1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
|
/*
* DDR3 mem setup file for board based on EXYNOS5
*
* Copyright (C) 2012 Samsung Electronics
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <config.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/cpu.h>
#include <asm/arch/dmc.h>
#include <asm/arch/power.h>
#include "common_setup.h"
#include "exynos5_setup.h"
#include "clock_init.h"
#define TIMEOUT_US 10000
#define NUM_BYTE_LANES 4
#define DEFAULT_DQS 8
#define DEFAULT_DQS_X4 ((DEFAULT_DQS << 24) || (DEFAULT_DQS << 16) \
|| (DEFAULT_DQS << 8) || (DEFAULT_DQS << 0))
#ifdef CONFIG_EXYNOS5250
static void reset_phy_ctrl(void)
{
struct exynos5_clock *clk =
(struct exynos5_clock *)samsung_get_base_clock();
writel(DDR3PHY_CTRL_PHY_RESET_OFF, &clk->lpddr3phy_ctrl);
writel(DDR3PHY_CTRL_PHY_RESET, &clk->lpddr3phy_ctrl);
}
int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
{
unsigned int val;
struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl;
struct exynos5_dmc *dmc;
int i;
phy0_ctrl = (struct exynos5_phy_control *)samsung_get_base_dmc_phy();
phy1_ctrl = (struct exynos5_phy_control *)(samsung_get_base_dmc_phy()
+ DMC_OFFSET);
dmc = (struct exynos5_dmc *)samsung_get_base_dmc_ctrl();
if (reset)
reset_phy_ctrl();
/* Set Impedance Output Driver */
val = (mem->impedance << CA_CK_DRVR_DS_OFFSET) |
(mem->impedance << CA_CKE_DRVR_DS_OFFSET) |
(mem->impedance << CA_CS_DRVR_DS_OFFSET) |
(mem->impedance << CA_ADR_DRVR_DS_OFFSET);
writel(val, &phy0_ctrl->phy_con39);
writel(val, &phy1_ctrl->phy_con39);
/* Set Read Latency and Burst Length for PHY0 and PHY1 */
val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
(mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
writel(val, &phy0_ctrl->phy_con42);
writel(val, &phy1_ctrl->phy_con42);
/* ZQ Calibration */
if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
&phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
/* DQ Signal */
writel(mem->phy0_pulld_dqs, &phy0_ctrl->phy_con14);
writel(mem->phy1_pulld_dqs, &phy1_ctrl->phy_con14);
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
| (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT),
&dmc->concontrol);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
/* DQS Signal */
writel(mem->phy0_dqs, &phy0_ctrl->phy_con4);
writel(mem->phy1_dqs, &phy1_ctrl->phy_con4);
writel(mem->phy0_dq, &phy0_ctrl->phy_con6);
writel(mem->phy1_dq, &phy1_ctrl->phy_con6);
writel(mem->phy0_tFS, &phy0_ctrl->phy_con10);
writel(mem->phy1_tFS, &phy1_ctrl->phy_con10);
val = (mem->ctrl_start_point << PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
/* Start DLL locking */
writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
&phy0_ctrl->phy_con12);
writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT),
&phy1_ctrl->phy_con12);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&dmc->concontrol);
/* Memory Channel Inteleaving Size */
writel(mem->iv_size, &dmc->ivcontrol);
writel(mem->memconfig, &dmc->memconfig0);
writel(mem->memconfig, &dmc->memconfig1);
writel(mem->membaseconfig0, &dmc->membaseconfig0);
writel(mem->membaseconfig1, &dmc->membaseconfig1);
/* Precharge Configuration */
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&dmc->prechconfig);
/* Power Down mode Configuration */
writel(mem->dpwrdn_cyc << PWRDNCONFIG_DPWRDN_CYC_SHIFT |
mem->dsref_cyc << PWRDNCONFIG_DSREF_CYC_SHIFT,
&dmc->pwrdnconfig);
/* TimingRow, TimingData, TimingPower and Timingaref
* values as per Memory AC parameters
*/
writel(mem->timing_ref, &dmc->timingref);
writel(mem->timing_row, &dmc->timingrow);
writel(mem->timing_data, &dmc->timingdata);
writel(mem->timing_power, &dmc->timingpower);
/* Send PALL command */
