summaryrefslogtreecommitdiff
path: root/cpu/bf537/flush.S
blob: fbd26cc92b0590e852d8787dde6bd2ca90093e10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
/* Copyright (C) 2003-2007 Analog Devices Inc.
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.
 */

#define ASSEMBLY

#include <asm/linkage.h>
#include <asm/cplb.h>
#include <config.h>
#include <asm/blackfin.h>

.text

/* This is an external function being called by the user
 * application through __flush_cache_all. Currently this function
 * serves the purpose of flushing all the pending writes in
 * in the instruction cache.
 */

ENTRY(_flush_instruction_cache)
	[--SP] = ( R7:6, P5:4 );
	LINK 12;
	SP += -12;
	P5.H = (ICPLB_ADDR0 >> 16);
	P5.L = (ICPLB_ADDR0 & 0xFFFF);
	P4.H = (ICPLB_DATA0 >> 16);
	P4.L = (ICPLB_DATA0 & 0xFFFF);
	R7 = CPLB_VALID | CPLB_L1_CHBL;
	R6 = 16;
inext:	R0 = [P5++];
	R1 = [P4++];
	[--SP] =  RETS;
	CALL _icplb_flush;	/* R0 = page, R1 = data*/
	RETS = [SP++];
iskip:	R6 += -1;
	CC = R6;
	IF CC JUMP inext;
	SSYNC;
	SP += 12;
	UNLINK;
	( R7:6, P5:4 ) = [SP++];
	RTS;

/* This is an internal function to flush all pending
 * writes in the cache associated with a particular ICPLB.
 *
 * R0 -  page's start address
 * R1 -  CPLB's data field.
 */

.align 2
ENTRY(_icplb_flush)
	[--SP] = ( R7:0, P5:0 );
	[--SP] = LC0;
	[--SP] = LT0;
	[--SP] = LB0;
	[--SP] = LC1;
	[--SP] = LT1;
	[--SP] = LB1;

	/* If it's a 1K or 4K page, then it's quickest to
	 * just systematically flush all the addresses in
	 * the page, regardless of whether they're in the
	 * cache, or dirty. If it's a 1M or 4M page, there
	 * are too many addresses, and we have to search the
	 * cache for lines corresponding to the page.
	 */

	CC = BITTST(R1, 17);	/* 1MB or 4MB */
	IF !CC JUMP iflush_whole_page;

	/* We're only interested in the page's size, so extract
	 * this from the CPLB (bits 17:16), and scale to give an
	 * offset into the page_size and page_prefix tables.
	 */

	R1 <<= 14;
	R1 >>= 30;
	R1 <<= 2;

	/* We can also determine the sub-bank used, because this is
	 * taken from bits 13:12 of the address.
	 */

	R3 = ((12<<8)|2);		/* Extraction pattern */
	nop;				/* Anamoly 05000209 */
	R4 = EXTRACT(R0, R3.L) (Z);	/* Extract bits */

	/* Save in extraction pattern for later deposit. */
	R3.H = R4.L << 0;

	/* So:
	 * R0 = Page start
	 * R1 = Page length (actually, offset into size/prefix tables)
	 * R3 = sub-bank deposit values
	 *
	 * The cache has 2 Ways, and 64 sets, so we iterate through
	 * the sets, accessing the tag for each Way, for our Bank and
	 * sub-bank, looking for dirty, valid tags that match our
	 * address prefix.
	 */

	P5.L = (ITEST_COMMAND & 0xFFFF);
	P5.H = (ITEST_COMMAND >> 16);
	P4.L = (ITEST_DATA0 & 0xFFFF);
	P4.H = (ITEST_DATA0 >> 16);

	P0.L = page_prefix_table;
	P0.H = page_prefix_table;
	P1 = R1;
	R5 = 0;			/* Set counter*/
	P0 = P1 + P0;
	R4 = [P0];		/* This is the address prefix*/

	/* We're reading (bit 1==0) the tag (bit 2==0), and we
	 * don't care about which double-word, since we're only
	 * fetching tags, so we only have to set Set, Bank,
	 * Sub-bank and Way.
	 */

	P2 = 4;
	LSETUP (ifs1, ife1) LC1 = P2;
ifs1:	P0 = 32;		/* iterate over all sets*/
	LSETUP (ifs0, ife0) LC0 = P0;
ifs0:	R6 = R5 << 5;		/* Combine set*/
	R6.H = R3.H << 0 ;	/* and sub-bank*/
	[P5] = R6;		/* Issue Command*/
	SSYNC;			/* CSYNC will not work here :(*/
	R7 = [P4];		/* and read Tag.*/
	CC = BITTST(R7, 0);	/* Check if valid*/
	IF !CC JUMP ifskip;	/* and skip if not.*/

	/* Compare against the page address. First, plant bits 13:12
	 * into the tag, since those aren't part of the returned data.
	 */

