1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/*
* Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/gp_padctrl.h>
#include <asm/arch/pinmux.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/pmc.h>
#include <asm/arch-tegra/scu.h>
#include "cpu.h"
enum tegra_family_t {
TEGRA_FAMILY_T2x,
TEGRA_FAMILY_T3x,
};
enum tegra_family_t get_family(void)
{
u32 reg, chip_id;
reg = readl(NV_PA_APB_MISC_BASE + GP_HIDREV);
chip_id = reg >> 8;
chip_id &= 0xff;
debug(" tegra_get_family: chip_id = %x\n", chip_id);
if (chip_id == 0x30)
return TEGRA_FAMILY_T3x;
else
return TEGRA_FAMILY_T2x;
}
int get_num_cpus(void)
{
return get_family() == TEGRA_FAMILY_T3x ? 4 : 2;
}
/*
* Timing tables for each SOC for all four oscillator options.
*/
struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
/* T20: 1 GHz */
{{ 1000, 13, 0, 12}, /* OSC 13M */
{ 625, 12, 0, 8}, /* OSC 19.2M */
{ 1000, 12, 0, 12}, /* OSC 12M */
{ 1000, 26, 0, 12}, /* OSC 26M */
},
/* T25: 1.2 GHz */
{{ 923, 10, 0, 12},
{ 750, 12, 0, 8},
{ 600, 6, 0, 12},
{ 600, 13, 0, 12},
},
/* T30: 1.4 GHz */
{{ 862, 8, 0, 8},
{ 583, 8, 0, 4},
{ 700, 6, 0, 8},
{ 700, 13, 0, 8},
},
};
void adjust_pllp_out_freqs(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH];
u32 reg;
/* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */
reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */
reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR
| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR;
writel(reg, &pll->pll_out[0]);
reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */
reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR
| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR;
writel(reg, &pll->pll_out[1]);
}
int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
u32 divp, u32 cpcon)
{
u32 reg;
/* If PLLX is already enabled, just return */
if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
debug("pllx_set_rate: PLLX already enabled, returning\n");
return 0;
}
debug(" pllx_set_rate entry\n");
/* Set BYPASS, m, n and p to PLLX_BASE */
reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT);
reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT));
writel(reg, &pll->pll_base);
/* Set cpcon to PLLX_MISC */
reg = (cpcon << PLL_CPCON_SHIFT);
/* Set dccon to PLLX_MISC if freq > 600MHz */
if (divn > 600)
reg |= (1 << PLL_DCCON_SHIFT);
writel(reg, &pll->pll_misc);
/* Enable PLLX */
reg = readl(&pll->pll_base);
reg |= PLL_ENABLE_MASK;
/* Disable BYPASS */
reg &= ~PLL_BYPASS_MASK;
writel(reg, &pll->pll_base);
/* Set lock_enable to PLLX_MISC */
reg = readl(&pll->pll_misc);
reg |= PLL_LOCK_ENABLE_MASK;
writel(reg, &pll->pll_misc);
return 0;
}
void init_pllx(void)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
int chip_type;
enum clock_osc_freq osc;
struct clk_pll_table *sel;
debug("init_pllx entry\n");
/* get chip type */
chip_type = tegra_get_chip_type();
debug(" init_pllx: chip_type = %d\n", chip_type);
/* get osc freq */
osc = clock_get_osc_freq();
debug(" init_pllx: osc = %d\n", osc);
/* set pllx */
sel = &tegra_pll_x_table[chip_type][osc];
pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
/* adjust PLLP_out1-4 on T30 */
if (chip_type == TEGRA_SOC_T30) {
debug(" init_pllx: adjusting PLLP out freqs\n");
adjust_pllp_out_freqs();
}
}
void enable_cpu_clock(int enable)
{
struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 clk;
/*
* NOTE:
* Regardless of whether the request is to enable or disable the CPU
* clock, every processor in the CPU complex except the master (CPU 0)
* will have it's clock stopped because the AVP only talks to the
* master.