dmc_config_prech(mem, &dmc->directcmd);
/* Send NOP, MRS and ZQINIT commands */
dmc_config_mrs(mem, &dmc->directcmd);
if (mem->gate_leveling_enable) {
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
val |= BYTE_RDLVL_EN;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = (mem->ctrl_start_point <<
PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
(mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
val |= RDLVL_GATE_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = PHY_CON0_RESET_VAL;
val |= P0_CMD_EN;
val |= BYTE_RDLVL_EN;
val |= CTRL_SHGATE;
writel(val, &phy0_ctrl->phy_con0);
writel(val, &phy1_ctrl->phy_con0);
val = PHY_CON1_RESET_VAL;
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy0_ctrl->phy_con1);
writel(val, &phy1_ctrl->phy_con1);
writel(CTRL_RDLVL_GATE_ENABLE, &dmc->rdlvl_config);
i = TIMEOUT_US;
while ((readl(&dmc->phystatus) &
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1)) !=
(RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1) && i > 0) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &dmc->rdlvl_config);
writel(0, &phy0_ctrl->phy_con14);
writel(0, &phy1_ctrl->phy_con14);
val = (mem->ctrl_start_point <<
PHY_CON12_CTRL_START_POINT_SHIFT) |
(mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) |
(mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) |
(mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) |
(mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) |
(mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT);
writel(val, &phy0_ctrl->phy_con12);
writel(val, &phy1_ctrl->phy_con12);
update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3);
}
/* Send PALL command */
dmc_config_prech(mem, &dmc->directcmd);
writel(mem->memcontrol, &dmc->memcontrol);
/* Set DMC Concontrol and enable auto-refresh counter */
writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)
| (mem->aref_en << CONCONTROL_AREF_EN_SHIFT), &dmc->concontrol);
return 0;
}
#endif
#ifdef CONFIG_EXYNOS5420
/**
* RAM address to use in the test.
*
* We'll use 4 words at this address and 4 at this address + 0x80 (Ares
* interleaves channels every 128 bytes). This will allow us to evaluate all of
* the chips in a 1 chip per channel (2GB) system and half the chips in a 2
* chip per channel (4GB) system. We can't test the 2nd chip since we need to
* do tests before the 2nd chip is enabled. Looking at the 2nd chip isn't
* critical because the 1st and 2nd chip have very similar timings (they'd
* better have similar timings, since there's only a single adjustment that is
* shared by both chips).
*/
const unsigned int test_addr = CONFIG_SYS_SDRAM_BASE;
/* Test pattern with which RAM will be tested */
static const unsigned int test_pattern[] = {
0x5a5a5a5a,
0xa5a5a5a5,
0xf0f0f0f0,
0x0f0f0f0f,
};
/**
* This function is a test vector for sw read leveling,
* it compares the read data with the written data.
*
* @param ch DMC channel number
* @param byte_lane which DQS byte offset,
* possible values are 0,1,2,3
* @return TRUE if memory was good, FALSE if not.
*/
static bool dmc_valid_window_test_vector(int ch, int byte_lane)
{
unsigned int read_data;
unsigned int mask;
int i;
mask = 0xFF << (8 * byte_lane);
for (i = 0; i < ARRAY_SIZE(test_pattern); i++) {
read_data = readl(test_addr + i * 4 + ch * 0x80);
if ((read_data & mask) != (test_pattern[i] & mask))
return false;
}
return true;
}
/**
* This function returns current read offset value.
*
* @param phy_ctrl pointer to the current phy controller
*/
static unsigned int dmc_get_read_offset_value(struct exynos5420_phy_control
*phy_ctrl)
{
return readl(&phy_ctrl->phy_con4);
}
/**
* This function performs resync, so that slave DLL is updated.
