1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
|
/*
* Freescale QuadSPI driver.
*
* Copyright (C) 2014 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#define QUADSPI_AHBMAP_BANK_MAXSIZE SZ_64M
/* The registers */
#define QUADSPI_MCR 0x00
#define QUADSPI_MCR_RESERVED_SHIFT 16
#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
#define QUADSPI_MCR_MDIS_SHIFT 14
#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
#define QUADSPI_MCR_CLR_TXF_SHIFT 11
#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
#define QUADSPI_MCR_CLR_RXF_SHIFT 10
#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
#define QUADSPI_MCR_DDR_EN_SHIFT 7
#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
#define QUADSPI_MCR_END_CFG_SHIFT 2
#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
#define QUADSPI_MCR_SWRSTHD_SHIFT 1
#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
#define QUADSPI_MCR_SWRSTSD_SHIFT 0
#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
#define QUADSPI_IPCR 0x08
#define QUADSPI_IPCR_SEQID_SHIFT 24
#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
#define QUADSPI_BUF0CR 0x10
#define QUADSPI_BUF1CR 0x14
#define QUADSPI_BUF2CR 0x18
#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
#define QUADSPI_BUF3CR 0x1c
#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
#define QUADSPI_BUF3CR_ALLMST_MASK (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
#define QUADSPI_BUF3CR_ADATSZ_SHIFT 8
#define QUADSPI_BUF3CR_ADATSZ_MASK (0xFF << QUADSPI_BUF3CR_ADATSZ_SHIFT)
#define QUADSPI_BFGENCR 0x20
#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
#define QUADSPI_BFGENCR_SEQID_SHIFT 12
#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
#define QUADSPI_BUF0IND 0x30
#define QUADSPI_BUF1IND 0x34
#define QUADSPI_BUF2IND 0x38
#define QUADSPI_SFAR 0x100
#define QUADSPI_SMPR 0x108
#define QUADSPI_SMPR_DDRSMP_SHIFT 16
#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
#define QUADSPI_SMPR_FSDLY_SHIFT 6
#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
#define QUADSPI_SMPR_FSPHS_SHIFT 5
#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
#define QUADSPI_SMPR_HSENA_SHIFT 0
#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
#define QUADSPI_RBSR 0x10c
#define QUADSPI_RBSR_RDBFL_SHIFT 8
#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
#define QUADSPI_RBCT 0x110
#define QUADSPI_RBCT_WMRK_MASK 0x1F
#define QUADSPI_RBCT_RXBRD_SHIFT 8
#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
#define QUADSPI_TBSR 0x150
#define QUADSPI_TBDR 0x154
#define QUADSPI_SR 0x15c
#define QUADSPI_SR_IP_ACC_SHIFT 1
#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
#define QUADSPI_SR_AHB_ACC_SHIFT 2
#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
#define QUADSPI_FR 0x160
#define QUADSPI_FR_TFF_MASK 0x1
#define QUADSPI_SFA1AD 0x180
#define QUADSPI_SFA2AD 0x184
#define QUADSPI_SFB1AD 0x188
#define QUADSPI_SFB2AD 0x18c
#define QUADSPI_RBDR 0x200
#define QUADSPI_LUTKEY 0x300
#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
#define QUADSPI_LCKCR 0x304
#define QUADSPI_LCKER_LOCK 0x1
#define QUADSPI_LCKER_UNLOCK 0x2
#define QUADSPI_RSER 0x164
#define QUADSPI_RSER_TFIE (0x1 << 0)
#define QUADSPI_LUT_BASE 0x310
/*
* The definition of the LUT register shows below:
*
* ---------------------------------------------------
* | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
* ---------------------------------------------------
*/
#define OPRND0_SHIFT 0
#define PAD0_SHIFT 8
#define INSTR0_SHIFT 10
#define OPRND1_SHIFT 16
/* Instruction set for the LUT register. */
#define LUT_STOP 0
#define LUT_CMD 1
#define LUT_ADDR 2
#define LUT_DUMMY 3
#define LUT_MODE 4
#define LUT_MODE2 5
#define LUT_MODE4 6
#define LUT_READ 7
#define LUT_WRITE 8
#define LUT_JMP_ON_CS 9
#define LUT_ADDR_DDR 10
#define LUT_MODE_DDR 11
#define LUT_MODE2_DDR 12
#define LUT_MODE4_DDR 13
#define LUT_READ_DDR 14
#define LUT_WRITE_DDR 15
#define LUT_DATA_LEARN 16
/*
* The PAD definitions for LUT register.
*
* The pad stands for the lines number of IO[0:3].
* For example, the Quad read need four IO lines, so you should
* set LUT_PAD4 which means we use four IO lines.