*/
if (enable) {
/* Initialize PLLX */
init_pllx();
/* Wait until all clocks are stable */
udelay(PLL_STABILIZATION_DELAY);
writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
}
/*
* Read the register containing the individual CPU clock enables and
* always stop the clocks to CPUs > 0.
*/
clk = readl(&clkrst->crc_clk_cpu_cmplx);
clk |= 1 << CPU1_CLK_STP_SHIFT;
#if defined(CONFIG_TEGRA30)
clk |= 1 << CPU2_CLK_STP_SHIFT;
clk |= 1 << CPU3_CLK_STP_SHIFT;
#endif
/* Stop/Unstop the CPU clock */
clk &= ~CPU0_CLK_STP_MASK;
clk |= !enable << CPU0_CLK_STP_SHIFT;
writel(clk, &clkrst->crc_clk_cpu_cmplx);
clock_enable(PERIPH_ID_CPU);
}
static int is_cpu_powered(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
}
static void remove_cpu_io_clamps(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
/* Remove the clamps on the CPU I/O signals */
reg = readl(&pmc->pmc_remove_clamping);
reg |= CPU_CLMP;
writel(reg, &pmc->pmc_remove_clamping);
/* Give I/O signals time to stabilize */
udelay(IO_STABILIZATION_DELAY);
}
void powerup_cpu(void)
{
struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
u32 reg;
int timeout = IO_STABILIZATION_DELAY;
if (!is_cpu_powered()) {
/* Toggle the CPU power state (OFF -> ON) */
reg = readl(&pmc->pmc_pwrgate_toggle);
reg &= PARTID_CP;
reg |= START_CP;
writel(reg, &pmc->pmc_pwrgate_toggle);
/* Wait for the power to come up */
while (!is_cpu_powered()) {
if (timeout-- == 0)
printf("CPU failed to power up!\n");
else
udelay(10);
}
/*
* Remove the I/O clamps from CPU power partition.
* Recommended only on a Warm boot, if the CPU partition gets
* power gated. Shouldn't cause any harm when called after a
* cold boot according to HW, probably just redundant.
*/
remove_cpu_io_clamps();
}
}
void reset_A9_cpu(int reset)
{
/*
* NOTE: Regardless of whether the request is to hold the CPU in reset
* or take it out of reset, every processor in the CPU complex
* except the master (CPU 0) will be held in reset because the
* AVP only talks to the master. The AVP does not know that there
* are multiple processors in the CPU complex.
*/
int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
int num_cpus = get_num_cpus();
int cpu;
debug("reset_a9_cpu entry\n");
/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
for (cpu = 1; cpu < num_cpus; cpu++)
reset_cmplx_set_enable(cpu, mask, 1);
reset_cmplx_set_enable(0, mask, reset);
/* Enable/Disable master CPU reset */
reset_set_enable(PERIPH_ID_CPU, reset);
}
void clock_enable_coresight(int enable)
{
u32 rst, src;
debug("clock_enable_coresight entry\n");
clock_set_enable(PERIPH_ID_CORESIGHT, enable);
reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
if (enable) {
/*
* Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by
* 1.5, giving an effective frequency of 144MHz.
* Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor
* (bits 7:0), so 00000001b == 1.5 (n+1 + .5)
*
* Clock divider request for 204MHz would setup CSITE clock as
* 144MHz for PLLP base 216MHz and 204MHz for PLLP base 408MHz
*/
if (tegra_get_chip_type() == TEGRA_SOC_T30)
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000);
else
src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000);
clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
/* Unlock the CPU CoreSight interfaces */
rst = CORESIGHT_UNLOCK;
writel(rst, CSITE_CPU_DBG0_LAR);
writel(rst, CSITE_CPU_DBG1_LAR);
#if defined(CONFIG_TEGRA30)
writel(rst, CSITE_CPU_DBG2_LAR);
writel(rst, CSITE_CPU_DBG3_LAR);
#endif
}
}
void halt_avp(void)
{
for (;;) {
writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \
| HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)),
FLOW_CTLR_HALT_COP_EVENTS);
}
}
|