*
* @param phy_ctrl pointer to the current phy controller
*/
static void ddr_phy_set_do_resync(struct exynos5420_phy_control *phy_ctrl)
{
setbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
clrbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3);
}
/**
* This function sets read offset value register with 'offset'.
*
* ...we also call call ddr_phy_set_do_resync().
*
* @param phy_ctrl pointer to the current phy controller
* @param offset offset to read DQS
*/
static void dmc_set_read_offset_value(struct exynos5420_phy_control *phy_ctrl,
unsigned int offset)
{
writel(offset, &phy_ctrl->phy_con4);
ddr_phy_set_do_resync(phy_ctrl);
}
/**
* Convert a 2s complement byte to a byte with a sign bit.
*
* NOTE: you shouldn't use normal math on the number returned by this function.
* As an example, -10 = 0xf6. After this function -10 = 0x8a. If you wanted
* to do math and get the average of 10 and -10 (should be 0):
* 0x8a + 0xa = 0x94 (-108)
* 0x94 / 2 = 0xca (-54)
* ...and 0xca = sign bit plus 0x4a, or -74
*
* Also note that you lose the ability to represent -128 since there are two
* representations of 0.
*
* @param b The byte to convert in two's complement.
* @return The 7-bit value + sign bit.
*/
unsigned char make_signed_byte(signed char b)
{
if (b < 0)
return 0x80 | -b;
else
return b;
}
/**
* Test various shifts starting at 'start' and going to 'end'.
*
* For each byte lane, we'll walk through shift starting at 'start' and going
* to 'end' (inclusive). When we are finally able to read the test pattern
* we'll store the value in the results array.
*
* @param phy_ctrl pointer to the current phy controller
* @param ch channel number
* @param start the start shift. -127 to 127
* @param end the end shift. -127 to 127
* @param results we'll store results for each byte lane.
*/
void test_shifts(struct exynos5420_phy_control *phy_ctrl, int ch,
int start, int end, int results[NUM_BYTE_LANES])
{
int incr = (start < end) ? 1 : -1;
int byte_lane;
for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
int shift;
dmc_set_read_offset_value(phy_ctrl, DEFAULT_DQS_X4);
results[byte_lane] = DEFAULT_DQS;
for (shift = start; shift != (end + incr); shift += incr) {
unsigned int byte_offsetr;
unsigned int offsetr;
byte_offsetr = make_signed_byte(shift);
offsetr = dmc_get_read_offset_value(phy_ctrl);
offsetr &= ~(0xFF << (8 * byte_lane));
offsetr |= (byte_offsetr << (8 * byte_lane));
dmc_set_read_offset_value(phy_ctrl, offsetr);
if (dmc_valid_window_test_vector(ch, byte_lane)) {
results[byte_lane] = shift;
break;
}
}
}
}
/**
* This function performs SW read leveling to compensate DQ-DQS skew at
* receiver it first finds the optimal read offset value on each DQS
* then applies the value to PHY.
*
* Read offset value has its min margin and max margin. If read offset
* value exceeds its min or max margin, read data will have corruption.
* To avoid this we are doing sw read leveling.
*
* SW read leveling is:
* 1> Finding offset value's left_limit and right_limit
* 2> and calculate its center value
* 3> finally programs that center value to PHY
* 4> then PHY gets its optimal offset value.
*
* @param phy_ctrl pointer to the current phy controller
* @param ch channel number
* @param coarse_lock_val The coarse lock value read from PHY_CON13.