*/
#define LUT_PAD1 0
#define LUT_PAD2 1
#define LUT_PAD4 2
/* Oprands for the LUT register. */
#define ADDR24BIT 0x18
#define ADDR32BIT 0x20
/* Macros for constructing the LUT register. */
#define LUT0(ins, pad, opr) \
(((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
((LUT_##ins) << INSTR0_SHIFT))
#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
/* other macros for LUT register. */
#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
#define QUADSPI_LUT_NUM 64
/* SEQID -- we can have 16 seqids at most. */
#define SEQID_QUAD_READ 0
#define SEQID_WREN 1
#define SEQID_FAST_READ 2
#define SEQID_RDSR 3
#define SEQID_SE 4
#define SEQID_CHIP_ERASE 5
#define SEQID_PP 6
#define SEQID_RDID 7
#define SEQID_WRSR 8
#define SEQID_RDCR 9
#define SEQID_DDR_QUAD_READ 10
#define SEQID_BE_4K 11
/* Flash opcodes. */
#define OPCODE_WREN 0x06 /* Write enable */
#define OPCODE_RDSR 0x05 /* Read status register */
#define OPCODE_WRSR 0x01 /* Write status register 1 byte */
#define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define OPCODE_QUAD_READ 0x6b /* Read data bytes */
#define OPCODE_DDR_QUAD_READ 0x6d /* Read data bytes in DDR mode*/
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
#define OPCODE_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
#define OPCODE_CHIP_ERASE 0xc7 /* Erase whole flash chip */
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
#define OPCODE_RDCR 0x35 /* Read configuration register */
/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
#define OPCODE_NORM_READ_4B 0x13 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ_4B 0x0c /* Read data bytes (high frequency) */
#define OPCODE_QUAD_READ_4B 0x6c /* Read data bytes */
#define OPCODE_PP_4B 0x12 /* Page program (up to 256 bytes) */
#define OPCODE_SE_4B 0xdc /* Sector erase (usually 64KiB) */
/* Used for SST flashes only. */
#define OPCODE_BP 0x02 /* Byte program */
#define OPCODE_WRDI 0x04 /* Write disable */
#define OPCODE_AAI_WP 0xad /* Auto address increment word program */
/* Used for Macronix and Winbond flashes. */
#define OPCODE_EN4B 0xb7 /* Enter 4-byte mode */
#define OPCODE_EX4B 0xe9 /* Exit 4-byte mode */
/* Used for Spansion flashes only. */
#define OPCODE_BRWR 0x17 /* Bank register write */
/* Status Register bits. */
#define SR_WIP 1 /* Write in progress */
#define SR_WEL 2 /* Write enable latch */
/* meaning of other SR_* bits may differ between vendors */
#define SR_BP0 4 /* Block protect 0 */
#define SR_BP1 8 /* Block protect 1 */
#define SR_BP2 0x10 /* Block protect 2 */
#define SR_SRWD 0x80 /* SR write protect */
#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
/* Configuration Register bits. */
#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
/* Endianess Configuration */
#define BE_64 0x00
#define LE_32 0x01
#define BE_32 0x02
#define LE_64 0x03
enum fsl_qspi_devtype {
FSL_QUADSPI_VYBRID,
FSL_QUADSPI_IMX6SX,
};
struct fsl_qspi_devtype_data {
enum fsl_qspi_devtype devtype;
int rxfifo;
int txfifo;
};
struct fsl_qspi {
struct spi_slave slave;
uint32_t max_khz;
uint32_t mode;
u32 iobase;
u32 ahb_base; /* Used when read from AHB bus */
u32 bank_memmap_phy[4];
struct fsl_qspi_devtype_data *devtype_data;
};
static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
}
static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
{
writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
}
static void fsl_qspi_init_lut(struct fsl_qspi *q)
{
u32 base = q->iobase;
int rxfifo = q->devtype_data->rxfifo;
u32 lut_base;
u8 cmd, addrlen, dummy;
int i;
fsl_qspi_unlock_lut(q);
/* Clear all the LUT table */
for (i = 0; i < QUADSPI_LUT_NUM; i++)
writel(0, base + QUADSPI_LUT_BASE + i * 4);
/* Quad Read */
lut_base = SEQID_QUAD_READ * 4;
/* U-boot SPI flash only support 24bits address*/
cmd = OPCODE_QUAD_READ;
addrlen = ADDR24BIT;
dummy = 8;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
/* Write enable */
lut_base = SEQID_WREN * 4;
writel(LUT0(CMD, PAD1, OPCODE_WREN), base + QUADSPI_LUT(lut_base));
/* Fast Read */
lut_base = SEQID_FAST_READ * 4;
cmd = OPCODE_FAST_READ;
addrlen = ADDR24BIT;
dummy = 8;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD1, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
