1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
/*
* Copyright (c) 2010-2014, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Tegra SoC common clock control functions */
#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/timer.h>
#include <div64.h>
#include <fdtdec.h>
/*
* This is our record of the current clock rate of each clock. We don't
* fill all of these in since we are only really interested in clocks which
* we use as parents.
*/
static unsigned pll_rate[CLOCK_ID_COUNT];
/*
* The oscillator frequency is fixed to one of four set values. Based on this
* the other clocks are set up appropriately.
*/
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
13000000,
19200000,
12000000,
26000000,
};
/* return 1 if a peripheral ID is in range */
#define clock_type_id_isvalid(id) ((id) >= 0 && \
(id) < CLOCK_TYPE_COUNT)
char pllp_valid = 1; /* PLLP is set up correctly */
/* return 1 if a periphc_internal_id is in range */
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
(id) < PERIPHC_COUNT)
/* number of clock outputs of a PLL */
static const u8 pll_num_clkouts[] = {
1, /* PLLC */
1, /* PLLM */
4, /* PLLP */
1, /* PLLA */
0, /* PLLU */
0, /* PLLD */
};
int clock_get_osc_bypass(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
}
/* Returns a pointer to the registers of the given pll */
static struct clk_pll *get_pll(enum clock_id clkid)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
assert(clock_id_is_pll(clkid));
if (clkid >= (enum clock_id)TEGRA_CLK_PLLS) {
debug("%s: Invalid PLL %d\n", __func__, clkid);
return NULL;
}
return &clkrst->crc_pll[clkid];
}
__weak struct clk_pll_simple *clock_get_simple_pll(enum clock_id clkid)
{
return NULL;
}
int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
u32 *divp, u32 *cpcon, u32 *lfcon)
{
struct clk_pll *pll = get_pll(clkid);
u32 data;
assert(clkid != CLOCK_ID_USB);
/* Safety check, adds to code size but is small */
if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
return -1;
data = readl(&pll->pll_base);
*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
data = readl(&pll->pll_misc);
*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;
return 0;
}
unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
u32 divp, u32 cpcon, u32 lfcon)
{
struct clk_pll *pll = NULL;
u32 misc_data, data;
if (clkid < (enum clock_id)TEGRA_CLK_PLLS)
pll = get_pll(clkid);
/*
* We cheat by treating all PLL (except PLLU) in the same fashion.
* This works only because:
* - same fields are always mapped at same offsets, except DCCON
* - DCCON is always 0, doesn't conflict
* - M,N, P of PLLP values are ignored for PLLP
*/
misc_data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);
if (clkid == CLOCK_ID_USB)
data |= divp << PLLU_VCO_FREQ_SHIFT;
else
data |= divp << PLL_DIVP_SHIFT;
if (pll) {
writel(misc_data, &pll->pll_misc);
writel(data, &pll->pll_base);
} else {
struct clk_pll_simple *pll = clock_get_simple_pll(clkid);
if (!pll) {
debug("%s: Uknown simple PLL %d\n", __func__, clkid);
return 0;
}
writel(misc_data, &pll->pll_misc);
writel(data, &pll->pll_base);
}
/* calculate the stable time */
return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
}
void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
unsigned divisor)
{
u32 *reg = get_periph_source_reg(periph_id);
u32 value;
value = readl(reg);
value &= ~OUT_CLK_SOURCE_31_30_MASK;
value |= source << OUT_CLK_SOURCE_31_30_SHIFT;
value &= ~OUT_CLK_DIVISOR_MASK;
value |= divisor << OUT_CLK_DIVISOR_SHIFT;
writel(value, reg);
}
int clock_ll_set_source_bits(enum periph_id periph_id, int mux_bits,
unsigned source)
{
u32 *reg = get_periph_source_reg(periph_id);
switch (mux_bits) {
case MASK_BITS_31_30:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
source << OUT_CLK_SOURCE_31_30_SHIFT);
break;
case MASK_BITS_31_29:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
source << OUT_CLK_SOURCE_31_29_SHIFT);
break;
case MASK_BITS_31_28:
clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
source << OUT_CLK_SOURCE_31_28_SHIFT);
break;
default:
return -1;
}
return 0;
}
void clock_ll_set_source(enum periph_id periph_id, unsigned source)
{
clock_ll_set_source_bits(periph_id, MASK_BITS_31_30, source);
}
/**
* Given the parent's rate and the required rate for the children, this works
* out the peripheral clock divider to use, in 7.1 binary format.