* (0 - 0x7f)
*/
static void software_find_read_offset(struct exynos5420_phy_control *phy_ctrl,
int ch, unsigned int coarse_lock_val)
{
unsigned int offsetr_cent;
int byte_lane;
int left_limit;
int right_limit;
int left[NUM_BYTE_LANES];
int right[NUM_BYTE_LANES];
int i;
/* Fill the memory with test patterns */
for (i = 0; i < ARRAY_SIZE(test_pattern); i++)
writel(test_pattern[i], test_addr + i * 4 + ch * 0x80);
/* Figure out the limits we'll test with; keep -127 < limit < 127 */
left_limit = DEFAULT_DQS - coarse_lock_val;
right_limit = DEFAULT_DQS + coarse_lock_val;
if (right_limit > 127)
right_limit = 127;
/* Fill in the location where reads were OK from left and right */
test_shifts(phy_ctrl, ch, left_limit, right_limit, left);
test_shifts(phy_ctrl, ch, right_limit, left_limit, right);
/* Make a final value by taking the center between the left and right */
offsetr_cent = 0;
for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) {
int temp_center;
unsigned int vmwc;
temp_center = (left[byte_lane] + right[byte_lane]) / 2;
vmwc = make_signed_byte(temp_center);
offsetr_cent |= vmwc << (8 * byte_lane);
}
dmc_set_read_offset_value(phy_ctrl, offsetr_cent);
}
int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset)
{
struct exynos5420_clock *clk =
(struct exynos5420_clock *)samsung_get_base_clock();
struct exynos5420_power *power =
(struct exynos5420_power *)samsung_get_base_power();
struct exynos5420_phy_control *phy0_ctrl, *phy1_ctrl;
struct exynos5420_dmc *drex0, *drex1;
struct exynos5420_tzasc *tzasc0, *tzasc1;
struct exynos5_power *pmu;
uint32_t val, n_lock_r, n_lock_w_phy0, n_lock_w_phy1;
uint32_t lock0_info, lock1_info;
int chip;
int i;
phy0_ctrl = (struct exynos5420_phy_control *)samsung_get_base_dmc_phy();
phy1_ctrl = (struct exynos5420_phy_control *)(samsung_get_base_dmc_phy()
+ DMC_OFFSET);
drex0 = (struct exynos5420_dmc *)samsung_get_base_dmc_ctrl();
drex1 = (struct exynos5420_dmc *)(samsung_get_base_dmc_ctrl()
+ DMC_OFFSET);
tzasc0 = (struct exynos5420_tzasc *)samsung_get_base_dmc_tzasc();
tzasc1 = (struct exynos5420_tzasc *)(samsung_get_base_dmc_tzasc()
+ DMC_OFFSET);
pmu = (struct exynos5_power *)EXYNOS5420_POWER_BASE;
if (CONFIG_NR_DRAM_BANKS > 4) {
/* Need both controllers. */
mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_2;
mem->chips_per_channel = 2;
mem->chips_to_configure = 2;
} else {
/* 2GB requires a single controller */
mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_1;
}
/* Enable PAUSE for DREX */
setbits_le32(&clk->pause, ENABLE_BIT);
/* Enable BYPASS mode */
setbits_le32(&clk->bpll_con1, BYPASS_EN);
writel(MUX_BPLL_SEL_FOUTBPLL, &clk->src_cdrex);
do {
val = readl(&clk->mux_stat_cdrex);
val &= BPLL_SEL_MASK;
} while (val != FOUTBPLL);
clrbits_le32(&clk->bpll_con1, BYPASS_EN);
/* Specify the DDR memory type as DDR3 */
val = readl(&phy0_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy0_ctrl->phy_con0);
val = readl(&phy1_ctrl->phy_con0);
val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT);
val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT);
writel(val, &phy1_ctrl->phy_con0);
/* Set Read Latency and Burst Length for PHY0 and PHY1 */
val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) |
(mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT);
writel(val, &phy0_ctrl->phy_con42);
writel(val, &phy1_ctrl->phy_con42);
val = readl(&phy0_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy0_ctrl->phy_con26);
val = readl(&phy1_ctrl->phy_con26);
val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET);
val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET);
writel(val, &phy1_ctrl->phy_con26);
/*
* Set Driver strength for CK, CKE, CS & CA to 0x7
* Set Driver strength for Data Slice 0~3 to 0x7
