Linux Kernel iMX6
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

1102 lines
31 KiB

/*
* C-Media CMI8788 driver - mixer code
*
* Copyright (c) Clemens Ladisch <clemens@ladisch.de>
*
*
* This driver is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2.
*
* This driver is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this driver; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/mutex.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/control.h>
#include <sound/tlv.h>
#include "oxygen.h"
#include "cm9780.h"
static int dac_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
struct oxygen *chip = ctl->private_data;
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = chip->model.dac_channels_mixer;
info->value.integer.min = chip->model.dac_volume_min;
info->value.integer.max = chip->model.dac_volume_max;
return 0;
}
static int dac_volume_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int i;
mutex_lock(&chip->mutex);
for (i = 0; i < chip->model.dac_channels_mixer; ++i)
value->value.integer.value[i] = chip->dac_volume[i];
mutex_unlock(&chip->mutex);
return 0;
}
static int dac_volume_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int i;
int changed;
changed = 0;
mutex_lock(&chip->mutex);
for (i = 0; i < chip->model.dac_channels_mixer; ++i)
if (value->value.integer.value[i] != chip->dac_volume[i]) {
chip->dac_volume[i] = value->value.integer.value[i];
changed = 1;
}
if (changed)
chip->model.update_dac_volume(chip);
mutex_unlock(&chip->mutex);
return changed;
}
static int dac_mute_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = !chip->dac_mute;
mutex_unlock(&chip->mutex);
return 0;
}
static int dac_mute_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
int changed;
mutex_lock(&chip->mutex);
changed = !value->value.integer.value[0] != chip->dac_mute;
if (changed) {
chip->dac_mute = !value->value.integer.value[0];
chip->model.update_dac_mute(chip);
}
mutex_unlock(&chip->mutex);
return changed;
}
static unsigned int upmix_item_count(struct oxygen *chip)
{
if (chip->model.dac_channels_pcm < 8)
return 2;
else if (chip->model.update_center_lfe_mix)
return 5;
else
return 3;
}
static int upmix_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
static const char *const names[5] = {
"Front",
"Front+Surround",
"Front+Surround+Back",
"Front+Surround+Center/LFE",
"Front+Surround+Center/LFE+Back",
};
struct oxygen *chip = ctl->private_data;
unsigned int count = upmix_item_count(chip);
return snd_ctl_enum_info(info, 1, count, names);
}
static int upmix_get(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] = chip->dac_routing;
mutex_unlock(&chip->mutex);
return 0;
}
void oxygen_update_dac_routing(struct oxygen *chip)
{
/* DAC 0: front, DAC 1: surround, DAC 2: center/LFE, DAC 3: back */
static const unsigned int reg_values[5] = {
/* stereo -> front */
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
/* stereo -> front+surround */
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
/* stereo -> front+surround+back */
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
/* stereo -> front+surround+center/LFE */
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
/* stereo -> front+surround+center/LFE+back */
(0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(0 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT),
};
u8 channels;
unsigned int reg_value;
channels = oxygen_read8(chip, OXYGEN_PLAY_CHANNELS) &
OXYGEN_PLAY_CHANNELS_MASK;
if (channels == OXYGEN_PLAY_CHANNELS_2)
reg_value = reg_values[chip->dac_routing];
else if (channels == OXYGEN_PLAY_CHANNELS_8)
