1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
|
/*
* Copyright (C) 2010 Freescale Semiconductor, Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <asm/arch/mx53.h>
#include <asm/errno.h>
#include <asm/io.h>
#include "crm_regs.h"
#ifdef CONFIG_CMD_CLOCK
#include <asm/clock.h>
#endif
#include <div64.h>
#ifdef CONFIG_ARCH_CPU_INIT
#include <asm/cache-cp15.h>
#endif
enum pll_clocks {
PLL1_CLK = MXC_DPLL1_BASE,
PLL2_CLK = MXC_DPLL2_BASE,
PLL3_CLK = MXC_DPLL3_BASE,
PLL4_CLK = MXC_DPLL4_BASE,
};
enum pll_sw_clocks {
PLL1_SW_CLK,
PLL2_SW_CLK,
PLL3_SW_CLK,
PLL4_SW_CLK,
};
#define AHB_CLK_ROOT 133333333
#define IPG_CLK_ROOT 66666666
#define IPG_PER_CLK_ROOT 40000000
#ifdef CONFIG_CMD_CLOCK
#define SZ_DEC_1M 1000000
#define PLL_PD_MAX 16 /* Actual pd+1 */
#define PLL_MFI_MAX 15
#define PLL_MFI_MIN 5
#define ARM_DIV_MAX 8
#define IPG_DIV_MAX 4
#define AHB_DIV_MAX 8
#define EMI_DIV_MAX 8
#define NFC_DIV_MAX 8
struct fixed_pll_mfd {
u32 ref_clk_hz;
u32 mfd;
};
const struct fixed_pll_mfd fixed_mfd[4] = {
{0, 0}, /* reserved */
{0, 0}, /* reserved */
{CONFIG_MX53_HCLK_FREQ, 24 * 16}, /* 384 */
{0, 0}, /* reserved */
};
struct pll_param {
u32 pd;
u32 mfi;
u32 mfn;
u32 mfd;
};
#define PLL_FREQ_MAX(_ref_clk_) \
(4 * _ref_clk_ * PLL_MFI_MAX)
#define PLL_FREQ_MIN(_ref_clk_) \
((2 * _ref_clk_ * (PLL_MFI_MIN - 1)) / PLL_PD_MAX)
#define MAX_DDR_CLK 420000000
#define AHB_CLK_MAX 133333333
#define IPG_CLK_MAX (AHB_CLK_MAX / 2)
#define NFC_CLK_MAX 34000000
#define HSP_CLK_MAX 133333333
#endif
static u32 __decode_pll(enum pll_clocks pll, u32 infreq)
{
u32 mfi, mfn, mfd, pd;
mfn = __REG(pll + MXC_PLL_DP_MFN);
mfd = __REG(pll + MXC_PLL_DP_MFD) + 1;
mfi = __REG(pll + MXC_PLL_DP_OP);
pd = (mfi & 0xF) + 1;
mfi = (mfi >> 4) & 0xF;
mfi = (mfi >= 5) ? mfi : 5;
return ((4 * (infreq / 1000) * (mfi * mfd + mfn)) / (mfd * pd)) * 1000;
}
static u32 __get_mcu_main_clk(void)
{
u32 reg, freq;
reg = (__REG(MXC_CCM_CACRR) & MXC_CCM_CACRR_ARM_PODF_MASK) >>
MXC_CCM_CACRR_ARM_PODF_OFFSET;
freq = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
return freq / (reg + 1);
}
static u32 __get_periph_clk(void)
{
u32 reg;
reg = __REG(MXC_CCM_CBCDR);
if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
reg = __REG(MXC_CCM_CBCMR);
switch ((reg & MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
case 0:
return __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
case 1:
return __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ);
default:
return 0;
}
}
return __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ);
}
static u32 __get_ipg_clk(void)
{
u32 ahb_podf, ipg_podf;
ahb_podf = __REG(MXC_CCM_CBCDR);
ipg_podf = (ahb_podf & MXC_CCM_CBCDR_IPG_PODF_MASK) >>
MXC_CCM_CBCDR_IPG_PODF_OFFSET;
ahb_podf = (ahb_podf & MXC_CCM_CBCDR_AHB_PODF_MASK) >>
MXC_CCM_CBCDR_AHB_PODF_OFFSET;
return __get_periph_clk() / ((ahb_podf + 1) * (ipg_podf + 1));
}
static u32 __get_ipg_per_clk(void)
{
u32 pred1, pred2, podf;
if (__REG(MXC_CCM_CBCMR) & MXC_CCM_CBCMR_PERCLK_IPG_CLK_SEL)
return __get_ipg_clk();
/* Fixme: not handle what about lpm */
podf = __REG(MXC_CCM_CBCDR);
pred1 = (podf & MXC_CCM_CBCDR_PERCLK_PRED1_MASK) >>
MXC_CCM_CBCDR_PERCLK_PRED1_OFFSET;
pred2 = (podf & MXC_CCM_CBCDR_PERCLK_PRED2_MASK) >>
MXC_CCM_CBCDR_PERCLK_PRED2_OFFSET;
podf = (podf & MXC_CCM_CBCDR_PERCLK_PODF_MASK) >>
MXC_CCM_CBCDR_PERCLK_PODF_OFFSET;
return __get_periph_clk() / ((pred1 + 1) * (pred2 + 1) * (podf + 1));
}
/*!