*/
val = (0x7 << CA_CK_DRVR_DS_OFFSET) | (0x7 << CA_CKE_DRVR_DS_OFFSET) |
(0x7 << CA_CS_DRVR_DS_OFFSET) | (0x7 << CA_ADR_DRVR_DS_OFFSET);
val |= (0x7 << DA_3_DS_OFFSET) | (0x7 << DA_2_DS_OFFSET) |
(0x7 << DA_1_DS_OFFSET) | (0x7 << DA_0_DS_OFFSET);
writel(val, &phy0_ctrl->phy_con39);
writel(val, &phy1_ctrl->phy_con39);
/* ZQ Calibration */
if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16,
&phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17))
return SETUP_ERR_ZQ_CALIBRATION_FAILURE;
clrbits_le32(&phy0_ctrl->phy_con16, ZQ_CLK_DIV_EN);
clrbits_le32(&phy1_ctrl->phy_con16, ZQ_CLK_DIV_EN);
/* DQ Signal */
val = readl(&phy0_ctrl->phy_con14);
val |= mem->phy0_pulld_dqs;
writel(val, &phy0_ctrl->phy_con14);
val = readl(&phy1_ctrl->phy_con14);
val |= mem->phy1_pulld_dqs;
writel(val, &phy1_ctrl->phy_con14);
val = MEM_TERM_EN | PHY_TERM_EN;
writel(val, &drex0->phycontrol0);
writel(val, &drex1->phycontrol0);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex0->concontrol);
writel(mem->concontrol |
(mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT),
&drex1->concontrol);
do {
val = readl(&drex0->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
do {
val = readl(&drex1->phystatus);
} while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE);
clrbits_le32(&drex0->concontrol, DFI_INIT_START);
clrbits_le32(&drex1->concontrol, DFI_INIT_START);
update_reset_dll(&drex0->phycontrol0, DDR_MODE_DDR3);
update_reset_dll(&drex1->phycontrol0, DDR_MODE_DDR3);
/*
* Set Base Address:
* 0x2000_0000 ~ 0x5FFF_FFFF
* 0x6000_0000 ~ 0x9FFF_FFFF
*/
/* MEMBASECONFIG0 */
val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_0) |
DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig0);
writel(val, &tzasc1->membaseconfig0);
/* MEMBASECONFIG1 */
val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_1) |
DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK);
writel(val, &tzasc0->membaseconfig1);
writel(val, &tzasc1->membaseconfig1);
/*
* Memory Channel Inteleaving Size
* Ares Channel interleaving = 128 bytes
*/
/* MEMCONFIG0/1 */
writel(mem->memconfig, &tzasc0->memconfig0);
writel(mem->memconfig, &tzasc1->memconfig0);
writel(mem->memconfig, &tzasc0->memconfig1);
writel(mem->memconfig, &tzasc1->memconfig1);
/* Precharge Configuration */
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex0->prechconfig0);
writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT,
&drex1->prechconfig0);
/*
* TimingRow, TimingData, TimingPower and Timingaref
* values as per Memory AC parameters
*/
writel(mem->timing_ref, &drex0->timingref);
writel(mem->timing_ref, &drex1->timingref);
writel(mem->timing_row, &drex0->timingrow0);
writel(mem->timing_row, &drex1->timingrow0);
writel(mem->timing_data, &drex0->timingdata0);
writel(mem->timing_data, &drex1->timingdata0);
writel(mem->timing_power, &drex0->timingpower0);
writel(mem->timing_power, &drex1->timingpower0);
if (reset) {
/*
* Send NOP, MRS and ZQINIT commands
* Sending MRS command will reset the DRAM. We should not be
* resetting the DRAM after resume, this will lead to memory
* corruption as DRAM content is lost after DRAM reset
*/
dmc_config_mrs(mem, &drex0->directcmd);
dmc_config_mrs(mem, &drex1->directcmd);
}
/*
* Get PHY_CON13 from both phys. Gate CLKM around reading since
* PHY_CON13 is glitchy when CLKM is running. We're paranoid and
* wait until we get a "fine lock", though a coarse lock is probably
* OK (we only use the coarse numbers below). We try to gate the
* clock for as short a time as possible in case SDRAM is somehow
* sensitive. sdelay(10) in the loop is arbitrary to make sure
* there is some time for PHY_CON13 to get updated. In practice
* no delay appears to be needed.