*
* @param divider_bits number of divider bits (8 or 16)
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @return divider which should be used
*/
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
unsigned long rate)
{
u64 divider = parent_rate * 2;
unsigned max_divider = 1 << divider_bits;
divider += rate - 1;
do_div(divider, rate);
if ((s64)divider - 2 < 0)
return 0;
if ((s64)divider - 2 >= max_divider)
return -1;
return divider - 2;
}
int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
{
struct clk_pll *pll = get_pll(clkid);
int data = 0, div = 0, offset = 0;
if (!clock_id_is_pll(clkid))
return -1;
if (pllout + 1 > pll_num_clkouts[clkid])
return -1;
div = clk_get_divider(8, pll_rate[clkid], rate);
if (div < 0)
return -1;
/* out2 and out4 are in the high part of the register */
if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
offset = 16;
data = (div << PLL_OUT_RATIO_SHIFT) |
PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
clrsetbits_le32(&pll->pll_out[pllout >> 1],
PLL_OUT_RATIO_MASK << offset, data << offset);
return 0;
}
/**
* Given the parent's rate and the divider in 7.1 format, this works out the
* resulting peripheral clock rate.
*
* @param parent_rate clock rate of parent clock in Hz
* @param divider which should be used in 7.1 format
* @return effective clock rate of peripheral
*/
static unsigned long get_rate_from_divider(unsigned long parent_rate,
int divider)
{
u64 rate;
rate = (u64)parent_rate * 2;
do_div(rate, divider + 2);
return rate;
}
unsigned long clock_get_periph_rate(enum periph_id periph_id,
enum clock_id parent)
{
u32 *reg = get_periph_source_reg(periph_id);
return get_rate_from_divider(pll_rate[parent],
(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
}
/**
* Find the best available 7.1 format divisor given a parent clock rate and
* required child clock rate. This function assumes that a second-stage
* divisor is available which can divide by powers of 2 from 1 to 256.
*
* @param divider_bits number of divider bits (8 or 16)
* @param parent_rate clock rate of parent clock in Hz
* @param rate required clock rate for this clock
* @param extra_div value for the second-stage divisor (not set if this
* function returns -1.
* @return divider which should be used, or -1 if nothing is valid
*
*/
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
unsigned long rate, int *extra_div)
{
int shift;
int best_divider = -1;
int best_error = rate;
/* try dividers from 1 to 256 and find closest match */
for (shift = 0; shift <= 8 && best_error > 0; shift++) {
unsigned divided_parent = parent_rate >> shift;
int divider = clk_get_divider(divider_bits, divided_parent,
rate);
unsigned effective_rate = get_rate_from_divider(divided_parent,
divider);
int error = rate - effective_rate;
/* Given a valid divider, look for the lowest error */
if (divider != -1 && error < best_error) {
best_error = error;
*extra_div = 1 << shift;
best_divider = divider;
}
}
/* return what we found - *extra_div will already be set */
return best_divider;
}
/**
* Adjust peripheral PLL to use the given divider and source.