* This function returns the low power audio clock.
*/
static u32 __get_lp_apm(void)
{
u32 ret_val = 0;
u32 ccsr = __REG(MXC_CCM_CCSR);
if (((ccsr >> MXC_CCM_CCSR_LP_APM_SEL_OFFSET) & 1) == 0)
ret_val = CONFIG_MX53_HCLK_FREQ;
else
ret_val = ((32768 * 1024));
return ret_val;
}
/*
static u32 __get_perclk_lp_apm(void)
{
u32 ret_val = 0;
u32 cbcmr = __REG(MXC_CCM_CBCMR);
u32 clk_sel = (cbcmr & MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL) \
>> MXC_CCM_CBCMR_PERCLK_LP_APM_CLK_SEL_OFFSET;
switch (clk_sel) {
case 0:
ret_val = __get_periph_clk();
break;
case 1:
ret_val = __get_lp_apm();
break;
default:
break;
}
return ret_val;
}
*/
static u32 __get_uart_clk(void)
{
u32 freq = 0, reg, pred, podf;
reg = __REG(MXC_CCM_CSCMR1);
switch ((reg & MXC_CCM_CSCMR1_UART_CLK_SEL_MASK) >>
MXC_CCM_CSCMR1_UART_CLK_SEL_OFFSET) {
case 0x0:
freq = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 0x1:
freq = __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 0x2:
freq = __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 0x4:
freq = __get_lp_apm();
break;
default:
break;
}
reg = __REG(MXC_CCM_CSCDR1);
pred = (reg & MXC_CCM_CSCDR1_UART_CLK_PRED_MASK) >>
MXC_CCM_CSCDR1_UART_CLK_PRED_OFFSET;
podf = (reg & MXC_CCM_CSCDR1_UART_CLK_PODF_MASK) >>
MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
freq /= (pred + 1) * (podf + 1);
return freq;
}
static u32 __get_cspi_clk(void)
{
u32 ret_val = 0, pdf, pre_pdf, clk_sel, div;
u32 cscmr1 = __REG(MXC_CCM_CSCMR1);
u32 cscdr2 = __REG(MXC_CCM_CSCDR2);
pre_pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PRED_MASK) \
>> MXC_CCM_CSCDR2_CSPI_CLK_PRED_OFFSET;
pdf = (cscdr2 & MXC_CCM_CSCDR2_CSPI_CLK_PODF_MASK) \
>> MXC_CCM_CSCDR2_CSPI_CLK_PODF_OFFSET;
clk_sel = (cscmr1 & MXC_CCM_CSCMR1_CSPI_CLK_SEL_MASK) \
>> MXC_CCM_CSCMR1_CSPI_CLK_SEL_OFFSET;
div = (pre_pdf + 1) * (pdf + 1);
switch (clk_sel) {
case 0:
ret_val = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ) / div;
break;
case 1:
ret_val = __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ) / div;
break;
case 2:
ret_val = __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ) / div;
break;
default:
ret_val = __get_lp_apm() / div;
break;
}
return ret_val;
}
static u32 __get_axi_a_clk(void)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_A_PODF_MASK) \
>> MXC_CCM_CBCDR_AXI_A_PODF_OFFSET;
return __get_periph_clk() / (pdf + 1);
}
static u32 __get_axi_b_clk(void)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 pdf = (cbcdr & MXC_CCM_CBCDR_AXI_B_PODF_MASK) \
>> MXC_CCM_CBCDR_AXI_B_PODF_OFFSET;
return __get_periph_clk() / (pdf + 1);
}
static u32 __get_ahb_clk(void)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 pdf = (cbcdr & MXC_CCM_CBCDR_AHB_PODF_MASK) \
>> MXC_CCM_CBCDR_AHB_PODF_OFFSET;