*/
val = readl(&clk->gate_bus_cdrex);
while (true) {
writel(val & ~0x1, &clk->gate_bus_cdrex);
lock0_info = readl(&phy0_ctrl->phy_con13);
writel(val, &clk->gate_bus_cdrex);
if ((lock0_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
break;
sdelay(10);
}
while (true) {
writel(val & ~0x2, &clk->gate_bus_cdrex);
lock1_info = readl(&phy1_ctrl->phy_con13);
writel(val, &clk->gate_bus_cdrex);
if ((lock1_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED)
break;
sdelay(10);
}
if (!reset) {
/*
* During Suspend-Resume & S/W-Reset, as soon as PMU releases
* pad retention, CKE goes high. This causes memory contents
* not to be retained during DRAM initialization. Therfore,
* there is a new control register(0x100431e8[28]) which lets us
* release pad retention and retain the memory content until the
* initialization is complete.
*/
writel(PAD_RETENTION_DRAM_COREBLK_VAL,
&power->pad_retention_dram_coreblk_option);
do {
val = readl(&power->pad_retention_dram_status);
} while (val != 0x1);
/*
* CKE PAD retention disables DRAM self-refresh mode.
* Send auto refresh command for DRAM refresh.
*/
for (i = 0; i < 128; i++) {
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(DIRECT_CMD_REFA |
(chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(DIRECT_CMD_REFA |
(chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
}
}
if (mem->gate_leveling_enable) {
writel(PHY_CON0_RESET_VAL, &phy0_ctrl->phy_con0);
writel(PHY_CON0_RESET_VAL, &phy1_ctrl->phy_con0);
setbits_le32(&phy0_ctrl->phy_con0, P0_CMD_EN);
setbits_le32(&phy1_ctrl->phy_con0, P0_CMD_EN);
val = PHY_CON2_RESET_VAL;
val |= INIT_DESKEW_EN;
writel(val, &phy0_ctrl->phy_con2);
writel(val, &phy1_ctrl->phy_con2);
val = readl(&phy0_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET);
writel(val, &phy1_ctrl->phy_con1);
n_lock_w_phy0 = (lock0_info & CTRL_LOCK_COARSE_MASK) >> 2;
n_lock_r = readl(&phy0_ctrl->phy_con12);
n_lock_r &= ~CTRL_DLL_ON;
n_lock_r |= n_lock_w_phy0;
writel(n_lock_r, &phy0_ctrl->phy_con12);
n_lock_w_phy1 = (lock1_info & CTRL_LOCK_COARSE_MASK) >> 2;
n_lock_r = readl(&phy1_ctrl->phy_con12);
n_lock_r &= ~CTRL_DLL_ON;
n_lock_r |= n_lock_w_phy1;
writel(n_lock_r, &phy1_ctrl->phy_con12);
val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4;
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
setbits_le32(&phy0_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy1_ctrl->phy_con2, RDLVL_GATE_EN);
setbits_le32(&phy0_ctrl->phy_con0, CTRL_SHGATE);
setbits_le32(&phy1_ctrl->phy_con0, CTRL_SHGATE);
val = readl(&phy0_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy0_ctrl->phy_con1);
val = readl(&phy1_ctrl->phy_con1);
val &= ~(CTRL_GATEDURADJ_MASK);
writel(val, &phy1_ctrl->phy_con1);
writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config);
i = TIMEOUT_US;
while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config);
writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config);
i = TIMEOUT_US;
while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) !=
RDLVL_COMPLETE_CHO) && (i > 0)) {
/*
* TODO(waihong): Comment on how long this take to
