1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
|
/*
* Copyright 2013-2014 Freescale Semiconductor, Inc.
*
* Freescale Quad Serial Peripheral Interface (QSPI) driver
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include "fsl_qspi.h"
#define RX_BUFFER_SIZE 0x80
#ifdef CONFIG_MX6SX
#define TX_BUFFER_SIZE 0x200
#else
#define TX_BUFFER_SIZE 0x40
#endif
#define OFFSET_BITS_MASK 0x00ffffff
#define FLASH_STATUS_WEL 0x02
/* SEQID */
#define SEQID_WREN 1
#define SEQID_FAST_READ 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
/* QSPI CMD */
#define QSPI_CMD_PP 0x02 /* Page program (up to 256 bytes) */
#define QSPI_CMD_RDSR 0x05 /* Read status register */
#define QSPI_CMD_WREN 0x06 /* Write enable */
#define QSPI_CMD_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define QSPI_CMD_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define QSPI_CMD_SE 0xd8 /* Sector erase (usually 64KiB) */
#define QSPI_CMD_RDID 0x9f /* Read JEDEC ID */
/* 4-byte address QSPI CMD - used on Spansion and some Macronix flashes */
#define QSPI_CMD_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define QSPI_CMD_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define QSPI_CMD_SE_4B 0xdc /* Sector erase (usually 64KiB) */
#ifdef CONFIG_SYS_FSL_QSPI_LE
#define qspi_read32 in_le32
#define qspi_write32 out_le32
#elif defined(CONFIG_SYS_FSL_QSPI_BE)
#define qspi_read32 in_be32
#define qspi_write32 out_be32
#endif
static unsigned long spi_bases[] = {
QSPI0_BASE_ADDR,
#ifdef CONFIG_MX6SX
QSPI1_BASE_ADDR,
#endif
};
static unsigned long amba_bases[] = {
QSPI0_AMBA_BASE,
#ifdef CONFIG_MX6SX
QSPI1_AMBA_BASE,
#endif
};
struct fsl_qspi {
struct spi_slave slave;
unsigned long reg_base;
unsigned long amba_base;
u32 sf_addr;
u8 cur_seqid;
};
/* QSPI support swapping the flash read/write data
* in hardware for LS102xA, but not for VF610 */
static inline u32 qspi_endian_xchg(u32 data)
{
#ifdef CONFIG_VF610
return swab32(data);
#else
return data;
#endif
}
static inline struct fsl_qspi *to_qspi_spi(struct spi_slave *slave)
{
return container_of(slave, struct fsl_qspi, slave);
}
static void qspi_set_lut(struct fsl_qspi *qspi)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 lut_base;
/* Unlock the LUT */
qspi_write32(®s->lutkey, LUT_KEY_VALUE);
qspi_write32(®s->lckcr, QSPI_LCKCR_UNLOCK);
/* Write Enable */
lut_base = SEQID_WREN * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_WREN) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Fast Read */
lut_base = SEQID_FAST_READ * 4;
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_FAST_READ) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base],
OPRND0(QSPI_CMD_FAST_READ_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
INSTR1(LUT_ADDR));
qspi_write32(®s->lut[lut_base + 1], OPRND0(8) | PAD0(LUT_PAD1) |
INSTR0(LUT_DUMMY) | OPRND1(RX_BUFFER_SIZE) | PAD1(LUT_PAD1) |
INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Read Status */
lut_base = SEQID_RDSR * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_RDSR) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Erase a sector */
lut_base = SEQID_SE * 4;
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_SE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_SE_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_CHIP_ERASE) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Page Program */
lut_base = SEQID_PP * 4;
if (FSL_QSPI_FLASH_SIZE <= SZ_16M)
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_PP) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
else
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_PP_4B) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#ifdef CONFIG_MX6SX
/*
* To MX6SX, OPRND0(TX_BUFFER_SIZE) can not work correctly.
* So, Use IDATSZ in IPCR to determine the size and here set 0.