return __get_periph_clk() / (pdf + 1);
}
static u32 __get_emi_slow_clk(void)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 emi_clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
u32 pdf = (cbcdr & MXC_CCM_CBCDR_EMI_PODF_MASK) \
>> MXC_CCM_CBCDR_EMI_PODF_OFFSET;
if (emi_clk_sel)
return __get_ahb_clk() / (pdf + 1);
return __get_periph_clk() / (pdf + 1);
}
static u32 __get_nfc_clk(void)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 pdf = (cbcdr & MXC_CCM_CBCDR_NFC_PODF_MASK) \
>> MXC_CCM_CBCDR_NFC_PODF_OFFSET;
return __get_emi_slow_clk() / (pdf + 1);
}
static u32 __get_ddr_clk(void)
{
u32 ret_val = 0;
u32 cbcmr = __REG(MXC_CCM_CBCMR);
u32 ddr_clk_sel = (cbcmr & MXC_CCM_CBCMR_DDR_CLK_SEL_MASK) \
>> MXC_CCM_CBCMR_DDR_CLK_SEL_OFFSET;
switch (ddr_clk_sel) {
case 0:
ret_val = __get_axi_a_clk();
break;
case 1:
ret_val = __get_axi_b_clk();
break;
case 2:
ret_val = __get_emi_slow_clk();
break;
case 3:
ret_val = __get_ahb_clk();
break;
default:
break;
}
return ret_val;
}
static u32 __get_esdhc1_clk(void)
{
u32 ret_val = 0, div, pre_pdf, pdf;
u32 cscmr1 = __REG(MXC_CCM_CSCMR1);
u32 cscdr1 = __REG(MXC_CCM_CSCDR1);
u32 esdh1_clk_sel;
esdh1_clk_sel = (cscmr1 & MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_MASK) \
>> MXC_CCM_CSCMR1_ESDHC1_MSHC1_CLK_SEL_OFFSET;
pre_pdf = (cscdr1 & MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_MASK) \
>> MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PRED_OFFSET;
pdf = (cscdr1 & MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_MASK) \
>> MXC_CCM_CSCDR1_ESDHC1_MSHC1_CLK_PODF_OFFSET ;
div = (pre_pdf + 1) * (pdf + 1);
switch (esdh1_clk_sel) {
case 0:
ret_val = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 1:
ret_val = __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 2:
ret_val = __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 3:
ret_val = __get_lp_apm();
break;
default:
break;
}
ret_val /= div;
return ret_val;
}
static u32 __get_esdhc3_clk(void)
{
u32 ret_val = 0, div, pre_pdf, pdf;
u32 esdh3_clk_sel;
u32 cscmr1 = __REG(MXC_CCM_CSCMR1);
u32 cscdr1 = __REG(MXC_CCM_CSCDR1);
esdh3_clk_sel = (cscmr1 & MXC_CCM_CSCMR1_ESDHC3_MSHC2_CLK_SEL_MASK) \
>> MXC_CCM_CSCMR1_ESDHC3_MSHC2_CLK_SEL_OFFSET;
pre_pdf = (cscdr1 & MXC_CCM_CSCDR1_ESDHC3_MSHC2_CLK_PRED_MASK) \
>> MXC_CCM_CSCDR1_ESDHC3_MSHC2_CLK_PRED_OFFSET;
pdf = (cscdr1 & MXC_CCM_CSCDR1_ESDHC3_MSHC2_CLK_PODF_MASK) \
>> MXC_CCM_CSCDR1_ESDHC3_MSHC2_CLK_PODF_OFFSET ;
div = (pre_pdf + 1) * (pdf + 1);
switch (esdh3_clk_sel) {
case 0:
ret_val = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 1:
ret_val = __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 2:
ret_val = __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ);
break;
case 3:
ret_val = __get_lp_apm();
break;
default:
break;
}
ret_val /= div;
