
		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		       denali->flash_reg + INTR_STATUS(i));

	for (i = 0; i < denali->max_banks; i++) {
		writel(1 << i, denali->flash_reg + DEVICE_RESET);
		while (!(readl(denali->flash_reg + INTR_STATUS(i)) &
			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
			if (readl(denali->flash_reg + INTR_STATUS(i)) &
				INTR_STATUS__TIME_OUT)
				debug("NAND Reset operation timed out on bank"
				      " %d\n", i);
	}

	for (i = 0; i < denali->max_banks; i++)
		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
		       denali->flash_reg + INTR_STATUS(i));

	return 0;
}

/*
 * this routine calculates the ONFI timing values for a given mode and
 * programs the clocking register accordingly. The mode is determined by
 * the get_onfi_nand_para routine.
 */
static void nand_onfi_timing_set(struct denali_nand_info *denali,
								uint16_t mode)
{
	uint32_t trea[6] = {40, 30, 25, 20, 20, 16};
	uint32_t trp[6] = {50, 25, 17, 15, 12, 10};
	uint32_t treh[6] = {30, 15, 15, 10, 10, 7};
	uint32_t trc[6] = {100, 50, 35, 30, 25, 20};
	uint32_t trhoh[6] = {0, 15, 15, 15, 15, 15};
	uint32_t trloh[6] = {0, 0, 0, 0, 5, 5};
	uint32_t tcea[6] = {100, 45, 30, 25, 25, 25};
	uint32_t tadl[6] = {200, 100, 100, 100, 70, 70};
	uint32_t trhw[6] = {200, 100, 100, 100, 100, 100};
	uint32_t trhz[6] = {200, 100, 100, 100, 100, 100};
	uint32_t twhr[6] = {120, 80, 80, 60, 60, 60};
	uint32_t tcs[6] = {70, 35, 25, 25, 20, 15};

	uint32_t tclsrising = 1;
	uint32_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
	uint32_t dv_window = 0;
	uint32_t en_lo, en_hi;
	uint32_t acc_clks;
	uint32_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;

	en_lo = DIV_ROUND_UP(trp[mode], CLK_X);
	en_hi = DIV_ROUND_UP(treh[mode], CLK_X);
	if ((en_hi * CLK_X) < (treh[mode] + 2))
		en_hi++;

	if ((en_lo + en_hi) * CLK_X < trc[mode])
		en_lo += DIV_ROUND_UP((trc[mode] - (en_lo + en_hi) * CLK_X),
				      CLK_X);

	if ((en_lo + en_hi) < CLK_MULTI)
		en_lo += CLK_MULTI - en_lo - en_hi;

	while (dv_window < 8) {
		data_invalid_rhoh = en_lo * CLK_X + trhoh[mode];

		data_invalid_rloh = (en_lo + en_hi) * CLK_X + trloh[mode];

		data_invalid =
		    data_invalid_rhoh <
		    data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;

		dv_window = data_invalid - trea[mode];

		if (dv_window < 8)
			en_lo++;
	}

	acc_clks = DIV_ROUND_UP(trea[mode], CLK_X);

	while (((acc_clks * CLK_X) - trea[mode]) < 3)
		acc_clks++;

	if ((data_invalid - acc_clks * CLK_X) < 2)
		debug("%s, Line %d: Warning!\n", __FILE__, __LINE__);

	addr_2_data = DIV_ROUND_UP(tadl[mode], CLK_X);
	re_2_we = DIV_ROUND_UP(trhw[mode], CLK_X);
	re_2_re = DIV_ROUND_UP(trhz[mode], CLK_X);
	we_2_re = DIV_ROUND_UP(twhr[mode], CLK_X);
	cs_cnt = DIV_ROUND_UP((tcs[mode] - trp[mode]), CLK_X);
	if (!tclsrising)
		cs_cnt = DIV_ROUND_UP(tcs[mode], CLK_X);
	if (cs_cnt == 0)
		cs_cnt = 1;

	if (tcea[mode]) {
		while (((cs_cnt * CLK_X) + trea[mode]) < tcea[mode])
			cs_cnt++;
	}

