1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
/*
* SEC Descriptor Construction Library
* Basic job descriptor construction
*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*
*/
#include <common.h>
#include <fsl_sec.h>
#include "desc_constr.h"
#include "jobdesc.h"
#include "rsa_caam.h"
#ifdef CONFIG_MX6
/*!
* Secure memory run command
*
* @param sec_mem_cmd Secure memory command register
* @return cmd_status Secure memory command status register
*/
uint32_t secmem_set_cmd(uint32_t sec_mem_cmd)
{
uint32_t temp_reg;
sec_out32(CAAM_SMCJR0, sec_mem_cmd);
do {
temp_reg = sec_in32(CAAM_SMCSJR0);
} while (temp_reg & CMD_COMPLETE);
return temp_reg;
}
/*!
* CAAM page allocation:
* Allocates a partition from secure memory, with the id
* equal to partion_num. This will de-allocate the page
* if it is already allocated. The partition will have
* full access permissions. The permissions are set before,
* running a job descriptor. A memory page of secure RAM
* is allocated for the partition.
*
* @param page Number of the page to allocate.
* @param partition Number of the partition to allocate.
* @return 0 on success, ERROR_IN_PAGE_ALLOC otherwise
*/
int caam_page_alloc(uint8_t page_num, uint8_t partition_num)
{
uint32_t temp_reg;
/*
* De-Allocate partition_num if already allocated to ARM core
*/
if (sec_in32(CAAM_SMPO_0) & PARTITION_OWNER(partition_num)) {
temp_reg = secmem_set_cmd(PARTITION(partition_num) |
CMD_PART_DEALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: De-allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
}
/* set the access rights to allow full access */
sec_out32(CAAM_SMAG1JR0(partition_num), 0xF);
sec_out32(CAAM_SMAG2JR0(partition_num), 0xF);
sec_out32(CAAM_SMAPJR0(partition_num), 0xFF);
/* Now need to allocate partition_num of secure RAM. */
/* De-Allocate page_num by starting with a page inquiry command */
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
/* if the page is owned, de-allocate it */
if ((temp_reg & SMCSJR_PO) == PAGE_OWNED) {
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_PAGE_DEALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: Allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
}
/* Allocate page_num to partition_num */
temp_reg = secmem_set_cmd(PAGE(page_num) | PARTITION(partition_num)
| CMD_PAGE_ALLOC);
if (temp_reg & SMCSJR_AERR) {
printf("Error: Allocation status 0x%X\n", temp_reg);
return ERROR_IN_PAGE_ALLOC;
}
/* page inquiry command to ensure that the page was allocated */
temp_reg = secmem_set_cmd(PAGE(page_num) | CMD_INQUIRY);
/* if the page is not owned => problem */
if ((temp_reg & SMCSJR_PO) != PAGE_OWNED) {
printf("Allocation of page %d in partition %d failed 0x%X\n",
temp_reg, page_num, partition_num);
return ERROR_IN_PAGE_ALLOC;
}
return 0;
}
int inline_cnstr_jobdesc_blob_dek(uint32_t *desc, const uint8_t *plain_txt,
uint8_t *dek_blob, uint32_t in_sz)
{
uint32_t ret = 0;
u32 aad_w1, aad_w2;
/* output blob will have 32 bytes key blob in beginning and
* 16 byte HMAC identifier at end of data blob */
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
/* Setting HDR for blob */
uint8_t wrapped_key_hdr[8] = {HDR_TAG, 0x00, WRP_HDR_SIZE + out_sz,
HDR_PAR, HAB_MOD, HAB_ALG, in_sz, HAB_FLG};
/* initialize the blob array */
memset(dek_blob, 0, out_sz + 8);
/* Copy the header into the DEK blob buffer */
memcpy(dek_blob, wrapped_key_hdr, sizeof(wrapped_key_hdr));
/* allocating secure memory */
ret = caam_page_alloc(PAGE_1, PARTITION_1);
if (ret)
return ret;
/* Write DEK to secure memory */
memcpy((uint32_t *)SEC_MEM_PAGE1, (uint32_t *)plain_txt, in_sz);
unsigned long start = (unsigned long)SEC_MEM_PAGE1 &
~(ARCH_DMA_MINALIGN - 1);
unsigned long end = ALIGN(start + 0x1000, ARCH_DMA_MINALIGN);
flush_dcache_range(start, end);
/* Now configure the access rights of the partition */
sec_out32(CAAM_SMAG1JR0(PARTITION_1), KS_G1); /* set group 1 */
sec_out32(CAAM_SMAG2JR0(PARTITION_1), 0); /* clear group 2 */
sec_out32(CAAM_SMAPJR0(PARTITION_1), PERM); /* set perm & locks */
/* construct aad for AES */
aad_w1 = (in_sz << OP_ALG_ALGSEL_SHIFT) | KEY_AES_SRC | LD_CCM_MODE;
aad_w2 = 0x0;
init_job_desc(desc, 0);