*
* @param periph_id peripheral to adjust
* @param source Source number (0-3 or 0-7)
* @param mux_bits Number of mux bits (2 or 4)
* @param divider Required divider in 7.1 or 15.1 format
* @return 0 if ok, -1 on error (requesting a parent clock which is not valid
* for this peripheral)
*/
static int adjust_periph_pll(enum periph_id periph_id, int source,
int mux_bits, unsigned divider)
{
u32 *reg = get_periph_source_reg(periph_id);
clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
divider << OUT_CLK_DIVISOR_SHIFT);
udelay(1);
/* work out the source clock and set it */
if (source < 0)
return -1;
clock_ll_set_source_bits(periph_id, mux_bits, source);
udelay(2);
return 0;
}
unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
enum clock_id parent, unsigned rate, int *extra_div)
{
unsigned effective_rate;
int mux_bits, divider_bits, source;
int divider;
int xdiv = 0;
/* work out the source clock and set it */
source = get_periph_clock_source(periph_id, parent, &mux_bits,
÷r_bits);
divider = find_best_divider(divider_bits, pll_rate[parent],
rate, &xdiv);
if (extra_div)
*extra_div = xdiv;
assert(divider >= 0);
if (adjust_periph_pll(periph_id, source, mux_bits, divider))
return -1U;
debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
get_periph_source_reg(periph_id),
readl(get_periph_source_reg(periph_id)));
/* Check what we ended up with. This shouldn't matter though */
effective_rate = clock_get_periph_rate(periph_id, parent);
if (extra_div)
effective_rate /= *extra_div;
if (rate != effective_rate)
debug("Requested clock rate %u not honored (got %u)\n",
rate, effective_rate);
return effective_rate;
}
unsigned clock_start_periph_pll(enum periph_id periph_id,
enum clock_id parent, unsigned rate)
{
unsigned effective_rate;
reset_set_enable(periph_id, 1);
clock_enable(periph_id);
effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
NULL);
reset_set_enable(periph_id, 0);
return effective_rate;
}
void clock_enable(enum periph_id clkid)
{
clock_set_enable(clkid, 1);
}
void clock_disable(enum periph_id clkid)
{
clock_set_enable(clkid, 0);
}
void reset_periph(enum periph_id periph_id, int us_delay)
{
/* Put peripheral into reset */
reset_set_enable(periph_id, 1);
udelay(us_delay);
/* Remove reset */
reset_set_enable(periph_id, 0);
udelay(us_delay);
}
void reset_cmplx_set_enable(int cpu, int which, int reset)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 mask;
/* Form the mask, which depends on the cpu chosen (2 or 4) */
assert(cpu >= 0 && cpu < MAX_NUM_CPU);
mask = which << cpu;
/* either enable or disable those reset for that CPU */
if (reset)
writel(mask, &clkrst->crc_cpu_cmplx_set);
else
writel(mask, &clkrst->crc_cpu_cmplx_clr);
}
unsigned clock_get_rate(enum clock_id clkid)
{
struct clk_pll *pll;
u32 base;
u32 divm;
u64 parent_rate;
u64 rate;
parent_rate = osc_freq[clock_get_osc_freq()];
if (clkid == CLOCK_ID_OSC)
return parent_rate;
pll = get_pll(clkid);
if (!pll)
return 0;
base = readl(&pll->pll_base);
/* Oh for bf_unpack()... */
rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
if (clkid == CLOCK_ID_USB)
divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
else
divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
do_div(rate, divm);
return rate;
}
/**
* Set the output frequency you want for each PLL clock.
* PLL output frequencies are programmed by setting their N, M and P values.
* The governing equations are:
* VCO = (Fi / m) * n, Fo = VCO / (2^p)
* where Fo is the output frequency from the PLL.
* Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
* 216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
* Please see Tegra TRM section 5.3 to get the detail for PLL Programming
*
* @param n PLL feedback divider(DIVN)
* @param m PLL input divider(DIVN)
* @param p post divider(DIVP)
* @param cpcon base PLL charge pump(CPCON)
* @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
* be overriden), 1 if PLL is already correct
*/
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
{
u32 base_reg;
u32 misc_reg;
struct clk_pll *pll;
pll = get_pll(clkid);
base_reg = readl(&pll->pll_base);
/* Set BYPASS, m, n and p to PLL_BASE */
base_reg &= ~PLL_DIVM_MASK;
base_reg |= m << PLL_DIVM_SHIFT;
base_reg &= ~PLL_DIVN_MASK;
base_reg |= n << PLL_DIVN_SHIFT;
base_reg &= ~PLL_DIVP_MASK;
base_reg |= p << PLL_DIVP_SHIFT;
if (clkid == CLOCK_ID_PERIPH) {
/*
* If the PLL is already set up, check that it is correct
* and record this info for clock_verify() to check.