	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
	if ((readl(denali->flash_reg + MANUFACTURER_ID) == 0) &&
	    (readl(denali->flash_reg + DEVICE_ID) == 0x88))
		acc_clks = 6;

	writel(acc_clks, denali->flash_reg + ACC_CLKS);
	writel(re_2_we, denali->flash_reg + RE_2_WE);
	writel(re_2_re, denali->flash_reg + RE_2_RE);
	writel(we_2_re, denali->flash_reg + WE_2_RE);
	writel(addr_2_data, denali->flash_reg + ADDR_2_DATA);
	writel(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
	writel(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
	writel(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
}

/* queries the NAND device to see what ONFI modes it supports. */
static uint32_t get_onfi_nand_para(struct denali_nand_info *denali)
{
	int i;
	/*
	 * we needn't to do a reset here because driver has already
	 * reset all the banks before
	 */
	if (!(readl(denali->flash_reg + ONFI_TIMING_MODE) &
	    ONFI_TIMING_MODE__VALUE))
		return -EIO;

	for (i = 5; i > 0; i--) {
		if (readl(denali->flash_reg + ONFI_TIMING_MODE) &
			(0x01 << i))
			break;
	}

	nand_onfi_timing_set(denali, i);

	/* By now, all the ONFI devices we know support the page cache */
	/* rw feature. So here we enable the pipeline_rw_ahead feature */
	return 0;
}

static void get_samsung_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
{
	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
		/* Set timing register values according to datasheet */
		writel(5, denali->flash_reg + ACC_CLKS);
		writel(20, denali->flash_reg + RE_2_WE);
		writel(12, denali->flash_reg + WE_2_RE);
		writel(14, denali->flash_reg + ADDR_2_DATA);
		writel(3, denali->flash_reg + RDWR_EN_LO_CNT);
		writel(2, denali->flash_reg + RDWR_EN_HI_CNT);
		writel(2, denali->flash_reg + CS_SETUP_CNT);
	}
}

static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
	uint32_t tmp;

	/* Workaround to fix a controller bug which reports a wrong */
	/* spare area size for some kind of Toshiba NAND device */
	if ((readl(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
	    (readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
		writel(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		tmp = readl(denali->flash_reg + DEVICES_CONNECTED) *
			readl(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		writel(tmp, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
	}
}

static void get_hynix_nand_para(struct denali_nand_info *denali,
							uint8_t device_id)
{
	uint32_t main_size, spare_size;

	switch (device_id) {
	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
		writel(128, denali->flash_reg + PAGES_PER_BLOCK);
		writel(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
		writel(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
		main_size = 4096 *
			readl(denali->flash_reg + DEVICES_CONNECTED);
		spare_size = 224 *
			readl(denali->flash_reg + DEVICES_CONNECTED);
		writel(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
		writel(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
		writel(0, denali->flash_reg + DEVICE_WIDTH);
		break;
	default:
		debug("Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
		      "Will use default parameter values instead.\n",
		      device_id);
	}
}

/*
 * determines how many NAND chips are connected to the controller. Note for
 * Intel CE4100 devices we don't support more than one device.
 */
static void find_valid_banks(struct denali_nand_info *denali)
{
	uint32_t id[denali->max_banks];
	int i;

	denali->total_used_banks = 1;
	for (i = 0; i < denali->max_banks; i++) {
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
		index_addr_read_data(denali,
				     (uint32_t)(MODE_11 | (i << 24) | 2),
				     &id[i]);

		if (i == 0) {
			if (!(id[i] & 0x0ff))
				break;
		} else {
			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
				denali->total_used_banks++;
			else
				break;
		}
	}
}

/*
 * Use the configuration feature register to determine the maximum number of
 * banks that the hardware supports.
 */
static void detect_max_banks(struct denali_nand_info *denali)
{
	uint32_t features = readl(denali->flash_reg + FEATURES);
	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}

static void detect_partition_feature(struct denali_nand_info *denali)
{
	/*
	 * For MRST platform, denali->fwblks represent the
	 * number of blocks firmware is taken,
	 * FW is in protect partition and MTD driver has no
	 * permission to access it. So let driver know how many
	 * blocks it can't touch.
	 */
	if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
		if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
			denali->fwblks =
			    ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
			      MIN_MAX_BANK__MIN_VALUE) *
			     denali->blksperchip)
			    +
			    (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
			    MIN_BLK_ADDR__VALUE);
		} else {
			denali->fwblks = SPECTRA_START_BLOCK;
		}
	} else {
		denali->fwblks = SPECTRA_START_BLOCK;
	}
}

static uint32_t denali_nand_timing_set(struct denali_nand_info *denali)
{
	uint32_t id_bytes[5], addr;
	uint8_t i, maf_id, device_id;

	/* Use read id method to get device ID and other
	 * params. For some NAND chips, controller can't
	 * report the correct device ID by reading from
	 * DEVICE_ID register
	 * */
	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr(denali, (uint32_t)addr | 0, 0x90);
	index_addr(denali, (uint32_t)addr | 1, 0);
	for (i = 0; i < 5; i++)
		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
	maf_id = id_bytes[0];
	device_id = id_bytes[1];

	if (readl(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
		if (get_onfi_nand_para(denali))
			return -EIO;
	} else if (maf_id == 0xEC) { /* Samsung NAND */
		get_samsung_nand_para(denali, device_id);
	} else if (maf_id == 0x98) { /* Toshiba NAND */
		get_toshiba_nand_para(denali);
	} else if (maf_id == 0xAD) { /* Hynix NAND */
		get_hynix_nand_para(denali, device_id);
	}

	find_valid_banks(denali);

	detect_partition_feature(denali);

	/* If the user specified to override the default timings
	 * with a specific ONFI mode, we apply those changes here.
	 */
	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
		nand_onfi_timing_set(denali, onfi_timing_mode);

	return 0;
}

/* validation function to verify that the controlling software is making
 * a valid request
 */
static inline bool is_flash_bank_valid(int flash_bank)
{
	return flash_bank >= 0 && flash_bank < 4;
}

static void denali_irq_init(struct denali_nand_info *denali)
{
	uint32_t int_mask = 0;
	int i;

	/* Disable global interrupts */
	writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);

	int_mask = DENALI_IRQ_ALL;

	/* Clear all status bits */
	for (i = 0; i < denali->max_banks; ++i)
		writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));

	denali_irq_enable(denali, int_mask);
}

/* This helper function setups the registers for ECC and whether or not
 * the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
				bool transfer_spare)
{
	int ecc_en_flag = 0, transfer_spare_flag = 0;

	/* set ECC, transfer spare bits if needed */
	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;

	/* Enable spare area/ECC per user's request. */
	writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
	/* applicable for MAP01 only */
	writel(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}

/* sends a pipeline command operation to the controller. See the Denali NAND
 * controller's user guide for more information (section 4.2.3.6).
 */
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
					bool ecc_en, bool transfer_spare,
					int access_type, int op)
{
	uint32_t addr, cmd, irq_status;
	static uint32_t page_count = 1;

	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);

	/* clear interrupts */
	clear_interrupts(denali);

	addr = BANK(denali->flash_bank) | denali->page;

	/* setup the acccess type */
	cmd = MODE_10 | addr;
	index_addr(denali, cmd, access_type);

	/* setup the pipeline command */
	index_addr(denali, cmd, 0x2000 | op | page_count);

	cmd = MODE_01 | addr;
	writel(cmd, denali->flash_mem + INDEX_CTRL_REG);

	if (op == DENALI_READ) {
		/* wait for command to be accepted */
		irq_status = wait_for_irq(denali, INTR_STATUS__LOAD_COMP);

		if (irq_status == 0)
			return -EIO;
	}

	return 0;
}

/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
						const uint8_t *buf, int len)
{
	uint32_t i = 0, *buf32;

	/* verify that the len is a multiple of 4. see comment in
	 * read_data_from_flash_mem() */
	BUG_ON((len % 4) != 0);

	/* write the data to the flash memory */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		writel(*buf32++, denali->flash_mem + INDEX_DATA_REG);
	return i * 4; /* intent is to return the number of bytes read */
}

/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
						uint8_t *buf, int len)
{
	uint32_t i, *buf32;

	/*
	 * we assume that len will be a multiple of 4, if not
	 * it would be nice to know about it ASAP rather than
	 * have random failures...
	 * This assumption is based on the fact that this
	 * function is designed to be used to read flash pages,
	 * which are typically multiples of 4...
	 */

	BUG_ON((len % 4) != 0);

	/* transfer the data from the flash */
	buf32 = (uint32_t *)buf;
	for (i = 0; i < len / 4; i++)
		*buf32++ = readl(denali->flash_mem + INDEX_DATA_REG);

	return i * 4; /* intent is to return the number of bytes read */
}

static void denali_mode_main_access(struct denali_nand_info *denali)
{
	uint32_t addr, cmd;

	addr = BANK(denali->flash_bank) | denali->page;
	cmd = MODE_10 | addr;
	index_addr(denali, cmd, MAIN_ACCESS);
}

static void denali_mode_main_spare_access(struct denali_nand_info *denali)
{
	uint32_t addr, cmd;

	addr = BANK(denali->flash_bank) | denali->page;
	cmd = MODE_10 | addr;
	index_addr(denali, cmd, MAIN_SPARE_ACCESS);
}

/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status;
	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
						INTR_STATUS__PROGRAM_FAIL;
	int status = 0;

	denali->page = page;

	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
				     DENALI_WRITE) == 0) {
		write_data_to_flash_mem(denali, buf, mtd->oobsize);

		/* wait for operation to complete */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0) {
			dev_err(denali->dev, "OOB write failed\n");
			status = -EIO;
		}
	} else {
		printf("unable to send pipeline command\n");
		status = -EIO;
	}
	return status;
}

/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_mask = INTR_STATUS__LOAD_COMP,
			 irq_status = 0, addr = 0x0, cmd = 0x0;

	denali->page = page;

	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
				     DENALI_READ) == 0) {
		read_data_from_flash_mem(denali, buf, mtd->oobsize);

		/* wait for command to be accepted
		 * can always use status0 bit as the mask is identical for each
		 * bank. */
		irq_status = wait_for_irq(denali, irq_mask);

		if (irq_status == 0)
			printf("page on OOB timeout %d\n", denali->page);

		/* We set the device back to MAIN_ACCESS here as I observed
		 * instability with the controller if you do a block erase
		 * and the last transaction was a SPARE_ACCESS. Block erase
		 * is reliable (according to the MTD test infrastructure)
		 * if you are in MAIN_ACCESS.
		 */
		addr = BANK(denali->flash_bank) | denali->page;
		cmd = MODE_10 | addr;
		index_addr(denali, cmd, MAIN_ACCESS);
	}
}

/* this function examines buffers to see if they contain data that
 * indicate that the buffer is part of an erased region of flash.
 */
static bool is_erased(uint8_t *buf, int len)
{
	int i = 0;
	for (i = 0; i < len; i++)
		if (buf[i] != 0xFF)
			return false;
	return true;
}

/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
	uint32_t reg_val = 0x0;

	if (en)
		reg_val = DMA_ENABLE__FLAG;

	writel(reg_val, denali->flash_reg + DMA_ENABLE);
	readl(denali->flash_reg + DMA_ENABLE);
}

/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
	uint32_t mode;
	const int page_count = 1;
	uint32_t addr = (uint32_t)denali->buf.dma_buf;

	flush_dcache_range(addr, addr + sizeof(denali->buf.dma_buf));