* timeout
*/
sdelay(100);
i--;
}
if (!i)
return SETUP_ERR_RDLV_COMPLETE_TIMEOUT;
writel(CTRL_RDLVL_GATE_DISABLE, &drex1->rdlvl_config);
writel(0, &phy0_ctrl->phy_con14);
writel(0, &phy1_ctrl->phy_con14);
val = (0x3 << DIRECT_CMD_BANK_SHIFT);
for (chip = 0; chip < mem->chips_to_configure; chip++) {
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex0->directcmd);
writel(val | (chip << DIRECT_CMD_CHIP_SHIFT),
&drex1->directcmd);
}
/* Common Settings for Leveling */
val = PHY_CON12_RESET_VAL;
writel((val + n_lock_w_phy0), &phy0_ctrl->phy_con12);
writel((val + n_lock_w_phy1), &phy1_ctrl->phy_con12);
setbits_le32(&phy0_ctrl->phy_con2, DLL_DESKEW_EN);
setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN);
}
/*
* Do software read leveling
*
* Do this before we turn on auto refresh since the auto refresh can
* be in conflict with the resync operation that's part of setting
* read leveling.
*/
if (!reset) {
/* restore calibrated value after resume */
dmc_set_read_offset_value(phy0_ctrl, readl(&pmu->pmu_spare1));
dmc_set_read_offset_value(phy1_ctrl, readl(&pmu->pmu_spare2));
} else {
software_find_read_offset(phy0_ctrl, 0,
CTRL_LOCK_COARSE(lock0_info));
software_find_read_offset(phy1_ctrl, 1,
CTRL_LOCK_COARSE(lock1_info));
/* save calibrated value to restore after resume */
writel(dmc_get_read_offset_value(phy0_ctrl), &pmu->pmu_spare1);
writel(dmc_get_read_offset_value(phy1_ctrl), &pmu->pmu_spare2);
}
/* Send PALL command */
dmc_config_prech(mem, &drex0->directcmd);
dmc_config_prech(mem, &drex1->directcmd);
writel(mem->memcontrol, &drex0->memcontrol);
writel(mem->memcontrol, &drex1->memcontrol);
/*
* Set DMC Concontrol: Enable auto-refresh counter, provide
* read data fetch cycles and enable DREX auto set powerdown
* for input buffer of I/O in none read memory state.
*/
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
DMC_CONCONTROL_IO_PD_CON(0x2),
&drex0->concontrol);
writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) |
(mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)|
DMC_CONCONTROL_IO_PD_CON(0x2),
&drex1->concontrol);
/*
* Enable Clock Gating Control for DMC
* this saves around 25 mw dmc power as compared to the power
* consumption without these bits enabled
*/
setbits_le32(&drex0->cgcontrol, DMC_INTERNAL_CG);
setbits_le32(&drex1->cgcontrol, DMC_INTERNAL_CG);
/*
* As per Exynos5800 UM ver 0.00 section 17.13.2.1
* CONCONTROL register bit 3 [update_mode], Exynos5800 does not
* support the PHY initiated update. And it is recommended to set
* this field to 1'b1 during initialization
*
* When we apply PHY-initiated mode, DLL lock value is determined
* once at DMC init time and not updated later when we change the MIF
* voltage based on ASV group in kernel. Applying MC-initiated mode
* makes sure that DLL tracing is ON so that silicon is able to
* compensate the voltage variation.
*/
val = readl(&drex0->concontrol);
val |= CONCONTROL_UPDATE_MODE;
writel(val, &drex0->concontrol);
val = readl(&drex1->concontrol);
val |= CONCONTROL_UPDATE_MODE;
writel(val, &drex1->concontrol);
return 0;
}
#endif
|