/* in 7.1 mode, "rear" channels go to the "back" jack */
reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
else
reg_value = (0 << OXYGEN_PLAY_DAC0_SOURCE_SHIFT) |
(1 << OXYGEN_PLAY_DAC1_SOURCE_SHIFT) |
(2 << OXYGEN_PLAY_DAC2_SOURCE_SHIFT) |
(3 << OXYGEN_PLAY_DAC3_SOURCE_SHIFT);
if (chip->model.adjust_dac_routing)
reg_value = chip->model.adjust_dac_routing(chip, reg_value);
oxygen_write16_masked(chip, OXYGEN_PLAY_ROUTING, reg_value,
OXYGEN_PLAY_DAC0_SOURCE_MASK |
OXYGEN_PLAY_DAC1_SOURCE_MASK |
OXYGEN_PLAY_DAC2_SOURCE_MASK |
OXYGEN_PLAY_DAC3_SOURCE_MASK);
if (chip->model.update_center_lfe_mix)
chip->model.update_center_lfe_mix(chip, chip->dac_routing > 2);
}
static int upmix_put(struct snd_kcontrol *ctl, struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int count = upmix_item_count(chip);
int changed;
if (value->value.enumerated.item[0] >= count)
return -EINVAL;
mutex_lock(&chip->mutex);
changed = value->value.enumerated.item[0] != chip->dac_routing;
if (changed) {
chip->dac_routing = value->value.enumerated.item[0];
oxygen_update_dac_routing(chip);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int spdif_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
value->value.integer.value[0] = chip->spdif_playback_enable;
mutex_unlock(&chip->mutex);
return 0;
}
static unsigned int oxygen_spdif_rate(unsigned int oxygen_rate)
{
switch (oxygen_rate) {
case OXYGEN_RATE_32000:
return IEC958_AES3_CON_FS_32000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_44100:
return IEC958_AES3_CON_FS_44100 << OXYGEN_SPDIF_CS_RATE_SHIFT;
default: /* OXYGEN_RATE_48000 */
return IEC958_AES3_CON_FS_48000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_64000:
return 0xb << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_88200:
return IEC958_AES3_CON_FS_88200 << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_96000:
return IEC958_AES3_CON_FS_96000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_176400:
return IEC958_AES3_CON_FS_176400 << OXYGEN_SPDIF_CS_RATE_SHIFT;
case OXYGEN_RATE_192000:
return IEC958_AES3_CON_FS_192000 << OXYGEN_SPDIF_CS_RATE_SHIFT;
}
}
void oxygen_update_spdif_source(struct oxygen *chip)
{
u32 old_control, new_control;
u16 old_routing, new_routing;
unsigned int oxygen_rate;
old_control = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
old_routing = oxygen_read16(chip, OXYGEN_PLAY_ROUTING);
if (chip->pcm_active & (1 << PCM_SPDIF)) {
new_control = old_control | OXYGEN_SPDIF_OUT_ENABLE;
new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
| OXYGEN_PLAY_SPDIF_SPDIF;
oxygen_rate = (old_control >> OXYGEN_SPDIF_OUT_RATE_SHIFT)
& OXYGEN_I2S_RATE_MASK;
/* S/PDIF rate was already set by the caller */
} else if ((chip->pcm_active & (1 << PCM_MULTICH)) &&
chip->spdif_playback_enable) {
new_routing = (old_routing & ~OXYGEN_PLAY_SPDIF_MASK)
| OXYGEN_PLAY_SPDIF_MULTICH_01;
oxygen_rate = oxygen_read16(chip, OXYGEN_I2S_MULTICH_FORMAT)
& OXYGEN_I2S_RATE_MASK;
new_control = (old_control & ~OXYGEN_SPDIF_OUT_RATE_MASK) |
(oxygen_rate << OXYGEN_SPDIF_OUT_RATE_SHIFT) |
OXYGEN_SPDIF_OUT_ENABLE;
} else {
new_control = old_control & ~OXYGEN_SPDIF_OUT_ENABLE;
new_routing = old_routing;
oxygen_rate = OXYGEN_RATE_44100;
}
if (old_routing != new_routing) {
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL,
new_control & ~OXYGEN_SPDIF_OUT_ENABLE);
oxygen_write16(chip, OXYGEN_PLAY_ROUTING, new_routing);
}
if (new_control & OXYGEN_SPDIF_OUT_ENABLE)
oxygen_write32(chip, OXYGEN_SPDIF_OUTPUT_BITS,
oxygen_spdif_rate(oxygen_rate) |
((chip->pcm_active & (1 << PCM_SPDIF)) ?