return ret_val;
}
static u32 __get_esdhc2_clk(void)
{
u32 cscmr1 = __REG(MXC_CCM_CSCMR1);
u32 esdh2_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ESDHC2_CLK_SEL;
if (esdh2_clk_sel)
return __get_esdhc3_clk();
return __get_esdhc1_clk();
}
static u32 __get_esdhc4_clk(void)
{
u32 cscmr1 = __REG(MXC_CCM_CSCMR1);
u32 esdh4_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ESDHC4_CLK_SEL;
if (esdh4_clk_sel)
return __get_esdhc3_clk();
return __get_esdhc1_clk();
}
unsigned int mxc_get_clock(enum mxc_clock clk)
{
switch (clk) {
case MXC_ARM_CLK:
return __get_mcu_main_clk();
case MXC_PER_CLK:
return __get_periph_clk();
case MXC_AHB_CLK:
return __get_ahb_clk();
case MXC_IPG_CLK:
return __get_ipg_clk();
case MXC_IPG_PERCLK:
return __get_ipg_per_clk();
case MXC_UART_CLK:
return __get_uart_clk();
case MXC_CSPI_CLK:
return __get_cspi_clk();
case MXC_AXI_A_CLK:
return __get_axi_a_clk();
case MXC_AXI_B_CLK:
return __get_axi_b_clk();
case MXC_EMI_SLOW_CLK:
return __get_emi_slow_clk();
case MXC_DDR_CLK:
return __get_ddr_clk();
case MXC_ESDHC_CLK:
return __get_esdhc1_clk();
case MXC_ESDHC2_CLK:
return __get_esdhc2_clk();
case MXC_ESDHC3_CLK:
return __get_esdhc3_clk();
case MXC_ESDHC4_CLK:
return __get_esdhc4_clk();
case MXC_SATA_CLK:
return __get_ahb_clk();
case MXC_NFC_CLK:
return __get_nfc_clk();
default:
break;
}
return -1;
}
void mxc_dump_clocks(void)
{
u32 freq;
freq = __decode_pll(PLL1_CLK, CONFIG_MX53_HCLK_FREQ);
printf("mx53 pll1: %dMHz\n", freq / 1000000);
freq = __decode_pll(PLL2_CLK, CONFIG_MX53_HCLK_FREQ);
printf("mx53 pll2: %dMHz\n", freq / 1000000);
freq = __decode_pll(PLL3_CLK, CONFIG_MX53_HCLK_FREQ);
printf("mx53 pll3: %dMHz\n", freq / 1000000);
printf("ipg clock : %dHz\n", mxc_get_clock(MXC_IPG_CLK));
printf("ipg per clock : %dHz\n", mxc_get_clock(MXC_IPG_PERCLK));
printf("uart clock : %dHz\n", mxc_get_clock(MXC_UART_CLK));
printf("cspi clock : %dHz\n", mxc_get_clock(MXC_CSPI_CLK));
printf("ahb clock : %dHz\n", mxc_get_clock(MXC_AHB_CLK));
printf("axi_a clock : %dHz\n", mxc_get_clock(MXC_AXI_A_CLK));
printf("axi_b clock : %dHz\n", mxc_get_clock(MXC_AXI_B_CLK));
printf("emi_slow clock: %dHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK));
printf("ddr clock : %dHz\n", mxc_get_clock(MXC_DDR_CLK));
printf("esdhc1 clock : %dHz\n", mxc_get_clock(MXC_ESDHC_CLK));
printf("esdhc2 clock : %dHz\n", mxc_get_clock(MXC_ESDHC2_CLK));
printf("esdhc3 clock : %dHz\n", mxc_get_clock(MXC_ESDHC3_CLK));
printf("esdhc4 clock : %dHz\n", mxc_get_clock(MXC_ESDHC4_CLK));
printf("nfc clock : %dHz\n", mxc_get_clock(MXC_NFC_CLK));
}
#ifdef CONFIG_CMD_CLOCK
/* precondition: m>0 and n>0. Let g=gcd(m,n). */
static int gcd(int m, int n)
{
int t;
while (m > 0) {
if (n > m) {
t = m;
m = n;
n = t;
} /* swap */
m -= n;
}
return n;
}
/*!