	R7 = DEPOSIT(R7, R3);	/* set 13:12*/
	R1 = R7 & R4;		/* Mask off lower bits*/
	CC = R1 == R0;		/* Compare against page start.*/
	IF !CC JUMP ifskip;	/* Skip it if it doesn't match.*/

	/* Tag address matches against page, so this is an entry
	 * we must flush.
	 */

	R7 >>= 10;		/* Mask off the non-address bits*/
	R7 <<= 10;
	P3 = R7;
	IFLUSH [P3];		/* And flush the entry*/
ifskip:
ife0:	R5 += 1;		/* Advance to next Set*/
ife1:	NOP;

ifinished:
	SSYNC;			/* Ensure the data gets out to mem.*/

	/*Finished. Restore context.*/
	LB1 = [SP++];
	LT1 = [SP++];
	LC1 = [SP++];
	LB0 = [SP++];
	LT0 = [SP++];
	LC0 = [SP++];
	( R7:0, P5:0 ) = [SP++];
	RTS;

iflush_whole_page:
	/* It's a 1K or 4K page, so quicker to just flush the
	 * entire page.
	 */

	P1 = 32;		/* For 1K pages*/
	P2 = P1 << 2;		/* For 4K pages*/
	P0 = R0;		/* Start of page*/
	CC = BITTST(R1, 16);	/* Whether 1K or 4K*/
	IF CC P1 = P2;
	P1 += -1;		/* Unroll one iteration*/
	SSYNC;
	IFLUSH [P0++];		/* because CSYNC can't end loops.*/
	LSETUP (isall, ieall) LC0 = P1;
isall:IFLUSH [P0++];
ieall: NOP;
	SSYNC;
	JUMP ifinished;

/* This is an external function being called by the user
 * application through __flush_cache_all. Currently this function
 * serves the purpose of flushing all the pending writes in
 * in the data cache.
 */

ENTRY(_flush_data_cache)
	[--SP] = ( R7:6, P5:4 );
	LINK 12;
	SP += -12;
	P5.H = (DCPLB_ADDR0 >> 16);
	P5.L = (DCPLB_ADDR0 & 0xFFFF);
	P4.H = (DCPLB_DATA0 >> 16);
	P4.L = (DCPLB_DATA0 & 0xFFFF);
	R7 = CPLB_VALID | CPLB_L1_CHBL | CPLB_DIRTY (Z);
	R6 = 16;
next:	R0 = [P5++];
	R1 = [P4++];
	CC = BITTST(R1, 14);	/* Is it write-through?*/
	IF CC JUMP skip;	/* If so, ignore it.*/
	R2 = R1 & R7;		/* Is it a dirty, cached page?*/
	CC = R2;
	IF !CC JUMP skip;	/* If not, ignore it.*/
	[--SP] = RETS;
	CALL _dcplb_flush;	/* R0 = page, R1 = data*/
	RETS = [SP++];
skip:	R6 += -1;
	CC = R6;
	IF CC JUMP next;
	SSYNC;
	SP += 12;
	UNLINK;
	( R7:6, P5:4 ) = [SP++];
	RTS;

/* This is an internal function to flush all pending
 * writes in the cache associated with a particular DCPLB.
 *
 * R0 -  page's start address
 * R1 -  CPLB's data field.
 */

.align 2
ENTRY(_dcplb_flush)
	[--SP] = ( R7:0, P5:0 );
	[--SP] = LC0;
	[--SP] = LT0;
	[--SP] = LB0;
	[--SP] = LC1;
	[--SP] = LT1;
	[--SP] = LB1;

	/* If it's a 1K or 4K page, then it's quickest to
	 * just systematically flush all the addresses in
	 * the page, regardless of whether they're in the
	 * cache, or dirty. If it's a 1M or 4M page, there
	 * are too many addresses, and we have to search the
	 * cache for lines corresponding to the page.
	 */

	CC = BITTST(R1, 17);	/* 1MB or 4MB */
	IF !CC JUMP dflush_whole_page;

	/* We're only interested in the page's size, so extract
	 * this from the CPLB (bits 17:16), and scale to give an
	 * offset into the page_size and page_prefix tables.
	 */

	R1 <<= 14;
	R1 >>= 30;
	R1 <<= 2;

	/* The page could be mapped into Bank A or Bank B, depending
	 * on (a) whether both banks are configured as cache, and
	 * (b) on whether address bit A[x] is set. x is determined
	 * by DCBS in DMEM_CONTROL
	 */

	R2 = 0;			/* Default to Bank A (Bank B would be 1)*/

	P0.L = (DMEM_CONTROL & 0xFFFF);
	P0.H = (DMEM_CONTROL >> 16);

	R3 = [P0];		/* If Bank B is not enabled as cache*/
	CC = BITTST(R3, 2);	/* then Bank A is our only option.*/
	IF CC JUMP bank_chosen;

