summaryrefslogtreecommitdiff
path: root/cpu/mpc83xx/spd_sdram.c
blob: 0d93f2e1ea4ea25a455356e725bd985208cef696 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*
 * (C) Copyright 2006 Freescale Semiconductor, Inc.
 *
 * (C) Copyright 2006
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
 * (C) Copyright 2003 Motorola Inc.
 * Xianghua Xiao (X.Xiao@motorola.com)
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#include <spd_sdram.h>

#ifdef CONFIG_SPD_EEPROM

DECLARE_GLOBAL_DATA_PTR;

#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif

#ifndef	CFG_READ_SPD
#define CFG_READ_SPD	i2c_read
#endif

/*
 * Convert picoseconds into clock cycles (rounding up if needed).
 */
int
picos_to_clk(int picos)
{
	unsigned int ddr_bus_clk;
	int clks;

	ddr_bus_clk = gd->ddr_clk >> 1;
	clks = picos / ((1000000000 / ddr_bus_clk) * 1000);
	if (picos % ((1000000000 / ddr_bus_clk) * 1000) != 0)
		clks++;

	return clks;
}

unsigned int banksize(unsigned char row_dens)
{
	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}

int read_spd(uint addr)
{
	return ((int) addr);
}

#undef SPD_DEBUG
#ifdef SPD_DEBUG
static void spd_debug(spd_eeprom_t *spd)
{
	printf ("\nDIMM type:       %-18.18s\n", spd->mpart);
	printf ("SPD size:        %d\n", spd->info_size);
	printf ("EEPROM size:     %d\n", 1 << spd->chip_size);
	printf ("Memory type:     %d\n", spd->mem_type);
	printf ("Row addr:        %d\n", spd->nrow_addr);
	printf ("Column addr:     %d\n", spd->ncol_addr);
	printf ("# of rows:       %d\n", spd->nrows);
	printf ("Row density:     %d\n", spd->row_dens);
	printf ("# of banks:      %d\n", spd->nbanks);
	printf ("Data width:      %d\n",
			256 * spd->dataw_msb + spd->dataw_lsb);
	printf ("Chip width:      %d\n", spd->primw);
	printf ("Refresh rate:    %02X\n", spd->refresh);
	printf ("CAS latencies:   %02X\n", spd->cas_lat);
	printf ("Write latencies: %02X\n", spd->write_lat);
	printf ("tRP:             %d\n", spd->trp);
	printf ("tRCD:            %d\n", spd->trcd);
	printf ("\n");
}
#endif /* SPD_DEBUG */

long int spd_sdram()
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ddr83xx_t *ddr = &immap->ddr;
	volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
	spd_eeprom_t spd;
	unsigned int memsize;
	unsigned int law_size;
	unsigned char caslat, caslat_ctrl;
	unsigned char burstlen;
	unsigned int max_bus_clk;
	unsigned int max_data_rate, effective_data_rate;
	unsigned int ddrc_clk;
	unsigned int refresh_clk;
	unsigned sdram_cfg;
	unsigned int ddrc_ecc_enable;

	/* Read SPD parameters with I2C */
	CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
#ifdef SPD_DEBUG
	spd_debug(&spd);
#endif
	/* Check the memory type */
	if (spd.mem_type != SPD_MEMTYPE_DDR) {
		printf("DDR: Module mem type is %02X\n", spd.mem_type);
		return 0;
	}

	/* Check the number of physical bank */
	if (spd.nrows > 2) {
		printf("DDR: The number of physical bank is %02X\n", spd.nrows);
		return 0;
	}

	/* Check if the number of row of the module is in the range of DDRC */
	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) {
		printf("DDR: Row number is out of range of DDRC, row=%02X\n",
							 spd.nrow_addr);
		return 0;
	}

	/* Check if the number of col of the module is in the range of DDRC */
	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
		printf("DDR: Col number is out of range of DDRC, col=%02X\n",
							 spd.ncol_addr);
		return 0;
	}
	/* Setup DDR chip select register */
#ifdef CFG_83XX_DDR_USES_CS0
	ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs_config[0] = ( 1 << 31
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
	debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);

	if (spd.nrows == 2) {
		ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs_config[1] = ( 1<<31
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
		debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
	}

#else
	ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs_config[2] = ( 1 << 31
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
	debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);

	if (spd.nrows == 2) {
		ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs_config[3] = ( 1<<31
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
		debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
	}
#endif

	if (spd.mem_type != 0x07) {
		puts("No DDR module found!\n");
		return 0;
	}

	/*
	 * Figure out memory size in Megabytes.
	 */
	memsize = spd.nrows * banksize(spd.row_dens) / 0x100000;

	/*
	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
	 */
	law_size = 19 + __ilog2(memsize);

	/*
	 * Set up LAWBAR for all of DDR.
	 */
	ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
	ecm->ar  = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
	debug("DDR:bar=0x%08x\n", ecm->bar);
	debug("DDR:ar=0x%08x\n", ecm->ar);