* This is to calculate various parameters based on reference clock and
* targeted clock based on the equation:
* t_clk = 2*ref_freq*(mfi + mfn/(mfd+1))/(pd+1)
* This calculation is based on a fixed MFD value for simplicity.
*
* @param ref reference clock freq in Hz
* @param target targeted clock in Hz
* @param pll pll_param structure.
*
* @return 0 if successful; non-zero otherwise.
*/
static int calc_pll_params(u32 ref, u32 target, struct pll_param *pll)
{
u64 pd, mfi = 1, mfn, mfd, t1;
u32 n_target = target;
u32 n_ref = ref, i;
/*
* Make sure targeted freq is in the valid range.
* Otherwise the following calculation might be wrong!!!
*/
if (n_target < PLL_FREQ_MIN(ref) ||
n_target > PLL_FREQ_MAX(ref)) {
printf("Targeted peripheral clock should be"
"within [%d - %d]\n",
PLL_FREQ_MIN(ref) / SZ_DEC_1M,
PLL_FREQ_MAX(ref) / SZ_DEC_1M);
return -1;
}
for (i = 0; i < ARRAY_SIZE(fixed_mfd); i++) {
if (fixed_mfd[i].ref_clk_hz == ref) {
mfd = fixed_mfd[i].mfd;
break;
}
}
if (i == ARRAY_SIZE(fixed_mfd))
return -1;
/* Use n_target and n_ref to avoid overflow */
for (pd = 1; pd <= PLL_PD_MAX; pd++) {
t1 = n_target * pd;
do_div(t1, (4 * n_ref));
mfi = t1;
if (mfi > PLL_MFI_MAX)
return -1;
else if (mfi < 5)
continue;
break;
}
/* Now got pd and mfi already */
/*
mfn = (((n_target * pd) / 4 - n_ref * mfi) * mfd) / n_ref;
*/
t1 = n_target * pd;
do_div(t1, 4);
t1 -= n_ref * mfi;
t1 *= mfd;
do_div(t1, n_ref);
mfn = t1;
#ifdef CMD_CLOCK_DEBUG
printf("%d: ref=%d, target=%d, pd=%d,"
"mfi=%d,mfn=%d, mfd=%d\n",
__LINE__, ref, (u32)n_target,
(u32)pd, (u32)mfi, (u32)mfn,
(u32)mfd);
#endif
i = 1;
if (mfn != 0)
i = gcd(mfd, mfn);
pll->pd = (u32)pd;
pll->mfi = (u32)mfi;
do_div(mfn, i);
pll->mfn = (u32)mfn;
do_div(mfd, i);
pll->mfd = (u32)mfd;
return 0;
}
int clk_info(u32 clk_type)
{
switch (clk_type) {
case CPU_CLK:
printf("CPU Clock: %dHz\n",
mxc_get_clock(MXC_ARM_CLK));
break;
case PERIPH_CLK:
printf("Peripheral Clock: %dHz\n",
mxc_get_clock(MXC_PER_CLK));
break;
case AHB_CLK:
printf("AHB Clock: %dHz\n",
mxc_get_clock(MXC_AHB_CLK));
break;
case IPG_CLK:
printf("IPG Clock: %dHz\n",
mxc_get_clock(MXC_IPG_CLK));
break;
case IPG_PERCLK:
printf("IPG_PER Clock: %dHz\n",
mxc_get_clock(MXC_IPG_PERCLK));
break;
case UART_CLK:
printf("UART Clock: %dHz\n",
mxc_get_clock(MXC_UART_CLK));
break;
case CSPI_CLK:
printf("CSPI Clock: %dHz\n",
mxc_get_clock(MXC_CSPI_CLK));
break;
case DDR_CLK:
printf("DDR Clock: %dHz\n",
mxc_get_clock(MXC_DDR_CLK));
break;
case NFC_CLK:
printf("NFC Clock: %dHz\n",
mxc_get_clock(MXC_NFC_CLK));
case ALL_CLK:
printf("cpu clock: %dMHz\n",
mxc_get_clock(MXC_ARM_CLK) / SZ_DEC_1M);
mxc_dump_clocks();
break;
default:
printf("Unsupported clock type! :(\n");
}
return 0;
}
#define calc_div(target_clk, src_clk, limit) ({ \
u32 tmp = 0; \
if ((src_clk % target_clk) <= 100) \