chip->spdif_pcm_bits : chip->spdif_bits));
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, new_control);
}
static int spdif_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
int changed;
mutex_lock(&chip->mutex);
changed = value->value.integer.value[0] != chip->spdif_playback_enable;
if (changed) {
chip->spdif_playback_enable = !!value->value.integer.value[0];
spin_lock_irq(&chip->reg_lock);
oxygen_update_spdif_source(chip);
spin_unlock_irq(&chip->reg_lock);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int spdif_info(struct snd_kcontrol *ctl, struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_IEC958;
info->count = 1;
return 0;
}
static void oxygen_to_iec958(u32 bits, struct snd_ctl_elem_value *value)
{
value->value.iec958.status[0] =
bits & (OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
OXYGEN_SPDIF_PREEMPHASIS);
value->value.iec958.status[1] = /* category and original */
bits >> OXYGEN_SPDIF_CATEGORY_SHIFT;
}
static u32 iec958_to_oxygen(struct snd_ctl_elem_value *value)
{
u32 bits;
bits = value->value.iec958.status[0] &
(OXYGEN_SPDIF_NONAUDIO | OXYGEN_SPDIF_C |
OXYGEN_SPDIF_PREEMPHASIS);
bits |= value->value.iec958.status[1] << OXYGEN_SPDIF_CATEGORY_SHIFT;
if (bits & OXYGEN_SPDIF_NONAUDIO)
bits |= OXYGEN_SPDIF_V;
return bits;
}
static inline void write_spdif_bits(struct oxygen *chip, u32 bits)
{
oxygen_write32_masked(chip, OXYGEN_SPDIF_OUTPUT_BITS, bits,
OXYGEN_SPDIF_NONAUDIO |
OXYGEN_SPDIF_C |
OXYGEN_SPDIF_PREEMPHASIS |
OXYGEN_SPDIF_CATEGORY_MASK |
OXYGEN_SPDIF_ORIGINAL |
OXYGEN_SPDIF_V);
}
static int spdif_default_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
oxygen_to_iec958(chip->spdif_bits, value);
mutex_unlock(&chip->mutex);
return 0;
}
static int spdif_default_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u32 new_bits;
int changed;
new_bits = iec958_to_oxygen(value);
mutex_lock(&chip->mutex);
changed = new_bits != chip->spdif_bits;
if (changed) {
chip->spdif_bits = new_bits;
if (!(chip->pcm_active & (1 << PCM_SPDIF)))
write_spdif_bits(chip, new_bits);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int spdif_mask_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
value->value.iec958.status[0] = IEC958_AES0_NONAUDIO |
IEC958_AES0_CON_NOT_COPYRIGHT | IEC958_AES0_CON_EMPHASIS;
value->value.iec958.status[1] =
IEC958_AES1_CON_CATEGORY | IEC958_AES1_CON_ORIGINAL;
return 0;
}
static int spdif_pcm_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
oxygen_to_iec958(chip->spdif_pcm_bits, value);
mutex_unlock(&chip->mutex);
return 0;
}
static int spdif_pcm_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u32 new_bits;
int changed;
new_bits = iec958_to_oxygen(value);
mutex_lock(&chip->mutex);
changed = new_bits != chip->spdif_pcm_bits;
if (changed) {
chip->spdif_pcm_bits = new_bits;
if (chip->pcm_active & (1 << PCM_SPDIF))
write_spdif_bits(chip, new_bits);
}
mutex_unlock(&chip->mutex);
return changed;
}
static int spdif_input_mask_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
value->value.iec958.status[0] = 0xff;
value->value.iec958.status[1] = 0xff;
value->value.iec958.status[2] = 0xff;
value->value.iec958.status[3] = 0xff;
return 0;
}
static int spdif_input_default_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u32 bits;
bits = oxygen_read32(chip, OXYGEN_SPDIF_INPUT_BITS);
value->value.iec958.status[0] = bits;
value->value.iec958.status[1] = bits >> 8;