/* For Denali controller that is 64 bit bus IP core */
#ifdef CONFIG_SYS_NAND_DENALI_64BIT
	mode = MODE_10 | BANK(denali->flash_bank) | denali->page;

	/* DMA is a three step process */

	/* 1. setup transfer type, interrupt when complete,
	      burst len = 64 bytes, the number of pages */
	index_addr(denali, mode, 0x01002000 | (64 << 16) | op | page_count);

	/* 2. set memory low address bits 31:0 */
	index_addr(denali, mode, addr);

	/* 3. set memory high address bits 64:32 */
	index_addr(denali, mode, 0);
#else
	mode = MODE_10 | BANK(denali->flash_bank);

	/* DMA is a four step process */

	/* 1. setup transfer type and # of pages */
	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);

	/* 2. set memory high address bits 23:8 */
	index_addr(denali, mode | ((uint32_t)(addr >> 16) << 8), 0x2200);

	/* 3. set memory low address bits 23:8 */
	index_addr(denali, mode | ((uint32_t)addr << 8), 0x2300);

	/* 4.  interrupt when complete, burst len = 64 bytes*/
	index_addr(denali, mode | 0x14000, 0x2400);
#endif
}

/* Common DMA function */
static uint32_t denali_dma_configuration(struct denali_nand_info *denali,
					 uint32_t ops, bool raw_xfer,
					 uint32_t irq_mask, int oob_required)
{
	uint32_t irq_status = 0;
	/* setup_ecc_for_xfer(bool ecc_en, bool transfer_spare) */
	setup_ecc_for_xfer(denali, !raw_xfer, oob_required);

	/* clear any previous interrupt flags */
	clear_interrupts(denali);

	/* enable the DMA */
	denali_enable_dma(denali, true);

	/* setup the DMA */
	denali_setup_dma(denali, ops);

	/* wait for operation to complete */
	irq_status = wait_for_irq(denali, irq_mask);

	/* if ECC fault happen, seems we need delay before turning off DMA.
	 * If not, the controller will go into non responsive condition */
	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR)
		udelay(100);

	/* disable the DMA */
	denali_enable_dma(denali, false);

	return irq_status;
}

static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
			const uint8_t *buf, bool raw_xfer, int oob_required)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t irq_status = 0;
	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;

	denali->status = 0;

	/* copy buffer into DMA buffer */
	memcpy(denali->buf.dma_buf, buf, mtd->writesize);

	/* need extra memcpy for raw transfer */
	if (raw_xfer)
		memcpy(denali->buf.dma_buf + mtd->writesize,
		       chip->oob_poi, mtd->oobsize);

	/* setting up DMA */
	irq_status = denali_dma_configuration(denali, DENALI_WRITE, raw_xfer,
					      irq_mask, oob_required);

	/* if timeout happen, error out */
	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
		debug("DMA timeout for denali write_page\n");
		denali->status = NAND_STATUS_FAIL;
		return -EIO;
	}

	if (irq_status & INTR_STATUS__LOCKED_BLK) {
		debug("Failed as write to locked block\n");
		denali->status = NAND_STATUS_FAIL;
		return -EIO;
	}
	return 0;
}

/* NAND core entry points */

/*
 * this is the callback that the NAND core calls to write a page. Since
 * writing a page with ECC or without is similar, all the work is done
 * by write_page above.
 */
static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				const uint8_t *buf, int oob_required)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	/*
	 * for regular page writes, we let HW handle all the ECC
	 * data written to the device.
	 */
	if (oob_required)
		/* switch to main + spare access */
		denali_mode_main_spare_access(denali);
	else
		/* switch to main access only */
		denali_mode_main_access(denali);

	return write_page(mtd, chip, buf, false, oob_required);
}

/*
 * This is the callback that the NAND core calls to write a page without ECC.
 * raw access is similar to ECC page writes, so all the work is done in the
 * write_page() function above.
 */
static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
					const uint8_t *buf, int oob_required)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	/*
	 * for raw page writes, we want to disable ECC and simply write
	 * whatever data is in the buffer.
	 */

	if (oob_required)
		/* switch to main + spare access */
		denali_mode_main_spare_access(denali);
	else
		/* switch to main access only */
		denali_mode_main_access(denali);

	return write_page(mtd, chip, buf, true, oob_required);
}

static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
				int page)
{
	return write_oob_data(mtd, chip->oob_poi, page);
}