*/
qspi_write32(®s->lut[lut_base + 1], OPRND0(0) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#else
qspi_write32(®s->lut[lut_base + 1], OPRND0(TX_BUFFER_SIZE) |
PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
#endif
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* READ ID */
lut_base = SEQID_RDID * 4;
qspi_write32(®s->lut[lut_base], OPRND0(QSPI_CMD_RDID) |
PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
PAD1(LUT_PAD1) | INSTR1(LUT_READ));
qspi_write32(®s->lut[lut_base + 1], 0);
qspi_write32(®s->lut[lut_base + 2], 0);
qspi_write32(®s->lut[lut_base + 3], 0);
/* Lock the LUT */
qspi_write32(®s->lutkey, LUT_KEY_VALUE);
qspi_write32(®s->lckcr, QSPI_LCKCR_LOCK);
}
void spi_init()
{
/* do nothing */
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_qspi *qspi;
struct fsl_qspi_regs *regs;
u32 reg_val, smpr_val;
u32 total_size, seq_id;
if (bus >= ARRAY_SIZE(spi_bases))
return NULL;
if (cs >= FSL_QSPI_FLASH_NUM)
return NULL;
qspi = spi_alloc_slave(struct fsl_qspi, bus, cs);
if (!qspi)
return NULL;
qspi->reg_base = spi_bases[bus];
/*
* According cs, use different amba_base to choose the
* corresponding flash devices.
*
* If not, only one flash device is used even if passing
* different cs using `sf probe`
*/
qspi->amba_base = amba_bases[bus] + cs * FSL_QSPI_FLASH_SIZE;
qspi->slave.max_write_size = TX_BUFFER_SIZE;
regs = (struct fsl_qspi_regs *)qspi->reg_base;
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK | QSPI_MCR_MDIS_MASK);
smpr_val = qspi_read32(®s->smpr);
qspi_write32(®s->smpr, smpr_val & ~(QSPI_SMPR_FSDLY_MASK |
QSPI_SMPR_FSPHS_MASK | QSPI_SMPR_HSENA_MASK));
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK);
total_size = FSL_QSPI_FLASH_SIZE * FSL_QSPI_FLASH_NUM;
/*
* Any read access to non-implemented addresses will provide
* undefined results.
*
* In case single die flash devices, TOP_ADDR_MEMA2 and
* TOP_ADDR_MEMB2 should be initialized/programmed to
* TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
* setting the size of these devices to 0. This would ensure
* that the complete memory map is assigned to only one flash device.
*/
qspi_write32(®s->sfa1ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(®s->sfa2ad, FSL_QSPI_FLASH_SIZE | amba_bases[bus]);
qspi_write32(®s->sfb1ad, total_size | amba_bases[bus]);
qspi_write32(®s->sfb2ad, total_size | amba_bases[bus]);
qspi_set_lut(qspi);
smpr_val = qspi_read32(®s->smpr);
smpr_val &= ~QSPI_SMPR_DDRSMP_MASK;
qspi_write32(®s->smpr, smpr_val);
qspi_write32(®s->mcr, QSPI_MCR_RESERVED_MASK);
seq_id = 0;
reg_val = qspi_read32(®s->bfgencr);
reg_val &= ~QSPI_BFGENCR_SEQID_MASK;
reg_val |= (seq_id << QSPI_BFGENCR_SEQID_SHIFT);
reg_val &= ~QSPI_BFGENCR_PAR_EN_MASK;
qspi_write32(®s->bfgencr, reg_val);
return &qspi->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
free(qspi);
}
int spi_claim_bus(struct spi_slave *slave)
{
return 0;
}
static void qspi_op_rdid(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, rbsr_reg, data;
int i, size;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(®s->sfar, qspi->amba_base);
qspi_write32(®s->ipcr, (SEQID_RDID << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
i = 0;
size = len;
while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
rbsr_reg = qspi_read32(®s->rbsr);
if (rbsr_reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(®s->rbdr[i]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
rxbuf++;
size -= 4;
i++;
}
}
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_read(struct fsl_qspi *qspi, u32 *rxbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, data;
int i, size;
u32 to_or_from;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = qspi->sf_addr + qspi->amba_base;
while (len > 0) {
qspi_write32(®s->sfar, to_or_from);
size = (len > RX_BUFFER_SIZE) ?