value->value.iec958.status[2] = bits >> 16;
value->value.iec958.status[3] = bits >> 24;
return 0;
}
static int spdif_bit_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u32 bit = ctl->private_value;
value->value.integer.value[0] =
!!(oxygen_read32(chip, OXYGEN_SPDIF_CONTROL) & bit);
return 0;
}
static int spdif_bit_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u32 bit = ctl->private_value;
u32 oldreg, newreg;
int changed;
spin_lock_irq(&chip->reg_lock);
oldreg = oxygen_read32(chip, OXYGEN_SPDIF_CONTROL);
if (value->value.integer.value[0])
newreg = oldreg | bit;
else
newreg = oldreg & ~bit;
changed = newreg != oldreg;
if (changed)
oxygen_write32(chip, OXYGEN_SPDIF_CONTROL, newreg);
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static int monitor_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 1;
info->value.integer.min = 0;
info->value.integer.max = 1;
return 0;
}
static int monitor_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u8 bit = ctl->private_value;
int invert = ctl->private_value & (1 << 8);
value->value.integer.value[0] =
!!invert ^ !!(oxygen_read8(chip, OXYGEN_ADC_MONITOR) & bit);
return 0;
}
static int monitor_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u8 bit = ctl->private_value;
int invert = ctl->private_value & (1 << 8);
u8 oldreg, newreg;
int changed;
spin_lock_irq(&chip->reg_lock);
oldreg = oxygen_read8(chip, OXYGEN_ADC_MONITOR);
if ((!!value->value.integer.value[0] ^ !!invert) != 0)
newreg = oldreg | bit;
else
newreg = oldreg & ~bit;
changed = newreg != oldreg;
if (changed)
oxygen_write8(chip, OXYGEN_ADC_MONITOR, newreg);
spin_unlock_irq(&chip->reg_lock);
return changed;
}
static int ac97_switch_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int codec = (ctl->private_value >> 24) & 1;
unsigned int index = ctl->private_value & 0xff;
unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
int invert = ctl->private_value & (1 << 16);
u16 reg;
mutex_lock(&chip->mutex);
reg = oxygen_read_ac97(chip, codec, index);
mutex_unlock(&chip->mutex);
if (!(reg & (1 << bitnr)) ^ !invert)
value->value.integer.value[0] = 1;
else
value->value.integer.value[0] = 0;
return 0;
}
static void mute_ac97_ctl(struct oxygen *chip, unsigned int control)
{
unsigned int priv_idx;
u16 value;
if (!chip->controls[control])
return;
priv_idx = chip->controls[control]->private_value & 0xff;
value = oxygen_read_ac97(chip, 0, priv_idx);
if (!(value & 0x8000)) {
oxygen_write_ac97(chip, 0, priv_idx, value | 0x8000);
if (chip->model.ac97_switch)
chip->model.ac97_switch(chip, priv_idx, 0x8000);
snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
&chip->controls[control]->id);
}
}
static int ac97_switch_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int codec = (ctl->private_value >> 24) & 1;
unsigned int index = ctl->private_value & 0xff;
unsigned int bitnr = (ctl->private_value >> 8) & 0xff;
int invert = ctl->private_value & (1 << 16);
u16 oldreg, newreg;
int change;
mutex_lock(&chip->mutex);
oldreg = oxygen_read_ac97(chip, codec, index);
newreg = oldreg;
if (!value->value.integer.value[0] ^ !invert)
newreg |= 1 << bitnr;
else
newreg &= ~(1 << bitnr);
change = newreg != oldreg;
if (change) {
oxygen_write_ac97(chip, codec, index, newreg);
if (codec == 0 && chip->model.ac97_switch)
chip->model.ac97_switch(chip, index, newreg & 0x8000);
if (index == AC97_LINE) {
oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
newreg & 0x8000 ?
