1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
/*
* Copyright (C) 2011-2014 Panasonic Corporation
* Copyright (C) 2015-2016 Socionext Inc.
* Author: Masahiro Yamada <yamada.masahiro@socionext.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <asm/processor.h>
#include "../init.h"
#include "ddrphy-regs.h"
#include "umc-regs.h"
#define DRAM_CH_NR 2
enum dram_freq {
DRAM_FREQ_1333M,
DRAM_FREQ_1600M,
DRAM_FREQ_NR,
};
enum dram_size {
DRAM_SZ_128M,
DRAM_SZ_256M,
DRAM_SZ_NR,
};
static u32 umc_cmdctla_plus[DRAM_FREQ_NR] = {0x45990b11, 0x36bb0f17};
static u32 umc_cmdctlb_plus[DRAM_FREQ_NR] = {0x16958924, 0x18c6aa24};
static u32 umc_spcctla[DRAM_FREQ_NR][DRAM_SZ_NR] = {
{0x00240512, 0x00350512},
{0x002b0617, 0x003f0617},
};
static u32 umc_spcctlb[DRAM_FREQ_NR] = {0x00ff0006, 0x00ff0008};
static u32 umc_rdatactl[DRAM_FREQ_NR] = {0x000a00ac, 0x000c00ae};
static int umc_get_rank(int ch)
{
return ch; /* ch0: rank0, ch1: rank1 for this SoC */
}
static void umc_start_ssif(void __iomem *ssif_base)
{
writel(0x00000000, ssif_base + 0x0000b004);
writel(0xffffffff, ssif_base + 0x0000c004);
writel(0x000fffcf, ssif_base + 0x0000c008);
writel(0x00000001, ssif_base + 0x0000b000);
writel(0x00000001, ssif_base + 0x0000c000);
writel(0x03010101, ssif_base + UMC_MDMCHSEL);
writel(0x03010100, ssif_base + UMC_DMDCHSEL);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_FETCH);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMQUE0);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMWC0);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMRC0);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMQUE1);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMWC1);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_COMRC1);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_WC);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_RC);
writel(0x00000000, ssif_base + UMC_CLKEN_SSIF_DST);
writel(0x00000001, ssif_base + UMC_CPURST);
writel(0x00000001, ssif_base + UMC_IDSRST);
writel(0x00000001, ssif_base + UMC_IXMRST);
writel(0x00000001, ssif_base + UMC_MDMRST);
writel(0x00000001, ssif_base + UMC_MDDRST);
writel(0x00000001, ssif_base + UMC_SIORST);
writel(0x00000001, ssif_base + UMC_VIORST);
writel(0x00000001, ssif_base + UMC_FRCRST);
writel(0x00000001, ssif_base + UMC_RGLRST);
writel(0x00000001, ssif_base + UMC_AIORST);
writel(0x00000001, ssif_base + UMC_DMDRST);
}
static int umc_dramcont_init(void __iomem *dc_base, void __iomem *ca_base,
int freq, unsigned long size, bool ddr3plus)
{
enum dram_freq freq_e;
enum dram_size size_e;
if (!ddr3plus) {
pr_err("DDR3 standard is not supported\n");
return -EINVAL;
}
switch (freq) {
case 1333:
freq_e = DRAM_FREQ_1333M;
break;
case 1600:
freq_e = DRAM_FREQ_1600M;
break;
default:
pr_err("unsupported DRAM frequency %d MHz\n", freq);
return -EINVAL;
}
switch (size) {
case 0:
return 0;
case SZ_128M:
size_e = DRAM_SZ_128M;
break;
case SZ_256M:
size_e = DRAM_SZ_256M;
break;
default:
pr_err("unsupported DRAM size 0x%08lx\n", size);
return -EINVAL;
}
writel(umc_cmdctla_plus[freq_e], dc_base + UMC_CMDCTLA);
writel(umc_cmdctlb_plus[freq_e], dc_base + UMC_CMDCTLB);
writel(umc_spcctla[freq_e][size_e], dc_base + UMC_SPCCTLA);
writel(umc_spcctlb[freq_e], dc_base + UMC_SPCCTLB);
writel(umc_rdatactl[freq_e], dc_base + UMC_RDATACTL_D0);
writel(0x04060806, dc_base + UMC_WDATACTL_D0);
writel(0x04a02000, dc_base + UMC_DATASET);
writel(0x00000000, ca_base + 0x2300);
writel(0x00400020, dc_base + UMC_DCCGCTL);
writel(0x00000003, dc_base + 0x7000);
writel(0x0000000f, dc_base + 0x8000);
writel(0x000000c3, dc_base + 0x8004);
writel(0x00000071, dc_base + 0x8008);
writel(0x0000003b, dc_base + UMC_DICGCTLA);
writel(0x020a0808, dc_base + UMC_DICGCTLB);
writel(0x00000004, dc_base + UMC_FLOWCTLG);
writel(0x80000201, ca_base + 0xc20);
writel(0x0801e01e, dc_base + UMC_FLOWCTLA);
writel(0x00200000, dc_base + UMC_FLOWCTLB);
writel(0x00004444, dc_base + UMC_FLOWCTLC);
writel(0x200a0a00, dc_base + UMC_SPCSETB);
writel(0x00000000, dc_base + UMC_SPCSETD);
writel(0x00000520, dc_base + UMC_DFICUPDCTLA);
return 0;
}
static int umc_ch_init(void __iomem *dc_base, void __iomem *ca_base,
int freq, unsigned long size, bool ddr3plus, int ch)
{
void __iomem *phy_base = dc_base + 0x00001000;
int ret;
writel(UMC_INITSET_INIT1EN, dc_base + UMC_INITSET);
while (readl(dc_base + UMC_INITSET) & UMC_INITSTAT_INIT1ST)
cpu_relax();
writel(0x00000101, dc_base + UMC_DIOCTLA);
ret = uniphier_ld4_ddrphy_init(phy_base, freq, ddr3plus);
if (ret)
return ret;
ddrphy_prepare_training(phy_base, umc_get_rank(ch));
ret = ddrphy_training(phy_base);
if (ret)
return ret;
return umc_dramcont_init(dc_base, ca_base, freq, size, ddr3plus);
}
int uniphier_ld4_umc_init(const struct uniphier_board_data *bd)
{
void __iomem *umc_base = (void __iomem *)0x5b800000;
void __iomem *ca_base = umc_base + 0x00001000;
void __iomem *dc_base = umc_base + 0x00400000;
void __iomem *ssif_base = umc_base;
int ch, ret;
for (ch = 0; ch < DRAM_CH_NR; ch++) {
ret = umc_ch_init(dc_base, ca_base, bd->dram_freq,
bd->dram_ch[ch].size,
!!(bd->flags & UNIPHIER_BD_DDR3PLUS), ch);
if (ret) {
pr_err("failed to initialize UMC ch%d\n", ch);
return ret;
}
ca_base += 0x00001000;
dc_base += 0x00200000;
}
umc_start_ssif(ssif_base);
return 0;
}
|