append_cmd(desc, CMD_LOAD | CLASS_2 | KEY_IMM | KEY_ENC |
(0x0c << LDST_OFFSET_SHIFT) | 0x08);
append_u32(desc, aad_w1);
append_u32(desc, aad_w2);
append_cmd_ptr(desc, (dma_addr_t)SEC_MEM_PAGE1, in_sz, CMD_SEQ_IN_PTR);
append_cmd_ptr(desc, (dma_addr_t)dek_blob + 8, out_sz, CMD_SEQ_OUT_PTR);
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB |
OP_PCLID_SECMEM);
return ret;
}
#endif
void inline_cnstr_jobdesc_hash(uint32_t *desc,
const uint8_t *msg, uint32_t msgsz, uint8_t *digest,
u32 alg_type, uint32_t alg_size, int sg_tbl)
{
/* SHA 256 , output is of length 32 words */
uint32_t storelen = alg_size;
u32 options;
dma_addr_t dma_addr_in, dma_addr_out;
dma_addr_in = virt_to_phys((void *)msg);
dma_addr_out = virt_to_phys((void *)digest);
init_job_desc(desc, 0);
append_operation(desc, OP_TYPE_CLASS2_ALG |
OP_ALG_AAI_HASH | OP_ALG_AS_INITFINAL |
OP_ALG_ENCRYPT | OP_ALG_ICV_OFF | alg_type);
options = LDST_CLASS_2_CCB | FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2;
if (sg_tbl)
options |= FIFOLDST_SGF;
if (msgsz > 0xffff) {
options |= FIFOLDST_EXT;
append_fifo_load(desc, dma_addr_in, 0, options);
append_cmd(desc, msgsz);
} else {
append_fifo_load(desc, dma_addr_in, msgsz, options);
}
append_store(desc, dma_addr_out, storelen,
LDST_CLASS_2_CCB | LDST_SRCDST_BYTE_CONTEXT);
}
void inline_cnstr_jobdesc_blob_encap(uint32_t *desc, uint8_t *key_idnfr,
uint8_t *plain_txt, uint8_t *enc_blob,
uint32_t in_sz)
{
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
/* output blob will have 32 bytes key blob in beginning and
* 16 byte HMAC identifier at end of data blob */
uint32_t out_sz = in_sz + KEY_BLOB_SIZE + MAC_SIZE;
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
dma_addr_in = virt_to_phys((void *)plain_txt);
dma_addr_out = virt_to_phys((void *)enc_blob);
init_job_desc(desc, 0);
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
append_operation(desc, OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB);
}
void inline_cnstr_jobdesc_blob_decap(uint32_t *desc, uint8_t *key_idnfr,
uint8_t *enc_blob, uint8_t *plain_txt,
uint32_t out_sz)
{
dma_addr_t dma_addr_key_idnfr, dma_addr_in, dma_addr_out;
uint32_t key_sz = KEY_IDNFR_SZ_BYTES;
uint32_t in_sz = out_sz + KEY_BLOB_SIZE + MAC_SIZE;
dma_addr_key_idnfr = virt_to_phys((void *)key_idnfr);
dma_addr_in = virt_to_phys((void *)enc_blob);
dma_addr_out = virt_to_phys((void *)plain_txt);
init_job_desc(desc, 0);
append_key(desc, dma_addr_key_idnfr, key_sz, CLASS_2);
append_seq_in_ptr(desc, dma_addr_in, in_sz, 0);
append_seq_out_ptr(desc, dma_addr_out, out_sz, 0);
append_operation(desc, OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB);
}
/*
* Descriptor to instantiate RNG State Handle 0 in normal mode and
* load the JDKEK, TDKEK and TDSK registers
*/
void inline_cnstr_jobdesc_rng_instantiation(uint32_t *desc)
{
u32 *jump_cmd;
init_job_desc(desc, 0);
/* INIT RNG in non-test mode */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
OP_ALG_AS_INIT);
/* wait for done */
jump_cmd = append_jump(desc, JUMP_CLASS_CLASS1);
set_jump_tgt_here(desc, jump_cmd);
/*
* load 1 to clear written reg:
* resets the done interrrupt and returns the RNG to idle.
*/
append_load_imm_u32(desc, 1, LDST_SRCDST_WORD_CLRW);
/* generate secure keys (non-test) */
append_operation(desc, OP_TYPE_CLASS1_ALG | OP_ALG_ALGSEL_RNG |
OP_ALG_RNG4_SK);
}
/* Change key size to bytes form bits in calling function*/
void inline_cnstr_jobdesc_pkha_rsaexp(uint32_t *desc,
struct pk_in_params *pkin, uint8_t *out,
uint32_t out_siz)
{
dma_addr_t dma_addr_e, dma_addr_a, dma_addr_n, dma_addr_out;
dma_addr_e = virt_to_phys((void *)pkin->e);
dma_addr_a = virt_to_phys((void *)pkin->a);
dma_addr_n = virt_to_phys((void *)pkin->n);
dma_addr_out = virt_to_phys((void *)out);
init_job_desc(desc, 0);
append_key(desc, dma_addr_e, pkin->e_siz, KEY_DEST_PKHA_E | CLASS_1);
append_fifo_load(desc, dma_addr_a,
pkin->a_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_A);
append_fifo_load(desc, dma_addr_n,
pkin->n_siz, LDST_CLASS_1_CCB | FIFOLD_TYPE_PK_N);
append_operation(desc, OP_TYPE_PK | OP_ALG_PK | OP_ALG_PKMODE_MOD_EXPO);
append_fifo_store(desc, dma_addr_out, out_siz,
LDST_CLASS_1_CCB | FIFOST_TYPE_PKHA_B);
}
|