CM9780_GPO0 : 0, CM9780_GPO0);
if (!(newreg & 0x8000)) {
mute_ac97_ctl(chip, CONTROL_MIC_CAPTURE_SWITCH);
mute_ac97_ctl(chip, CONTROL_CD_CAPTURE_SWITCH);
mute_ac97_ctl(chip, CONTROL_AUX_CAPTURE_SWITCH);
}
} else if ((index == AC97_MIC || index == AC97_CD ||
index == AC97_VIDEO || index == AC97_AUX) &&
bitnr == 15 && !(newreg & 0x8000)) {
mute_ac97_ctl(chip, CONTROL_LINE_CAPTURE_SWITCH);
oxygen_write_ac97_masked(chip, 0, CM9780_GPIO_STATUS,
CM9780_GPO0, CM9780_GPO0);
}
}
mutex_unlock(&chip->mutex);
return change;
}
static int ac97_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
int stereo = (ctl->private_value >> 16) & 1;
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = stereo ? 2 : 1;
info->value.integer.min = 0;
info->value.integer.max = 0x1f;
return 0;
}
static int ac97_volume_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int codec = (ctl->private_value >> 24) & 1;
int stereo = (ctl->private_value >> 16) & 1;
unsigned int index = ctl->private_value & 0xff;
u16 reg;
mutex_lock(&chip->mutex);
reg = oxygen_read_ac97(chip, codec, index);
mutex_unlock(&chip->mutex);
if (!stereo) {
value->value.integer.value[0] = 31 - (reg & 0x1f);
} else {
value->value.integer.value[0] = 31 - ((reg >> 8) & 0x1f);
value->value.integer.value[1] = 31 - (reg & 0x1f);
}
return 0;
}
static int ac97_volume_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
unsigned int codec = (ctl->private_value >> 24) & 1;
int stereo = (ctl->private_value >> 16) & 1;
unsigned int index = ctl->private_value & 0xff;
u16 oldreg, newreg;
int change;
mutex_lock(&chip->mutex);
oldreg = oxygen_read_ac97(chip, codec, index);
if (!stereo) {
newreg = oldreg & ~0x1f;
newreg |= 31 - (value->value.integer.value[0] & 0x1f);
} else {
newreg = oldreg & ~0x1f1f;
newreg |= (31 - (value->value.integer.value[0] & 0x1f)) << 8;
newreg |= 31 - (value->value.integer.value[1] & 0x1f);
}
change = newreg != oldreg;
if (change)
oxygen_write_ac97(chip, codec, index, newreg);
mutex_unlock(&chip->mutex);
return change;
}
static int mic_fmic_source_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
static const char *const names[] = { "Mic Jack", "Front Panel" };
return snd_ctl_enum_info(info, 1, 2, names);
}
static int mic_fmic_source_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
mutex_lock(&chip->mutex);
value->value.enumerated.item[0] =
!!(oxygen_read_ac97(chip, 0, CM9780_JACK) & CM9780_FMIC2MIC);
mutex_unlock(&chip->mutex);
return 0;
}
static int mic_fmic_source_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u16 oldreg, newreg;
int change;
mutex_lock(&chip->mutex);
oldreg = oxygen_read_ac97(chip, 0, CM9780_JACK);
if (value->value.enumerated.item[0])
newreg = oldreg | CM9780_FMIC2MIC;
else
newreg = oldreg & ~CM9780_FMIC2MIC;
change = newreg != oldreg;
if (change)
oxygen_write_ac97(chip, 0, CM9780_JACK, newreg);
mutex_unlock(&chip->mutex);
return change;
}
static int ac97_fp_rec_volume_info(struct snd_kcontrol *ctl,
struct snd_ctl_elem_info *info)
{
info->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
info->count = 2;
info->value.integer.min = 0;
info->value.integer.max = 7;
return 0;
}
static int ac97_fp_rec_volume_get(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u16 reg;
mutex_lock(&chip->mutex);
reg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
mutex_unlock(&chip->mutex);
value->value.integer.value[0] = reg & 7;
value->value.integer.value[1] = (reg >> 8) & 7;
return 0;
}
static int ac97_fp_rec_volume_put(struct snd_kcontrol *ctl,
struct snd_ctl_elem_value *value)
{
struct oxygen *chip = ctl->private_data;
u16 oldreg, newreg;
int change;
mutex_lock(&chip->mutex);
oldreg = oxygen_read_ac97(chip, 1, AC97_REC_GAIN);
newreg = oldreg & ~0x0707;
newreg = newreg | (value->value.integer.value[0] & 7);
newreg = newreg | ((value->value.integer.value[0] & 7) << 8);
change = newreg != oldreg;
if (change)
oxygen_write_ac97(chip, 1, AC97_REC_GAIN, newreg);
mutex_unlock(&chip->mutex);
return change;
}
#define AC97_SWITCH(xname, codec, index, bitnr, invert) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.info = snd_ctl_boolean_mono_info, \
.get = ac97_switch_get, \
.put = ac97_switch_put, \
