summaryrefslogtreecommitdiff
path: root/arch/arm/lib/crt0.S
blob: 4f60958b1dbf1782863cebd7ffe884733a452b26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
/*
 *  crt0 - C-runtime startup Code for ARM U-Boot
 *
 *  Copyright (c) 2012  Albert ARIBAUD <albert.u.boot@aribaud.net>
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <config.h>
#include <asm-offsets.h>

/*
 * This file handles the target-independent stages of the U-Boot
 * start-up where a C runtime environment is needed. Its entry point
 * is _main and is branched into from the target's start.S file.
 *
 * _main execution sequence is:
 *
 * 1. Set up initial environment for calling board_init_f().
 *    This environment only provides a stack and a place to store
 *    the GD ('global data') structure, both located in some readily
 *    available RAM (SRAM, locked cache...). In this context, VARIABLE
 *    global data, initialized or not (BSS), are UNAVAILABLE; only
 *    CONSTANT initialized data are available.
 *
 * 2. Call board_init_f(). This function prepares the hardware for
 *    execution from system RAM (DRAM, DDR...) As system RAM may not
 *    be available yet, , board_init_f() must use the current GD to
 *    store any data which must be passed on to later stages. These
 *    data include the relocation destination, the future stack, and
 *    the future GD location.
 *
 * (the following applies only to non-SPL builds)
 *
 * 3. Set up intermediate environment where the stack and GD are the
 *    ones allocated by board_init_f() in system RAM, but BSS and
 *    initialized non-const data are still not available.
 *
 * 4. Call relocate_code(). This function relocates U-Boot from its
 *    current location into the relocation destination computed by
 *    board_init_f().
 *
 * 5. Set up final environment for calling board_init_r(). This
 *    environment has BSS (initialized to 0), initialized non-const
 *    data (initialized to their intended value), and stack in system
 *    RAM. GD has retained values set by board_init_f(). Some CPUs
 *    have some work left to do at this point regarding memory, so
 *    call c_runtime_cpu_setup.
 *
 * 6. Branch to either nand_boot() or board_init_r().
 */

/*
 * declare nand_boot() or board_init_r() to jump to at end of crt0
 */

#if defined(CONFIG_NAND_SPL)

.globl nand_boot

#elif ! defined(CONFIG_SPL_BUILD)

.globl board_init_r

#endif

/*
 * start and end of BSS
 */

.globl __bss_start
.globl __bss_end__

/*
 * entry point of crt0 sequence
 */

.global _main

_main:

/*
 * Set up initial C runtime environment and call board_init_f(0).
 */

#if defined(CONFIG_NAND_SPL)
	/* deprecated, use instead CONFIG_SPL_BUILD */
	ldr	sp, =(CONFIG_SYS_INIT_SP_ADDR)
#elif defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_STACK)
	ldr	sp, =(CONFIG_SPL_STACK)
#else
	ldr	sp, =(CONFIG_SYS_INIT_SP_ADDR)
#endif
	bic	sp, sp, #7	/* 8-byte alignment for ABI compliance */
	sub	sp, #GD_SIZE	/* allocate one GD above SP */
	bic	sp, sp, #7	/* 8-byte alignment for ABI compliance */
	mov	r8, sp		/* GD is above SP */
	mov	r0, #0
	bl	board_init_f

#if ! defined(CONFIG_SPL_BUILD)

/*
 * Set up intermediate environment (new sp and gd) and call
 * relocate_code(addr_sp, gd, addr_moni). Trick here is that
 * we'll return 'here' but relocated.
 */

	ldr	sp, [r8, #GD_START_ADDR_SP]	/* r8 = gd->start_addr_sp */
	bic	sp, sp, #7	/* 8-byte alignment for ABI compliance */
	ldr	r8, [r8, #GD_BD]		/* r8 = gd->bd */
	sub	r8, r8, #GD_SIZE		/* new GD is below bd */

	adr	lr, here
	ldr	r0, [r8, #GD_RELOC_OFF]		/* lr = gd->start_addr_sp */
	add	lr, lr, r0
	ldr	r0, [r8, #GD_START_ADDR_SP]	/* r0 = gd->start_addr_sp */
	mov	r1, r8				/* r1 = gd */
	ldr	r2, [r8, #GD_RELOCADDR]		/* r2 = gd->relocaddr */
	b	relocate_code
here:

/* Set up final (full) environment */

	bl	c_runtime_cpu_setup	/* we still call old routine here */

	ldr	r0, =__bss_start	/* this is auto-relocated! */
	ldr	r1, =__bss_end__	/* this is auto-relocated! */

	mov	r2, #0x00000000		/* prepare zero to clear BSS */

clbss_l:cmp	r0, r1			/* while not at end of BSS */
	strlo	r2, [r0]		/* clear 32-bit BSS word */
	addlo	r0, r0, #4		/* move to next */
	blo	clbss_l

	bl coloured_LED_init
	bl red_led_on

#if defined(CONFIG_NAND_SPL)

	/* call _nand_boot() */
	ldr     pc, =nand_boot

#else

	/* call board_init_r(gd_t *id, ulong dest_addr) */
	mov	r0, r8			/* gd_t */
	ldr	r1, [r8, #GD_RELOCADDR]	/* dest_addr */
	/* call board_init_r */
	ldr	pc, =board_init_r	/* this is auto-relocated! */

#endif

	/* we should not return here. */

#endif