*/
if (base_reg & PLL_BASE_OVRRIDE_MASK) {
base_reg |= PLL_ENABLE_MASK;
if (base_reg != readl(&pll->pll_base))
pllp_valid = 0;
return pllp_valid ? 1 : -1;
}
base_reg |= PLL_BASE_OVRRIDE_MASK;
}
base_reg |= PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
/* Set cpcon to PLL_MISC */
misc_reg = readl(&pll->pll_misc);
misc_reg &= ~PLL_CPCON_MASK;
misc_reg |= cpcon << PLL_CPCON_SHIFT;
writel(misc_reg, &pll->pll_misc);
/* Enable PLL */
base_reg |= PLL_ENABLE_MASK;
writel(base_reg, &pll->pll_base);
/* Disable BYPASS */
base_reg &= ~PLL_BYPASS_MASK;
writel(base_reg, &pll->pll_base);
return 0;
}
void clock_ll_start_uart(enum periph_id periph_id)
{
/* Assert UART reset and enable clock */
reset_set_enable(periph_id, 1);
clock_enable(periph_id);
clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */
/* wait for 2us */
udelay(2);
/* De-assert reset to UART */
reset_set_enable(periph_id, 0);
}
#ifdef CONFIG_OF_CONTROL
int clock_decode_periph_id(const void *blob, int node)
{
enum periph_id id;
u32 cell[2];
int err;
err = fdtdec_get_int_array(blob, node, "clocks", cell,
ARRAY_SIZE(cell));
if (err)
return -1;
id = clk_id_to_periph_id(cell[1]);
assert(clock_periph_id_isvalid(id));
return id;
}
#endif /* CONFIG_OF_CONTROL */
int clock_verify(void)
{
struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
u32 reg = readl(&pll->pll_base);
if (!pllp_valid) {
printf("Warning: PLLP %x is not correct\n", reg);
return -1;
}
debug("PLLP %x is correct\n", reg);
return 0;
}
void clock_init(void)
{
pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
pll_rate[CLOCK_ID_DISPLAY] = clock_get_rate(CLOCK_ID_DISPLAY);
pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
debug("PLLD = %d\n", pll_rate[CLOCK_ID_DISPLAY]);
debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);
/* Do any special system timer/TSC setup */
#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
if (!tegra_cpu_is_non_secure())
#endif
arch_timer_init();
}
static void set_avp_clock_source(u32 src)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 val;
val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
writel(val, &clkrst->crc_sclk_brst_pol);
udelay(3);
}
/*
* This function is useful on Tegra30, and any later SoCs that have compatible
* PLLP configuration registers.
*/
void tegra30_set_up_pllp(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
/*
* Based on the Tegra TRM, the system clock (which is the AVP clock) can
* run up to 275MHz. On power on, the default sytem clock source is set
* to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
* 408MHz which is beyond system clock's upper limit.
*
* The fix is to set the system clock to CLK_M before initializing PLLP,
* and then switch back to PLLP_OUT4, which has an appropriate divider
* configured, after PLLP has been configured
*/
set_avp_clock_source(SCLK_SOURCE_CLKM);
/*
* PLLP output frequency set to 408Mhz
* PLLC output frequency set to 228Mhz
*/
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
break;
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
break;
case CLOCK_OSC_FREQ_19_2:
default:
/*
* These are not supported. It is too early to print a
* message and the UART likely won't work anyway due to the
* oscillator being wrong.
*/
break;
}
/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
/* OUT1, 2 */
/* Assert RSTN before enable */
reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* Set divisor and reenable */
reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
/* OUT3, 4 */
/* Assert RSTN before enable */
reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
/* Set divisor and reenable */
reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
}
int clock_external_output(int clk_id)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
if (clk_id >= 1 && clk_id <= 3) {
setbits_le32(&pmc->pmc_clk_out_cntrl,
1 << (2 + (clk_id - 1) * 8));
} else {
printf("%s: Unknown output clock id %d\n", __func__, clk_id);
return -EINVAL;
}
return 0;
}
|