1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
/*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#define CONFIG_SYS_NAND_READ_DELAY \
{ volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; }
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
#if (CONFIG_SYS_NAND_PAGE_SIZE <= 512)
/*
* NAND command for small page NAND devices (512)
*/
static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
{
struct nand_chip *this = mtd->priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, page_addr & 0xff, NAND_CTRL_ALE); /* A[16:9] */
this->cmd_ctrl(mtd, (page_addr >> 8) & 0xff,
NAND_CTRL_ALE); /* A[24:17] */
#ifdef CONFIG_SYS_NAND_4_ADDR_CYCLE
/* One more address cycle for devices > 32MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[28:25] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
return 0;
}
#else
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd)
{
struct nand_chip *this = mtd->priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Shift the offset from byte addressing to word addressing. */
if (this->options & NAND_BUSWIDTH_16)
offs >>= 1;
/* Begin command latch cycle */
this->cmd_ctrl(mtd, cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
/* Set ALE and clear CLE to start address cycle */
/* Column address */
this->cmd_ctrl(mtd, offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
this->cmd_ctrl(mtd, (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
this->cmd_ctrl(mtd, (page_addr & 0xff), NAND_CTRL_ALE); /* A[19:12] */
this->cmd_ctrl(mtd, ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
this->cmd_ctrl(mtd, (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
/* Latch in address */
this->cmd_ctrl(mtd, NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
this->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
if (this->dev_ready)
while (!this->dev_ready(mtd))
;
else
CONFIG_SYS_NAND_READ_DELAY;
return 0;
}
#endif
static int nand_is_bad_block(struct mtd_info *mtd, int block)
{
struct nand_chip *this = mtd->priv;
nand_command(mtd, block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB);
/*
* Read one byte
*/
if (readb(this->IO_ADDR_R) != 0xff)
return 1;
return 0;
}
static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst)
{
struct nand_chip *this = mtd->priv;
u_char *ecc_calc;
u_char *ecc_code;
u_char *oob_data;
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
uint8_t *p = dst;
int stat;
nand_command(mtd, block, page, 0, NAND_CMD_READ0);
/* No malloc available for now, just use some temporary locations
* in SDRAM
*/
ecc_calc = (u_char *)(CONFIG_SYS_SDRAM_BASE + 0x10000);
ecc_code = ecc_calc + 0x100;
oob_data = ecc_calc + 0x200;
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(mtd, NAND_ECC_READ);
this->read_buf(mtd, p, eccsize);
this->ecc.calculate(mtd, p, &ecc_calc[i]);
}
this->read_buf(mtd, oob_data, CONFIG_SYS_NAND_OOBSIZE);
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < CONFIG_SYS_NAND_ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = CONFIG_SYS_NAND_ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
stat = this->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
static int nand_load(struct mtd_info *mtd, unsigned int offs,
unsigned int uboot_size, uchar *dst)
{
unsigned int block, lastblock;
unsigned int page;
/*
* offs has to be aligned to a page address!
*/
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
lastblock = (offs + uboot_size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
while (block <= lastblock) {
if (!nand_is_bad_block(mtd, block)) {
/*
* Skip bad blocks
*/
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
nand_read_page(mtd, block, page, dst);
dst += CONFIG_SYS_NAND_PAGE_SIZE;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
return 0;
}
/*
* The main entry for NAND booting. It's necessary that SDRAM is already
* configured and available since this code loads the main U-Boot image
* from NAND into SDRAM and starts it from there.
*/
void nand_boot(void)
{
struct nand_chip nand_chip;
nand_info_t nand_info;
int ret;
__attribute__((noreturn)) void (*uboot)(void);
/*
* Init board specific nand support
*/
nand_chip.select_chip = NULL;
nand_info.priv = &nand_chip;
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CONFIG_SYS_NAND_BASE;
nand_chip.dev_ready = NULL; /* preset to NULL */
board_nand_init(&nand_chip);
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info, 0);
/*
* Load U-Boot image from NAND into RAM
*/
ret = nand_load(&nand_info, CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE,
(uchar *)CONFIG_SYS_NAND_U_BOOT_DST);
#ifdef CONFIG_NAND_ENV_DST
nand_load(&nand_info, CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST);
#ifdef CONFIG_ENV_OFFSET_REDUND
nand_load(&nand_info, CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE,
(uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE);
#endif
#endif
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info, -1);
/*
* Jump to U-Boot image
*/
uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START;
(*uboot)();
}
|