tmp = src_clk / target_clk; \
else \
tmp = (src_clk / target_clk) + 1; \
if (tmp > limit) \
tmp = limit; \
(tmp - 1); \
})
static u32 calc_per_cbcdr_val(u32 per_clk, u32 cbcmr)
{
u32 cbcdr = __REG(MXC_CCM_CBCDR);
u32 tmp_clk = 0, div = 0, clk_sel = 0;
cbcdr &= ~MXC_CCM_CBCDR_PERIPH_CLK_SEL;
/* emi_slow_podf divider */
tmp_clk = __get_emi_slow_clk();
clk_sel = cbcdr & MXC_CCM_CBCDR_EMI_CLK_SEL;
if (clk_sel) {
div = calc_div(tmp_clk, per_clk, 8);
cbcdr &= ~MXC_CCM_CBCDR_EMI_PODF_MASK;
cbcdr |= (div << MXC_CCM_CBCDR_EMI_PODF_OFFSET);
}
/* axi_b_podf divider */
tmp_clk = __get_axi_b_clk();
div = calc_div(tmp_clk, per_clk, 8);
cbcdr &= ~MXC_CCM_CBCDR_AXI_B_PODF_MASK;
cbcdr |= (div << MXC_CCM_CBCDR_AXI_B_PODF_OFFSET);
/* axi_b_podf divider */
tmp_clk = __get_axi_a_clk();
div = calc_div(tmp_clk, per_clk, 8);
cbcdr &= ~MXC_CCM_CBCDR_AXI_A_PODF_MASK;
cbcdr |= (div << MXC_CCM_CBCDR_AXI_A_PODF_OFFSET);
/* ahb podf divider */
tmp_clk = AHB_CLK_ROOT;
div = calc_div(tmp_clk, per_clk, 8);
cbcdr &= ~MXC_CCM_CBCDR_AHB_PODF_MASK;
cbcdr |= (div << MXC_CCM_CBCDR_AHB_PODF_OFFSET);
return cbcdr;
}
#define CHANGE_PLL_SETTINGS(base, pd, mfi, mfn, mfd) \
{ \
writel(0x1232, base + PLL_DP_CTL); \
writel(0x2, base + PLL_DP_CONFIG); \
writel(((pd - 1) << 0) | (mfi << 4), \
base + PLL_DP_OP); \
writel(mfn, base + PLL_DP_MFN); \
writel(mfd - 1, base + PLL_DP_MFD); \
writel(((pd - 1) << 0) | (mfi << 4), \
base + PLL_DP_HFS_OP); \
writel(mfn, base + PLL_DP_HFS_MFN); \
writel(mfd - 1, base + PLL_DP_HFS_MFD); \
writel(0x1232, base + PLL_DP_CTL); \
while (!readl(base + PLL_DP_CTL) & 0x1) \
; \
}
static int config_pll_clk(enum pll_clocks pll, struct pll_param *pll_param)
{
u32 ccsr = readl(CCM_BASE_ADDR + CLKCTL_CCSR);
u32 pll_base = pll;
switch (pll) {
case PLL1_CLK:
/* Switch ARM to PLL2 clock */
writel(ccsr | 0x4, CCM_BASE_ADDR + CLKCTL_CCSR);
CHANGE_PLL_SETTINGS(pll_base, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~0x4, CCM_BASE_ADDR + CLKCTL_CCSR);
break;
case PLL2_CLK:
/* Switch to pll2 bypass clock */
writel(ccsr | 0x2, CCM_BASE_ADDR + CLKCTL_CCSR);
CHANGE_PLL_SETTINGS(pll_base, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~0x2, CCM_BASE_ADDR + CLKCTL_CCSR);
break;
case PLL3_CLK:
/* Switch to pll3 bypass clock */
writel(ccsr | 0x1, CCM_BASE_ADDR + CLKCTL_CCSR);
CHANGE_PLL_SETTINGS(pll_base, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~0x1, CCM_BASE_ADDR + CLKCTL_CCSR);
break;
case PLL4_CLK:
/* Switch to pll4 bypass clock */
writel(ccsr | 0x20, CCM_BASE_ADDR + CLKCTL_CCSR);
CHANGE_PLL_SETTINGS(pll_base, pll_param->pd,
pll_param->mfi, pll_param->mfn,
pll_param->mfd);
/* Switch back */
writel(ccsr & ~0x20, CCM_BASE_ADDR + CLKCTL_CCSR);
break;
default:
return -1;
}
return 0;
}
static int config_core_clk(u32 ref, u32 freq)
{
int ret = 0;
u32 pll = 0;