	/*
	 * Find the largest CAS by locating the highest 1 bit
	 * in the spd.cas_lat field.  Translate it to a DDR
	 * controller field value:
	 *
	 *	CAS Lat	 DDR I	   Ctrl
	 *	Clocks	 SPD Bit   Value
	 *	-------+--------+---------
	 *	1.0	   0	    001
	 *	1.5	   1	    010
	 *	2.0	   2	    011
	 *	2.5	   3	    100
	 *	3.0	   4	    101
	 *	3.5	   5	    110
	 *	4.0	   6	    111
	 */
	caslat = __ilog2(spd.cas_lat);

	if (caslat > 6 ) {
		printf("DDR: Invalid SPD CAS Latency, caslat=%02X\n",
			spd.cas_lat);
		return 0;
	}
	max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
			+ (spd.clk_cycle & 0x0f));
	max_data_rate = max_bus_clk * 2;

	debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);

	ddrc_clk = gd->ddr_clk / 1000000;

	if (max_data_rate >= 390) { /* it is DDR 400 */
		if (ddrc_clk <= 410 && ddrc_clk > 350) {
			/* DDR controller clk at 350~410 */
			effective_data_rate = 400; /* 5ns */
			caslat = caslat;
		} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			effective_data_rate = 333; /* 6ns */
			if (spd.clk_cycle2 == 0x60)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			if (spd.clk_cycle3 == 0x75)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0x60)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle3 == 0x75)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0x60)
				caslat = caslat - 1;
			else
				caslat = caslat;
		}
	} else if (max_data_rate >= 323) { /* it is DDR 333 */
		if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			effective_data_rate = 333; /* 6ns */
			caslat = caslat;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			if (spd.clk_cycle2 == 0x75)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle3 == 0xa0)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0x75)
				caslat = caslat - 1;
			else
				caslat = caslat;
		}
	} else if (max_data_rate >= 256) { /* it is DDR 266 */
		if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			printf("DDR: DDR controller freq is more than "
				"max data rate of the module\n");
			return 0;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle2 == 0xa0)
				caslat = caslat - 1;
		}
	} else if (max_data_rate >= 190) { /* it is DDR 200 */
		if (ddrc_clk <= 350 && ddrc_clk > 230) {
			/* DDR controller clk at 230~350 */
			printf("DDR: DDR controller freq is more than "
				"max data rate of the module\n");
			return 0;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			caslat = caslat;
		}
	}

	debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
	debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);

	/*
	 * Errata DDR6 work around: input enable 2 cycles earlier.
	 * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
	 */
	if (caslat == 2)
		ddr->debug_reg = 0x201c0000; /* CL=2 */
	else if (caslat == 3)
		ddr->debug_reg = 0x202c0000; /* CL=2.5 */
	else if (caslat == 4)
		ddr->debug_reg = 0x202c0000; /* CL=3.0 */

	__asm__ __volatile__ ("sync");

	debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);

	/*
	 * note: caslat must also be programmed into ddr->sdram_mode
	 * register.
	 *
	 * note: WRREC(Twr) and WRTORD(Twtr) are not in SPD,
	 * use conservative value here.
	 */
	caslat_ctrl = (caslat + 1) & 0x07; /* see as above */

	ddr->timing_cfg_1 =
	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |
	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) |
	     ((picos_to_clk(spd.trcd * 250) & 0x07) << 20 ) |
	     ((caslat_ctrl & 0x07) << 16 ) |
	     (((picos_to_clk(spd.trfc * 1000) - 8) & 0x0f) << 12 ) |
	     ( 0x300 ) |
	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) | 1);

	ddr->timing_cfg_2 = 0x00000800;

	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);
	/* Setup init value, but not enable */
	ddr->sdram_cfg = 0x42000000;

	/* Check DIMM data bus width */
	if (spd.dataw_lsb == 0x20) {
		burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
		printf("\n   DDR DIMM: data bus width is 32 bit");
	} else {
		burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
		printf("\n   DDR DIMM: data bus width is 64 bit");
	}

	/* Is this an ECC DDR chip? */
	if (spd.config == 0x02)
		printf(" with ECC\n");
	else
		printf(" without ECC\n");

	/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
	   Burst type is sequential
	 */
	switch (caslat) {
		case 1:
			ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
			break;
		case 2:
			ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
			break;
		case 3:
			ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
			break;
		case 4:
			ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
			break;
		default:
			printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
			return 0;
	}
	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);

	switch (spd.refresh) {
		case 0x00:
		case 0x80:
			refresh_clk = picos_to_clk(15625000);
			break;
		case 0x01:
		case 0x81:
			refresh_clk = picos_to_clk(3900000);
			break;
		case 0x02:
		case 0x82:
			refresh_clk = picos_to_clk(7800000);
			break;
		case 0x03:
		case 0x83:
			refresh_clk = picos_to_clk(31300000);
			break;
		case 0x04:
		case 0x84:
			refresh_clk = picos_to_clk(62500000);
			break;
		case 0x05:
		case 0x85:
			refresh_clk = picos_to_clk(125000000);
			break;
		default:
			refresh_clk = 0x512;
			break;
	}

	/*
	 * Set BSTOPRE to 0x100 for page mode
	 * If auto-charge is used, set BSTOPRE = 0
	 */
	ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);