.private_value = ((codec) << 24) | ((invert) << 16) | \
((bitnr) << 8) | (index), \
}
#define AC97_VOLUME(xname, codec, index, stereo) { \
.iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
.name = xname, \
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | \
SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
.info = ac97_volume_info, \
.get = ac97_volume_get, \
.put = ac97_volume_put, \
.tlv = { .p = ac97_db_scale, }, \
.private_value = ((codec) << 24) | ((stereo) << 16) | (index), \
}
static DECLARE_TLV_DB_SCALE(monitor_db_scale, -600, 600, 0);
static DECLARE_TLV_DB_SCALE(ac97_db_scale, -3450, 150, 0);
static DECLARE_TLV_DB_SCALE(ac97_rec_db_scale, 0, 150, 0);
static const struct snd_kcontrol_new controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
.info = dac_volume_info,
.get = dac_volume_get,
.put = dac_volume_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Master Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = dac_mute_get,
.put = dac_mute_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Stereo Upmixing",
.info = upmix_info,
.get = upmix_get,
.put = upmix_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, SWITCH),
.info = snd_ctl_boolean_mono_info,
.get = spdif_switch_get,
.put = spdif_switch_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.device = 1,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
.info = spdif_info,
.get = spdif_default_get,
.put = spdif_default_put,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.device = 1,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = spdif_info,
.get = spdif_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.device = 1,
.name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.info = spdif_info,
.get = spdif_pcm_get,
.put = spdif_pcm_put,
},
};
static const struct snd_kcontrol_new spdif_input_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.device = 1,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, MASK),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = spdif_info,
.get = spdif_input_mask_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.device = 1,
.name = SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.info = spdif_info,
.get = spdif_input_default_get,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("Loopback ", NONE, SWITCH),
.info = snd_ctl_boolean_mono_info,
.get = spdif_bit_switch_get,
.put = spdif_bit_switch_put,
.private_value = OXYGEN_SPDIF_LOOPBACK,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = SNDRV_CTL_NAME_IEC958("Validity Check ",CAPTURE,SWITCH),
.info = snd_ctl_boolean_mono_info,
.get = spdif_bit_switch_get,
.put = spdif_bit_switch_put,
.private_value = OXYGEN_SPDIF_SPDVALID,
},
};
static const struct {
unsigned int pcm_dev;
struct snd_kcontrol_new controls[2];
} monitor_controls[] = {
{
.pcm_dev = CAPTURE_0_FROM_I2S_1,
.controls = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_A,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = monitor_volume_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_A_HALF_VOL
| (1 << 8),
.tlv = { .p = monitor_db_scale, },
},
},
},
{
.pcm_dev = CAPTURE_0_FROM_I2S_2,
.controls = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_B,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = monitor_volume_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
| (1 << 8),
.tlv = { .p = monitor_db_scale, },
},
},
},
{
.pcm_dev = CAPTURE_2_FROM_I2S_2,
.controls = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Switch",
.index = 1,
.info = snd_ctl_boolean_mono_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_B,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Analog Input Monitor Playback Volume",
.index = 1,
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = monitor_volume_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_B_HALF_VOL
| (1 << 8),
.tlv = { .p = monitor_db_scale, },
},
},
},
{
.pcm_dev = CAPTURE_1_FROM_SPDIF,
.controls = {
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Input Monitor Playback Switch",
.info = snd_ctl_boolean_mono_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_C,
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Digital Input Monitor Playback Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = monitor_volume_info,