/* raw include ECC value and all the spare area */
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	uint32_t irq_status, irq_mask = INTR_STATUS__DMA_CMD_COMP;

	if (denali->page != page) {
		debug("Missing NAND_CMD_READ0 command\n");
		return -EIO;
	}

	if (oob_required)
		/* switch to main + spare access */
		denali_mode_main_spare_access(denali);
	else
		/* switch to main access only */
		denali_mode_main_access(denali);

	/* setting up the DMA where ecc_enable is false */
	irq_status = denali_dma_configuration(denali, DENALI_READ, true,
					      irq_mask, oob_required);

	/* if timeout happen, error out */
	if (!(irq_status & INTR_STATUS__DMA_CMD_COMP)) {
		debug("DMA timeout for denali_read_page_raw\n");
		return -EIO;
	}

	/* splitting the content to destination buffer holder */
	memcpy(chip->oob_poi, (denali->buf.dma_buf + mtd->writesize),
	       mtd->oobsize);
	memcpy(buf, denali->buf.dma_buf, mtd->writesize);

	return 0;
}

static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t irq_status, irq_mask =	INTR_STATUS__DMA_CMD_COMP;

	if (denali->page != page) {
		debug("Missing NAND_CMD_READ0 command\n");
		return -EIO;
	}

	if (oob_required)
		/* switch to main + spare access */
		denali_mode_main_spare_access(denali);
	else
		/* switch to main access only */
		denali_mode_main_access(denali);

	/* setting up the DMA where ecc_enable is true */
	irq_status = denali_dma_configuration(denali, DENALI_READ, false,
					      irq_mask, oob_required);

	memcpy(buf, denali->buf.dma_buf, mtd->writesize);

	/* check whether any ECC error */
	if (irq_status & INTR_STATUS__ECC_UNCOR_ERR) {
		/* is the ECC cause by erase page, check using read_page_raw */
		debug("  Uncorrected ECC detected\n");
		denali_read_page_raw(mtd, chip, buf, oob_required,
				     denali->page);

		if (is_erased(buf, mtd->writesize) == true &&
		    is_erased(chip->oob_poi, mtd->oobsize) == true) {
			debug("  ECC error cause by erased block\n");
			/* false alarm, return the 0xFF */
		} else {
			return -EIO;
		}
	}
	memcpy(buf, denali->buf.dma_buf, mtd->writesize);
	return 0;
}

static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
				int page)
{
	read_oob_data(mtd, chip->oob_poi, page);

	return 0;
}

static uint8_t denali_read_byte(struct mtd_info *mtd)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t addr, result;

	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	index_addr_read_data(denali, addr | 2, &result);
	return (uint8_t)result & 0xFF;
}

static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t i, addr, result;

	/* delay for tR (data transfer from Flash array to data register) */
	udelay(25);

	/* ensure device completed else additional delay and polling */
	wait_for_irq(denali, INTR_STATUS__INT_ACT);

	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
	for (i = 0; i < len; i++) {
		index_addr_read_data(denali, (uint32_t)addr | 2, &result);
		write_byte_to_buf(denali, result);
	}
	memcpy(buf, denali->buf.buf, len);
}

static void denali_select_chip(struct mtd_info *mtd, int chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);

	denali->flash_bank = chip;
}

static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	int status = denali->status;
	denali->status = 0;

	return status;
}

static void denali_erase(struct mtd_info *mtd, int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t cmd, irq_status;

	/* clear interrupts */
	clear_interrupts(denali);

	/* setup page read request for access type */
	cmd = MODE_10 | BANK(denali->flash_bank) | page;
	index_addr(denali, cmd, 0x1);

	/* wait for erase to complete or failure to occur */
	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
					INTR_STATUS__ERASE_FAIL);

	if (irq_status & INTR_STATUS__ERASE_FAIL ||
	    irq_status & INTR_STATUS__LOCKED_BLK)
		denali->status = NAND_STATUS_FAIL;
	else
		denali->status = 0;
}

static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
			   int page)
{
	struct denali_nand_info *denali = mtd_to_denali(mtd);
	uint32_t addr;

	switch (cmd) {
	case NAND_CMD_PAGEPROG:
		break;
	case NAND_CMD_STATUS:
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, cmd);
		break;
	case NAND_CMD_READID:
	case NAND_CMD_PARAM:
		reset_buf(denali);
		/* sometimes ManufactureId read from register is not right
		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
		 * So here we send READID cmd to NAND insteand
		 * */
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, cmd);
		index_addr(denali, addr | 1, col & 0xFF);
		if (cmd == NAND_CMD_PARAM)
			udelay(50);
		break;
	case NAND_CMD_RNDOUT:
		addr = MODE_11 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, cmd);
		index_addr(denali, addr | 1, col & 0xFF);
		index_addr(denali, addr | 1, col >> 8);
		index_addr(denali, addr | 0, NAND_CMD_RNDOUTSTART);
		break;
	case NAND_CMD_READ0:
	case NAND_CMD_SEQIN:
		denali->page = page;
		break;
	case NAND_CMD_RESET:
		reset_bank(denali);
		break;
	case NAND_CMD_READOOB:
		/* TODO: Read OOB data */
		break;
	case NAND_CMD_ERASE1:
		/*
		 * supporting block erase only, not multiblock erase as
		 * it will cross plane and software need complex calculation
		 * to identify the block count for the cross plane
		 */
		denali_erase(mtd, page);
		break;
	case NAND_CMD_ERASE2:
		/* nothing to do here as it was done during NAND_CMD_ERASE1 */
		break;
	case NAND_CMD_UNLOCK1:
		addr = MODE_10 | BANK(denali->flash_bank) | page;
		index_addr(denali, addr | 0, DENALI_UNLOCK_START);
		break;
	case NAND_CMD_UNLOCK2:
		addr = MODE_10 | BANK(denali->flash_bank) | page;
		index_addr(denali, addr | 0, DENALI_UNLOCK_END);
		break;
	case NAND_CMD_LOCK:
		addr = MODE_10 | BANK(denali->flash_bank);
		index_addr(denali, addr | 0, DENALI_LOCK);
		break;
	default:
		printf(": unsupported command received 0x%x\n", cmd);
		break;
	}
}
/* end NAND core entry points */

/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
	/*
	 * tell driver how many bit controller will skip before writing
	 * ECC code in OOB. This is normally used for bad block marker
	 */
	writel(CONFIG_NAND_DENALI_SPARE_AREA_SKIP_BYTES,
	       denali->flash_reg + SPARE_AREA_SKIP_BYTES);
	detect_max_banks(denali);
	denali_nand_reset(denali);
	writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
	writel(CHIP_EN_DONT_CARE__FLAG,
	       denali->flash_reg + CHIP_ENABLE_DONT_CARE);
	writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);

	/* Should set value for these registers when init */
	writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
	writel(1, denali->flash_reg + ECC_ENABLE);
	denali_nand_timing_set(denali);
	denali_irq_init(denali);
}

static struct nand_ecclayout nand_oob;

static int denali_init(struct denali_nand_info *denali)
{
	int ret;

	denali_hw_init(denali);

	denali->mtd->name = "denali-nand";
	denali->mtd->owner = THIS_MODULE;
	denali->mtd->priv = &denali->nand;

	/* register the driver with the NAND core subsystem */
	denali->nand.select_chip = denali_select_chip;
	denali->nand.cmdfunc = denali_cmdfunc;
	denali->nand.read_byte = denali_read_byte;
	denali->nand.read_buf = denali_read_buf;
	denali->nand.waitfunc = denali_waitfunc;