struct pll_param pll_param;
memset(&pll_param, 0, sizeof(struct pll_param));
/* The case that periph uses PLL1 is not considered here */
pll = freq;
ret = calc_pll_params(ref, pll, &pll_param);
if (ret != 0) {
printf("Can't find pll parameters: %d\n",
ret);
return ret;
}
return config_pll_clk(PLL1_CLK, &pll_param);
}
static int config_nfc_clk(u32 nfc_clk)
{
u32 reg;
u32 parent_rate = __get_emi_slow_clk();
u32 div = parent_rate / nfc_clk;
if (nfc_clk <= 0)
return -1;
if (div == 0)
div++;
if (parent_rate / div > NFC_CLK_MAX)
div++;
reg = __REG(MXC_CCM_CBCDR);
reg &= ~MXC_CCM_CBCDR_NFC_PODF_MASK;
reg |= (div - 1) << MXC_CCM_CBCDR_NFC_PODF_OFFSET;
writel(reg, MXC_CCM_CBCDR);
while (readl(CCM_BASE_ADDR + CLKCTL_CDHIPR) != 0)
;
return 0;
}
static int config_periph_clk(u32 ref, u32 freq)
{
int ret = 0;
u32 pll = freq;
struct pll_param pll_param;
memset(&pll_param, 0, sizeof(struct pll_param));
if (__REG(MXC_CCM_CBCDR) & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
/* Actually this case is not considered here */
ret = calc_pll_params(ref, pll, &pll_param);
if (ret != 0) {
printf("Can't find pll parameters: %d\n",
ret);
return ret;
}
switch ((__REG(MXC_CCM_CBCMR) & \
MXC_CCM_CBCMR_PERIPH_CLK_SEL_MASK) >>
MXC_CCM_CBCMR_PERIPH_CLK_SEL_OFFSET) {
case 0:
return config_pll_clk(PLL1_CLK, &pll_param);
break;
case 1:
return config_pll_clk(PLL3_CLK, &pll_param);
break;
default:
return -1;
}
} else {
u32 old_cbcmr = readl(CCM_BASE_ADDR + CLKCTL_CBCMR);
u32 new_cbcdr = calc_per_cbcdr_val(pll, old_cbcmr);
u32 old_nfc = __get_nfc_clk();
/* Switch peripheral to PLL3 */
writel(0x00015154, CCM_BASE_ADDR + CLKCTL_CBCMR);
writel(0x02888945, CCM_BASE_ADDR + CLKCTL_CBCDR);
/* Make sure change is effective */
while (readl(CCM_BASE_ADDR + CLKCTL_CDHIPR) != 0)
;
/* Setup PLL2 */
ret = calc_pll_params(ref, pll, &pll_param);
if (ret != 0) {
printf("Can't find pll parameters: %d\n",
ret);
return ret;
}
config_pll_clk(PLL2_CLK, &pll_param);
/* Switch peripheral back */
writel(new_cbcdr, CCM_BASE_ADDR + CLKCTL_CBCDR);
writel(old_cbcmr, CCM_BASE_ADDR + CLKCTL_CBCMR);
/* Make sure change is effective */
while (readl(CCM_BASE_ADDR + CLKCTL_CDHIPR) != 0)
;
/* restore to old NFC clock */
config_nfc_clk(old_nfc);
puts("\n");
}
return 0;
}
static int config_ddr_clk(u32 emi_clk)
{
u32 clk_src;
s32 shift = 0, clk_sel, div = 1;
u32 cbcmr = readl(CCM_BASE_ADDR + CLKCTL_CBCMR);
u32 cbcdr = readl(CCM_BASE_ADDR + CLKCTL_CBCDR);
if (emi_clk > MAX_DDR_CLK) {
printf("DDR clock should be less than"
"%d MHz, assuming max value \n",
(MAX_DDR_CLK / SZ_DEC_1M));
emi_clk = MAX_DDR_CLK;
}
clk_src = __get_periph_clk();
/* Find DDR clock input */
clk_sel = (cbcmr >> 10) & 0x3;
switch (clk_sel) {
case 0:
shift = 16;
break;
case 1:
shift = 19;
break;
case 2:
shift = 22;
break;
case 3:
shift = 10;
break;
default:
return -1;
}
if ((clk_src % emi_clk) == 0)
div = clk_src / emi_clk;
else
div = (clk_src / emi_clk) + 1;
if (div > 8)
div = 8;
cbcdr = cbcdr & ~(0x7 << shift);
cbcdr |= ((div - 1) << shift);
writel(cbcdr, CCM_BASE_ADDR + CLKCTL_CBCDR);
while (readl(CCM_BASE_ADDR + CLKCTL_CDHIPR) != 0)
;
writel(0x0, CCM_BASE_ADDR + CLKCTL_CCDR);
return 0;
}
/*!
* This function assumes the expected core clock has to be changed by
* modifying the PLL. This is NOT true always but for most of the times,
* it is. So it assumes the PLL output freq is the same as the expected
* core clock (presc=1) unless the core clock is less than PLL_FREQ_MIN.
* In the latter case, it will try to increase the presc value until
* (presc*core_clk) is greater than PLL_FREQ_MIN. It then makes call to
* calc_pll_params() and obtains the values of PD, MFI,MFN, MFD based
* on the targeted PLL and reference input clock to the PLL. Lastly,
* it sets the register based on these values along with the dividers.
* Note 1) There is no value checking for the passed-in divider values
* so the caller has to make sure those values are sensible.
* 2) Also adjust the NFC divider such that the NFC clock doesn't
* exceed NFC_CLK_MAX.
* 3) IPU HSP clock is independent of AHB clock. Even it can go up to
* 177MHz for higher voltage, this function fixes the max to 133MHz.
* 4) This function should not have allowed diag_printf() calls since
* the serial driver has been stoped. But leave then here to allow
* easy debugging by NOT calling the cyg_hal_plf_serial_stop().
*
* @param ref pll input reference clock (24MHz)
* @param freq core clock in Hz
* @param clk_type clock type, e.g CPU_CLK, DDR_CLK, etc.
* @return 0 if successful; non-zero otherwise
*/
int clk_config(u32 ref, u32 freq, u32 clk_type)
{
freq *= SZ_DEC_1M;
switch (clk_type) {
case CPU_CLK:
if (config_core_clk(ref, freq))
return -1;
break;
case PERIPH_CLK:
if (config_periph_clk(ref, freq))
return -1;
break;
case DDR_CLK:
if (config_ddr_clk(freq))
return -1;
break;
case NFC_CLK:
if (config_nfc_clk(freq))
return -1;
break;
default:
printf("Unsupported or invalid clock type! :(\n");
}
return 0;
}
#endif
#if defined(CONFIG_DISPLAY_CPUINFO)
int print_cpuinfo(void)
{
printf("CPU: Freescale i.MX53 family %d.%dV at %d MHz\n",
(get_board_rev() & 0xFF) >> 4,
(get_board_rev() & 0xF),
__get_mcu_main_clk() / 1000000);
return 0;
}
#endif
#if defined(CONFIG_MXC_FEC)
extern int mxc_fec_initialize(bd_t *bis);
extern void mxc_fec_set_mac_from_env(char *mac_addr);
#endif
int cpu_eth_init(bd_t *bis)
{
int rc = -ENODEV;
#if defined(CONFIG_MXC_FEC)
rc = mxc_fec_initialize(bis);
#endif
return rc;
}
#if defined(CONFIG_ARCH_CPU_INIT)
int arch_cpu_init(void)
{
icache_enable();
dcache_enable();
#ifdef CONFIG_L2_OFF
l2_cache_disable();
#else
l2_cache_enable();
#endif
return 0;
}
#endif
|