	R4 = 1<<14;		/* If DCBS==0, use A[14].*/
	R5 = R4 << 7;		/* If DCBS==1, use A[23];*/
	CC = BITTST(R3, 4);
	IF CC R4 = R5;		/* R4 now has either bit 14 or bit 23 set.*/
	R5 = R0 & R4;		/* Use it to test the Page address*/
	CC = R5;		/* and if that bit is set, we use Bank B,*/
	R2 = CC;		/* else we use Bank A.*/
	R2 <<= 23;		/* The Bank selection's at posn 23.*/

bank_chosen:

	/* We can also determine the sub-bank used, because this is
	 * taken from bits 13:12 of the address.
	 */

	R3 = ((12<<8)|2);		/* Extraction pattern */
	nop;				/*Anamoly 05000209*/
	R4 = EXTRACT(R0, R3.L) (Z);	/* Extract bits*/
	/* Save in extraction pattern for later deposit.*/
	R3.H = R4.L << 0;

	/* So:
	 * R0 = Page start
	 * R1 = Page length (actually, offset into size/prefix tables)
	 * R2 = Bank select mask
	 * R3 = sub-bank deposit values
	 *
	 * The cache has 2 Ways, and 64 sets, so we iterate through
	 * the sets, accessing the tag for each Way, for our Bank and
	 * sub-bank, looking for dirty, valid tags that match our
	 * address prefix.
	 */

	P5.L = (DTEST_COMMAND & 0xFFFF);
	P5.H = (DTEST_COMMAND >> 16);
	P4.L = (DTEST_DATA0 & 0xFFFF);
	P4.H = (DTEST_DATA0 >> 16);

	P0.L = page_prefix_table;
	P0.H = page_prefix_table;
	P1 = R1;
	R5 = 0;			/* Set counter*/
	P0 = P1 + P0;
	R4 = [P0];		/* This is the address prefix*/


	/* We're reading (bit 1==0) the tag (bit 2==0), and we
	 * don't care about which double-word, since we're only
	 * fetching tags, so we only have to set Set, Bank,
	 * Sub-bank and Way.
	 */

	P2 = 2;
	LSETUP (fs1, fe1) LC1 = P2;
fs1:	P0 = 64;		/* iterate over all sets*/
	LSETUP (fs0, fe0) LC0 = P0;
fs0:	R6 = R5 << 5;		/* Combine set*/
	R6.H = R3.H << 0 ;	/* and sub-bank*/
	R6 = R6 | R2;		/* and Bank. Leave Way==0 at first.*/
	BITSET(R6,14);
	[P5] = R6;		/* Issue Command*/
	SSYNC;
	R7 = [P4];		/* and read Tag.*/
	CC = BITTST(R7, 0);	/* Check if valid*/
	IF !CC JUMP fskip;	/* and skip if not.*/
	CC = BITTST(R7, 1);	/* Check if dirty*/
	IF !CC JUMP fskip;	/* and skip if not.*/

	/* Compare against the page address. First, plant bits 13:12
	 * into the tag, since those aren't part of the returned data.
	 */

	R7 = DEPOSIT(R7, R3);	/* set 13:12*/
	R1 = R7 & R4;		/* Mask off lower bits*/
	CC = R1 == R0;		/* Compare against page start.*/
	IF !CC JUMP fskip;	/* Skip it if it doesn't match.*/

	/* Tag address matches against page, so this is an entry
	 * we must flush.
	 */

	R7 >>= 10;		/* Mask off the non-address bits*/
	R7 <<= 10;
	P3 = R7;
	SSYNC;
	FLUSHINV [P3];		/* And flush the entry*/
fskip:
fe0:	R5 += 1;		/* Advance to next Set*/
fe1:	BITSET(R2, 26);		/* Go to next Way.*/

dfinished:
	SSYNC;			/* Ensure the data gets out to mem.*/

	/*Finished. Restore context.*/
	LB1 = [SP++];
	LT1 = [SP++];
	LC1 = [SP++];
	LB0 = [SP++];
	LT0 = [SP++];
	LC0 = [SP++];
	( R7:0, P5:0 ) = [SP++];
	RTS;

dflush_whole_page:

	/* It's a 1K or 4K page, so quicker to just flush the
	 * entire page.
	 */

	P1 = 32;		/* For 1K pages*/
	P2 = P1 << 2;		/* For 4K pages*/
	P0 = R0;		/* Start of page*/
	CC = BITTST(R1, 16);	/* Whether 1K or 4K*/
	IF CC P1 = P2;
	P1 += -1;		/* Unroll one iteration*/
	SSYNC;
	FLUSHINV [P0++];	/* because CSYNC can't end loops.*/
	LSETUP (eall, eall) LC0 = P1;
eall:	FLUSHINV [P0++];
	SSYNC;
	JUMP dfinished;

.align 4;
page_prefix_table:
.byte4 	0xFFFFFC00;	/* 1K */
.byte4	0xFFFFF000;	/* 4K */
.byte4	0xFFF00000;	/* 1M */
.byte4	0xFFC00000;	/* 4M */
.page_prefix_table.end: