summaryrefslogtreecommitdiff
path: root/drivers/misc/mxs_ocotp.c
blob: 6c0d247ed22021cb022cd923bb2139ce94a7991d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
 * Freescale i.MX28 OCOTP Driver
 *
 * Copyright (C) 2014 Marek Vasut <marex@denx.de>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 *
 * Note: The i.MX23/i.MX28 OCOTP block is a predecessor to the OCOTP block
 *       used in i.MX6 . While these blocks are very similar at the first
 *       glance, by digging deeper, one will notice differences (like the
 *       tight dependence on MXS power block, some completely new registers
 *       etc.) which would make common driver an ifdef nightmare :-(
 */

#include <common.h>
#include <fuse.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>

#define MXS_OCOTP_TIMEOUT	100000

static struct mxs_ocotp_regs *ocotp_regs =
	(struct mxs_ocotp_regs *)MXS_OCOTP_BASE;
static struct mxs_power_regs *power_regs =
	(struct mxs_power_regs *)MXS_POWER_BASE;
static struct mxs_clkctrl_regs *clkctrl_regs =
	(struct mxs_clkctrl_regs *)MXS_CLKCTRL_BASE;

static int mxs_ocotp_wait_busy_clear(void)
{
	uint32_t reg;
	int timeout = MXS_OCOTP_TIMEOUT;

	while (--timeout) {
		reg = readl(&ocotp_regs->hw_ocotp_ctrl);
		if (!(reg & OCOTP_CTRL_BUSY))
			break;
		udelay(10);
	}

	if (!timeout)
		return -EINVAL;

	/* Wait a little as per FSL datasheet's 'write postamble' section. */
	udelay(10);

	return 0;
}

static void mxs_ocotp_clear_error(void)
{
	writel(OCOTP_CTRL_ERROR, &ocotp_regs->hw_ocotp_ctrl_clr);
}

static int mxs_ocotp_read_bank_open(bool open)
{
	int ret = 0;

	if (open) {
		writel(OCOTP_CTRL_RD_BANK_OPEN,
		       &ocotp_regs->hw_ocotp_ctrl_set);

		/*
		 * Wait before polling the BUSY bit, since the BUSY bit might
		 * be asserted only after a few HCLK cycles and if we were to
		 * poll immediatelly, we could miss the busy bit.
		 */
		udelay(10);
		ret = mxs_ocotp_wait_busy_clear();
	} else {
		writel(OCOTP_CTRL_RD_BANK_OPEN,
		       &ocotp_regs->hw_ocotp_ctrl_clr);
	}

	return ret;
}

static void mxs_ocotp_scale_vddio(bool enter, uint32_t *val)
{
	uint32_t scale_val;

	if (enter) {
		/*
		 * Enter the fuse programming VDDIO voltage setup. We start
		 * scaling the voltage from it's current value down to 2.8V
		 * which is the one and only correct voltage for programming
		 * the OCOTP fuses (according to datasheet).
		 */
		scale_val = readl(&power_regs->hw_power_vddioctrl);
		scale_val &= POWER_VDDIOCTRL_TRG_MASK;

		/* Return the original voltage. */
		*val = scale_val;

		/*
		 * Start scaling VDDIO down to 0x2, which is 2.8V . Actually,
		 * the value 0x0 should be 2.8V, but that's not the case on
		 * most designs due to load etc., so we play safe. Undervolt
		 * can actually cause incorrect programming of the fuses and
		 * or reboots of the board.
		 */
		while (scale_val > 2) {
			clrsetbits_le32(&power_regs->hw_power_vddioctrl,
					POWER_VDDIOCTRL_TRG_MASK, --scale_val);
			udelay(500);
		}
	} else {
		/* Start scaling VDDIO up to original value . */
		for (scale_val = 2; scale_val <= *val; scale_val++) {
			clrsetbits_le32(&power_regs->hw_power_vddioctrl,
					POWER_VDDIOCTRL_TRG_MASK, scale_val);
			udelay(500);
		}
	}

	mdelay(10);
}

static int mxs_ocotp_wait_hclk_ready(void)
{
	uint32_t reg, timeout = MXS_OCOTP_TIMEOUT;

	while (--timeout) {
		reg = readl(&clkctrl_regs->hw_clkctrl_hbus);
		if (!(reg & CLKCTRL_HBUS_ASM_BUSY))
			break;
	}

	if (!timeout)
		return -EINVAL;

	return 0;
}

static int mxs_ocotp_scale_hclk(bool enter, uint32_t *val)
{
	uint32_t scale_val;
	int ret;

	ret = mxs_ocotp_wait_hclk_ready();
	if (ret)
		return ret;

	/* Set CPU bypass */
	writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
	       &clkctrl_regs->hw_clkctrl_clkseq_set);

	if (enter) {
		/* Return the original HCLK clock speed. */
		*val = readl(&clkctrl_regs->hw_clkctrl_hbus);
		*val &= CLKCTRL_HBUS_DIV_MASK;
		*val >>= CLKCTRL_HBUS_DIV_OFFSET;

		/* Scale the HCLK to 454/19 = 23.9 MHz . */
		scale_val = (~19) << CLKCTRL_HBUS_DIV_OFFSET;
		scale_val &= CLKCTRL_HBUS_DIV_MASK;
	} else {
		/* Scale the HCLK back to original frequency. */
		scale_val = (~(*val)) << CLKCTRL_HBUS_DIV_OFFSET;
		scale_val &= CLKCTRL_HBUS_DIV_MASK;
	}

	writel(CLKCTRL_HBUS_DIV_MASK,
	       &clkctrl_regs->hw_clkctrl_hbus_set);
	writel(scale_val,
	       &clkctrl_regs->hw_clkctrl_hbus_clr);

	mdelay(10);

	ret = mxs_ocotp_wait_hclk_ready();
	if (ret)
		return ret;

	/* Disable CPU bypass */
	writel(CLKCTRL_CLKSEQ_BYPASS_CPU,
	       &clkctrl_regs->hw_clkctrl_clkseq_clr);

	mdelay(10);

	return 0;
}

static int mxs_ocotp_write_fuse(uint32_t addr, uint32_t mask)
{
	uint32_t hclk_val, vddio_val;
	int ret;

	mxs_ocotp_clear_error();

	/* Make sure the banks are closed for reading. */
	ret = mxs_ocotp_read_bank_open(0);
	if (ret) {
		puts("Failed closing banks for reading!\n");
		return ret;
	}

	ret = mxs_ocotp_scale_hclk(1, &hclk_val);
	if (ret) {
		puts("Failed scaling down the HCLK!\n");
		return ret;
	}
	mxs_ocotp_scale_vddio(1, &vddio_val);

	ret = mxs_ocotp_wait_busy_clear();
	if (ret) {
		puts("Failed waiting for ready state!\n");
		goto fail;
	}

	/* Program the fuse address */
	writel(addr | OCOTP_CTRL_WR_UNLOCK_KEY, &ocotp_regs->hw_ocotp_ctrl);

	/* Program the data. */
	writel(mask, &ocotp_regs->hw_ocotp_data);

	udelay(10);

	ret = mxs_ocotp_wait_busy_clear();
	if (ret) {
		puts("Failed waiting for ready state!\n");
		goto fail;
	}

	/* Check for errors */
	if (readl(&ocotp_regs->hw_ocotp_ctrl) & OCOTP_CTRL_ERROR) {
		puts("Failed writing fuses!\n");
		ret = -EPERM;
		goto fail;
	}

fail:
	mxs_ocotp_scale_vddio(0, &vddio_val);
	if (mxs_ocotp_scale_hclk(0, &hclk_val))
		puts("Failed scaling up the HCLK!\n");

	return ret;
}

static int mxs_ocotp_read_fuse(uint32_t reg, uint32_t *val)
{
	int ret;

	/* Register offset from CUST0 */
	reg = ((uint32_t)&ocotp_regs->hw_ocotp_cust0) + (reg << 4);

	ret = mxs_ocotp_wait_busy_clear();
	if (ret) {
		puts("Failed waiting for ready state!\n");
		return ret;
	}

	mxs_ocotp_clear_error();

	ret = mxs_ocotp_read_bank_open(1);
	if (ret) {
		puts("Failed opening banks for reading!\n");
		return ret;
	}

	*val = readl(reg);

	ret = mxs_ocotp_read_bank_open(0);
	if (ret) {
		puts("Failed closing banks for reading!\n");
		return ret;
	}

	return ret;
}

static int mxs_ocotp_valid(u32 bank, u32 word)
{
	if (bank > 4)
		return -EINVAL;
	if (word > 7)
		return -EINVAL;
	return 0;
}

/*
 * The 'fuse' command API
 */
int fuse_read(u32 bank, u32 word, u32 *val)
{
	int ret;

	ret = mxs_ocotp_valid(bank, word);
	if (ret)
		return ret;

	return mxs_ocotp_read_fuse((bank << 3) | word, val);
}

int fuse_prog(u32 bank, u32 word, u32 val)
{
	int ret;

	ret = mxs_ocotp_valid(bank, word);
	if (ret)
		return ret;

	return mxs_ocotp_write_fuse((bank << 3) | word, val);
}

int fuse_sense(u32 bank, u32 word, u32 *val)
{
	/* We do not support sensing :-( */
	return -EINVAL;
}

int fuse_override(u32 bank, u32 word, u32 val)
{
	/* We do not support overriding :-( */
	return -EINVAL;
}