	/*
	 * scan for NAND devices attached to the controller
	 * this is the first stage in a two step process to register
	 * with the nand subsystem
	 */
	if (nand_scan_ident(denali->mtd, denali->max_banks, NULL)) {
		ret = -ENXIO;
		goto fail;
	}

#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
	/* check whether flash got BBT table (located at end of flash). As we
	 * use NAND_BBT_NO_OOB, the BBT page will start with
	 * bbt_pattern. We will have mirror pattern too */
	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
	/*
	 * We are using main + spare with ECC support. As BBT need ECC support,
	 * we need to ensure BBT code don't write to OOB for the BBT pattern.
	 * All BBT info will be stored into data area with ECC support.
	 */
	denali->nand.bbt_options |= NAND_BBT_NO_OOB;
#endif

	denali->nand.ecc.mode = NAND_ECC_HW;
	denali->nand.ecc.size = CONFIG_NAND_DENALI_ECC_SIZE;

	/*
	 * Tell driver the ecc strength. This register may be already set
	 * correctly. So we read this value out.
	 */
	denali->nand.ecc.strength = readl(denali->flash_reg + ECC_CORRECTION);
	switch (denali->nand.ecc.size) {
	case 512:
		denali->nand.ecc.bytes =
			(denali->nand.ecc.strength * 13 + 15) / 16 * 2;
		break;
	case 1024:
		denali->nand.ecc.bytes =
			(denali->nand.ecc.strength * 14 + 15) / 16 * 2;
		break;
	default:
		pr_err("Unsupported ECC size\n");
		ret = -EINVAL;
		goto fail;
	}
	nand_oob.eccbytes = denali->nand.ecc.bytes;
	denali->nand.ecc.layout = &nand_oob;

	writel(denali->mtd->erasesize / denali->mtd->writesize,
	       denali->flash_reg + PAGES_PER_BLOCK);
	writel(denali->nand.options & NAND_BUSWIDTH_16 ? 1 : 0,
	       denali->flash_reg + DEVICE_WIDTH);
	writel(denali->mtd->writesize,
	       denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
	writel(denali->mtd->oobsize,
	       denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
	if (readl(denali->flash_reg + DEVICES_CONNECTED) == 0)
		writel(1, denali->flash_reg + DEVICES_CONNECTED);

	/* override the default operations */
	denali->nand.ecc.read_page = denali_read_page;
	denali->nand.ecc.read_page_raw = denali_read_page_raw;
	denali->nand.ecc.write_page = denali_write_page;
	denali->nand.ecc.write_page_raw = denali_write_page_raw;
	denali->nand.ecc.read_oob = denali_read_oob;
	denali->nand.ecc.write_oob = denali_write_oob;

	if (nand_scan_tail(denali->mtd)) {
		ret = -ENXIO;
		goto fail;
	}

	ret = nand_register(0);

fail:
	return ret;
}

static int __board_nand_init(void)
{
	struct denali_nand_info *denali;

	denali = kzalloc(sizeof(*denali), GFP_KERNEL);
	if (!denali)
		return -ENOMEM;

	/*
	 * If CONFIG_SYS_NAND_SELF_INIT is defined, each driver is responsible
	 * for instantiating struct nand_chip, while drivers/mtd/nand/nand.c
	 * still provides a "struct mtd_info nand_info" instance.
	 */
	denali->mtd = &nand_info[0];

	/*
	 * In the future, these base addresses should be taken from
	 * Device Tree or platform data.
	 */
	denali->flash_reg = (void  __iomem *)CONFIG_SYS_NAND_REGS_BASE;
	denali->flash_mem = (void  __iomem *)CONFIG_SYS_NAND_DATA_BASE;

	return denali_init(denali);
}

void board_nand_init(void)
{
	if (__board_nand_init() < 0)
		pr_warn("Failed to initialize Denali NAND controller.\n");
}