	/* SS_EN = 0, source synchronous disable
	 * CLK_ADJST = 0, MCK/MCK# is launched aligned with addr/cmd
	 */
	ddr->sdram_clk_cntl = 0x00000000;
	debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);

	asm("sync;isync");

	udelay(600);

	/*
	 * Figure out the settings for the sdram_cfg register. Build up
	 * the value in 'sdram_cfg' before writing since the write into
	 * the register will actually enable the memory controller, and all
	 * settings must be done before enabling.
	 *
	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
	 * sdram_cfg[1]   = 1 (self-refresh-enable)
	 * sdram_cfg[6:7] = 2 (SDRAM type = DDR SDRAM)
	 * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
	 * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
	 */
	sdram_cfg = 0xC2000000;

	/* sdram_cfg[3] = RD_EN - registered DIMM enable */
	if (spd.mod_attr & 0x02)
		sdram_cfg |= 0x10000000;

	/* The DIMM is 32bit width */
	if (spd.dataw_lsb == 0x20)
		sdram_cfg |= 0x000C0000;

	ddrc_ecc_enable = 0;

#if defined(CONFIG_DDR_ECC)
	/* Enable ECC with sdram_cfg[2] */
	if (spd.config == 0x02) {
		sdram_cfg |= 0x20000000;
		ddrc_ecc_enable = 1;
		/* disable error detection */
		ddr->err_disable = ~ECC_ERROR_ENABLE;
		/* set single bit error threshold to maximum value,
		 * reset counter to zero */
		ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
				(0 << ECC_ERROR_MAN_SBEC_SHIFT);
	}

	debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
	printf("   DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");

#if defined(CONFIG_DDR_2T_TIMING)
	/*
	 * Enable 2T timing by setting sdram_cfg[16].
	 */
	sdram_cfg |= SDRAM_CFG_2T_EN;
#endif
	/* Enable controller, and GO! */
	ddr->sdram_cfg = sdram_cfg;
	asm("sync;isync");
	udelay(500);

	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
	return memsize; /*in MBytes*/
}
#endif /* CONFIG_SPD_EEPROM */

#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
/*
 * Use timebase counter, get_timer() is not availabe
 * at this point of initialization yet.
 */
static __inline__ unsigned long get_tbms (void)
{
	unsigned long tbl;
	unsigned long tbu1, tbu2;
	unsigned long ms;
	unsigned long long tmp;

	ulong tbclk = get_tbclk();

	/* get the timebase ticks */
	do {
		asm volatile ("mftbu %0":"=r" (tbu1):);
		asm volatile ("mftb %0":"=r" (tbl):);
		asm volatile ("mftbu %0":"=r" (tbu2):);
	} while (tbu1 != tbu2);

	/* convert ticks to ms */
	tmp = (unsigned long long)(tbu1);
	tmp = (tmp << 32);
	tmp += (unsigned long long)(tbl);
	ms = tmp/(tbclk/1000);

	return ms;
}

/*
 * Initialize all of memory for ECC, then enable errors.
 */
/* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
void ddr_enable_ecc(unsigned int dram_size)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ddr83xx_t *ddr= &immap->ddr;
	unsigned long t_start, t_end;
	register u64 *p;
	register uint size;
	unsigned int pattern[2];
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
	uint i;
#endif
	icache_enable();
	t_start = get_tbms();
	pattern[0] = 0xdeadbeef;
	pattern[1] = 0xdeadbeef;

#if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
	debug("ddr init: CPU FP write method\n");
	size = dram_size;
	for (p = 0; p < (u64*)(size); p++) {
		ppcDWstore((u32*)p, pattern);
	}
	__asm__ __volatile__ ("sync");
#else
	debug("ddr init: DMA method\n");
	size = 0x2000;
	for (p = 0; p < (u64*)(size); p++) {
		ppcDWstore((u32*)p, pattern);
	}
	__asm__ __volatile__ ("sync");

	/* Initialise DMA for direct transfer */
	dma_init();
	/* Start DMA to transfer */
	dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
	dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
	dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
	dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
	dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
	dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
	dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */

	for (i = 1; i < dram_size / 0x800000; i++) {
		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
	}
#endif

	t_end = get_tbms();
	icache_disable();

	debug("\nREADY!!\n");
	debug("ddr init duration: %ld ms\n", t_end - t_start);

	/* Clear All ECC Errors */
	if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
		ddr->err_detect |= ECC_ERROR_DETECT_MME;
	if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
		ddr->err_detect |= ECC_ERROR_DETECT_MBE;
	if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
		ddr->err_detect |= ECC_ERROR_DETECT_SBE;
	if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
		ddr->err_detect |= ECC_ERROR_DETECT_MSE;

	/* Disable ECC-Interrupts */
	ddr->err_int_en &= ECC_ERR_INT_DISABLE;

	/* Enable errors for ECC */
	ddr->err_disable &= ECC_ERROR_ENABLE;

	__asm__ __volatile__ ("sync");
	__asm__ __volatile__ ("isync");
}
#endif	/* CONFIG_DDR_ECC */