.get = monitor_get,
.put = monitor_put,
.private_value = OXYGEN_ADC_MONITOR_C_HALF_VOL
| (1 << 8),
.tlv = { .p = monitor_db_scale, },
},
},
},
};
static const struct snd_kcontrol_new ac97_controls[] = {
AC97_VOLUME("Mic Capture Volume", 0, AC97_MIC, 0),
AC97_SWITCH("Mic Capture Switch", 0, AC97_MIC, 15, 1),
AC97_SWITCH("Mic Boost (+20dB)", 0, AC97_MIC, 6, 0),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Mic Source Capture Enum",
.info = mic_fmic_source_info,
.get = mic_fmic_source_get,
.put = mic_fmic_source_put,
},
AC97_SWITCH("Line Capture Switch", 0, AC97_LINE, 15, 1),
AC97_VOLUME("CD Capture Volume", 0, AC97_CD, 1),
AC97_SWITCH("CD Capture Switch", 0, AC97_CD, 15, 1),
AC97_VOLUME("Aux Capture Volume", 0, AC97_AUX, 1),
AC97_SWITCH("Aux Capture Switch", 0, AC97_AUX, 15, 1),
};
static const struct snd_kcontrol_new ac97_fp_controls[] = {
AC97_VOLUME("Front Panel Playback Volume", 1, AC97_HEADPHONE, 1),
AC97_SWITCH("Front Panel Playback Switch", 1, AC97_HEADPHONE, 15, 1),
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Front Panel Capture Volume",
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
SNDRV_CTL_ELEM_ACCESS_TLV_READ,
.info = ac97_fp_rec_volume_info,
.get = ac97_fp_rec_volume_get,
.put = ac97_fp_rec_volume_put,
.tlv = { .p = ac97_rec_db_scale, },
},
AC97_SWITCH("Front Panel Capture Switch", 1, AC97_REC_GAIN, 15, 1),
};
static void oxygen_any_ctl_free(struct snd_kcontrol *ctl)
{
struct oxygen *chip = ctl->private_data;
unsigned int i;
/* I'm too lazy to write a function for each control :-) */
for (i = 0; i < ARRAY_SIZE(chip->controls); ++i)
chip->controls[i] = NULL;
}
static int add_controls(struct oxygen *chip,
const struct snd_kcontrol_new controls[],
unsigned int count)
{
static const char *const known_ctl_names[CONTROL_COUNT] = {
[CONTROL_SPDIF_PCM] =
SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
[CONTROL_SPDIF_INPUT_BITS] =
SNDRV_CTL_NAME_IEC958("", CAPTURE, DEFAULT),
[CONTROL_MIC_CAPTURE_SWITCH] = "Mic Capture Switch",
[CONTROL_LINE_CAPTURE_SWITCH] = "Line Capture Switch",
[CONTROL_CD_CAPTURE_SWITCH] = "CD Capture Switch",
[CONTROL_AUX_CAPTURE_SWITCH] = "Aux Capture Switch",
};
unsigned int i, j;
struct snd_kcontrol_new template;
struct snd_kcontrol *ctl;
int err;
for (i = 0; i < count; ++i) {
template = controls[i];
if (chip->model.control_filter) {
err = chip->model.control_filter(&template);
if (err < 0)
return err;
if (err == 1)
continue;
}
if (!strcmp(template.name, "Stereo Upmixing") &&
chip->model.dac_channels_pcm == 2)
continue;
if (!strcmp(template.name, "Mic Source Capture Enum") &&
!(chip->model.device_config & AC97_FMIC_SWITCH))
continue;
if (!strncmp(template.name, "CD Capture ", 11) &&
!(chip->model.device_config & AC97_CD_INPUT))
continue;
if (!strcmp(template.name, "Master Playback Volume") &&
chip->model.dac_tlv) {
template.tlv.p = chip->model.dac_tlv;
template.access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
}
ctl = snd_ctl_new1(&template, chip);
if (!ctl)
return -ENOMEM;
err = snd_ctl_add(chip->card, ctl);
if (err < 0)
return err;
for (j = 0; j < CONTROL_COUNT; ++j)
if (!strcmp(ctl->id.name, known_ctl_names[j])) {
chip->controls[j] = ctl;
ctl->private_free = oxygen_any_ctl_free;
}
}
return 0;
}
int oxygen_mixer_init(struct oxygen *chip)
{
unsigned int i;
int err;
err = add_controls(chip, controls, ARRAY_SIZE(controls));
if (err < 0)
return err;
if (chip->model.device_config & CAPTURE_1_FROM_SPDIF) {
err = add_controls(chip, spdif_input_controls,
ARRAY_SIZE(spdif_input_controls));
if (err < 0)
return err;
}
for (i = 0; i < ARRAY_SIZE(monitor_controls); ++i) {
if (!(chip->model.device_config & monitor_controls[i].pcm_dev))
continue;
err = add_controls(chip, monitor_controls[i].controls,
ARRAY_SIZE(monitor_controls[i].controls));
if (err < 0)
return err;
}
if (chip->has_ac97_0) {
err = add_controls(chip, ac97_controls,
ARRAY_SIZE(ac97_controls));
if (err < 0)
return err;
}
if (chip->has_ac97_1) {
err = add_controls(chip, ac97_fp_controls,
ARRAY_SIZE(ac97_fp_controls));
if (err < 0)
return err;
}
return chip->model.mixer_init ? chip->model.mixer_init(chip) : 0;
}