RX_BUFFER_SIZE : len;
qspi_write32(®s->ipcr,
(SEQID_FAST_READ << QSPI_IPCR_SEQID_SHIFT) | size);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
to_or_from += size;
len -= size;
i = 0;
while ((RX_BUFFER_SIZE >= size) && (size > 0)) {
data = qspi_read32(®s->rbdr[i]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
rxbuf++;
size -= 4;
i++;
}
qspi_write32(®s->mcr, qspi_read32(®s->mcr) |
QSPI_MCR_CLR_RXF_MASK);
}
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_pp(struct fsl_qspi *qspi, u32 *txbuf, u32 len)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, data, reg, status_reg;
int i, size, tx_size;
u32 to_or_from = 0;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
status_reg = 0;
while ((status_reg & FLASH_STATUS_WEL) != FLASH_STATUS_WEL) {
qspi_write32(®s->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 1);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
reg = qspi_read32(®s->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
status_reg = qspi_read32(®s->rbdr[0]);
status_reg = qspi_endian_xchg(status_reg);
}
qspi_write32(®s->mcr,
qspi_read32(®s->mcr) | QSPI_MCR_CLR_RXF_MASK);
}
to_or_from = qspi->sf_addr + qspi->amba_base;
qspi_write32(®s->sfar, to_or_from);
tx_size = (len > TX_BUFFER_SIZE) ?
TX_BUFFER_SIZE : len;
size = (tx_size + 3) / 4;
for (i = 0; i < size; i++) {
data = qspi_endian_xchg(*txbuf);
qspi_write32(®s->tbdr, data);
txbuf++;
}
qspi_write32(®s->ipcr,
(SEQID_PP << QSPI_IPCR_SEQID_SHIFT) | tx_size);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_rdsr(struct fsl_qspi *qspi, u32 *rxbuf)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg, reg, data;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
qspi_write32(®s->sfar, qspi->amba_base);
qspi_write32(®s->ipcr,
(SEQID_RDSR << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
while (1) {
reg = qspi_read32(®s->rbsr);
if (reg & QSPI_RBSR_RDBFL_MASK) {
data = qspi_read32(®s->rbdr[0]);
data = qspi_endian_xchg(data);
memcpy(rxbuf, &data, 4);
qspi_write32(®s->mcr, qspi_read32(®s->mcr) |
QSPI_MCR_CLR_RXF_MASK);
break;
}
}
qspi_write32(®s->mcr, mcr_reg);
}
static void qspi_op_se(struct fsl_qspi *qspi)
{
struct fsl_qspi_regs *regs = (struct fsl_qspi_regs *)qspi->reg_base;
u32 mcr_reg;
u32 to_or_from = 0;
mcr_reg = qspi_read32(®s->mcr);
qspi_write32(®s->mcr, QSPI_MCR_CLR_RXF_MASK | QSPI_MCR_CLR_TXF_MASK |
QSPI_MCR_RESERVED_MASK | QSPI_MCR_END_CFD_LE);
qspi_write32(®s->rbct, QSPI_RBCT_RXBRD_USEIPS);
to_or_from = qspi->sf_addr + qspi->amba_base;
qspi_write32(®s->sfar, to_or_from);
qspi_write32(®s->ipcr,
(SEQID_WREN << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->ipcr,
(SEQID_SE << QSPI_IPCR_SEQID_SHIFT) | 0);
while (qspi_read32(®s->sr) & QSPI_SR_BUSY_MASK)
;
qspi_write32(®s->mcr, mcr_reg);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct fsl_qspi *qspi = to_qspi_spi(slave);
u32 bytes = DIV_ROUND_UP(bitlen, 8);
static u32 pp_sfaddr;
u32 txbuf;
if (dout) {
memcpy(&txbuf, dout, 4);
qspi->cur_seqid = *(u8 *)dout;
if (flags == SPI_XFER_END) {
qspi->sf_addr = pp_sfaddr;
qspi_op_pp(qspi, (u32 *)dout, bytes);
return 0;
}
if (qspi->cur_seqid == QSPI_CMD_FAST_READ) {
qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
} else if (qspi->cur_seqid == QSPI_CMD_SE) {
qspi->sf_addr = swab32(txbuf) & OFFSET_BITS_MASK;
qspi_op_se(qspi);
} else if (qspi->cur_seqid == QSPI_CMD_PP) {
pp_sfaddr = swab32(txbuf) & OFFSET_BITS_MASK;
}
}
if (din) {
if (qspi->cur_seqid == QSPI_CMD_FAST_READ)
qspi_op_read(qspi, din, bytes);
else if (qspi->cur_seqid == QSPI_CMD_RDID)
qspi_op_rdid(qspi, din, bytes);
else if (qspi->cur_seqid == QSPI_CMD_RDSR)
qspi_op_rdsr(qspi, din);
}
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Nothing to do */
}
|