/* Page Program */
lut_base = SEQID_PP * 4;
cmd = OPCODE_PP;
addrlen = ADDR24BIT;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
/* Read Status */
lut_base = SEQID_RDSR * 4;
writel(LUT0(CMD, PAD1, OPCODE_RDSR) | LUT1(READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* Erase a sector */
lut_base = SEQID_SE * 4;
cmd = OPCODE_SE;
addrlen = ADDR24BIT;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
/* Erase the whole chip */
lut_base = SEQID_CHIP_ERASE * 4;
writel(LUT0(CMD, PAD1, OPCODE_CHIP_ERASE),
base + QUADSPI_LUT(lut_base));
/* READ ID */
lut_base = SEQID_RDID * 4;
writel(LUT0(CMD, PAD1, OPCODE_RDID) | LUT1(READ, PAD1, 0x8),
base + QUADSPI_LUT(lut_base));
/* Write Register */
lut_base = SEQID_WRSR * 4;
writel(LUT0(CMD, PAD1, OPCODE_WRSR) | LUT1(WRITE, PAD1, 0x2),
base + QUADSPI_LUT(lut_base));
/* Read Configuration Register */
lut_base = SEQID_RDCR * 4;
writel(LUT0(CMD, PAD1, OPCODE_RDCR) | LUT1(READ, PAD1, 0x1),
base + QUADSPI_LUT(lut_base));
/* DDR QUAD Read */
lut_base = SEQID_DDR_QUAD_READ * 4;
cmd = OPCODE_DDR_QUAD_READ;
addrlen = ADDR24BIT;
dummy = 6;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR_DDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ_DDR, PAD4, rxfifo),
base + QUADSPI_LUT(lut_base + 1));
writel(LUT0(JMP_ON_CS, PAD1, 0),
base + QUADSPI_LUT(lut_base + 2));
/* SUB SECTOR 4K ERASE */
lut_base = SEQID_BE_4K * 4;
cmd = OPCODE_BE_4K;
addrlen = ADDR24BIT;
writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
base + QUADSPI_LUT(lut_base));
fsl_qspi_lock_lut(q);
}
/*Enable DDR Read Mode*/
static void fsl_enable_ddr_mode(struct fsl_qspi *q)
{
u32 base = q->iobase;
u32 reg, reg2;
reg = readl(base + QUADSPI_MCR);
/* Firstly, disable the module */
writel(reg | QUADSPI_MCR_MDIS_MASK, base + QUADSPI_MCR);
/* Set the Sampling Register for DDR */
reg2 = readl(base + QUADSPI_SMPR);
reg2 &= ~QUADSPI_SMPR_DDRSMP_MASK;
reg2 |= (2 << QUADSPI_SMPR_DDRSMP_SHIFT);
writel(reg2, base + QUADSPI_SMPR);
/* Enable the module again (enable the DDR too) */
reg |= QUADSPI_MCR_DDR_EN_MASK;
reg |= (1 << 29); /* enable bit 29 for imx6sx */
writel(reg, base + QUADSPI_MCR);
}
/*
* There are two different ways to read out the data from the flash:
* the "IP Command Read" and the "AHB Command Read".
*
* The IC guy suggests we use the "AHB Command Read" which is faster
* then the "IP Command Read". (What's more is that there is a bug in
* the "IP Command Read" in the Vybrid.)
*
* After we set up the registers for the "AHB Command Read", we can use
* the memcpy to read the data directly. A "missed" access to the buffer
* causes the controller to clear the buffer, and use the sequence pointed
* by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
*/
static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
{
u32 base = q->iobase;
/* Map the SPI NOR to accessiable address, arrage max space for each bank*/
writel(q->bank_memmap_phy[0] + QUADSPI_AHBMAP_BANK_MAXSIZE,
base + QUADSPI_SFA1AD);
writel(q->bank_memmap_phy[1] + QUADSPI_AHBMAP_BANK_MAXSIZE,
base + QUADSPI_SFA2AD);
writel(q->bank_memmap_phy[2] + QUADSPI_AHBMAP_BANK_MAXSIZE,
base + QUADSPI_SFB1AD);
writel(q->bank_memmap_phy[3] + QUADSPI_AHBMAP_BANK_MAXSIZE,
base + QUADSPI_SFB2AD);
/* AHB configuration for access buffer 0/1/2 .*/
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
writel(QUADSPI_BUF3CR_ALLMST_MASK | (0x80 << QUADSPI_BUF3CR_ADATSZ_SHIFT),
base + QUADSPI_BUF3CR);
/* We only use the buffer3 */
writel(0, base + QUADSPI_BUF0IND);
writel(0, base + QUADSPI_BUF1IND);
writel(0, base + QUADSPI_BUF2IND);
/* Set the default lut sequence for AHB Read. */
writel(SEQID_FAST_READ << QUADSPI_BFGENCR_SEQID_SHIFT,
base + QUADSPI_BFGENCR);
/*Enable DDR Mode*/
fsl_enable_ddr_mode(q);
}
static int fsl_qspi_init(struct fsl_qspi *q)
{
u32 base = q->iobase;
u32 reg;
void *ptr;
ptr = malloc(sizeof(struct fsl_qspi_devtype_data));
if (!ptr) {
puts("FSL_QSPI: per-type data not allocated !\n");
return 1;
}
q->devtype_data = ptr;
q->devtype_data->rxfifo = 128;
q->devtype_data->txfifo = 512;
/* init the LUT table */
fsl_qspi_init_lut(q);
/* Disable the module */
writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
base + QUADSPI_MCR);
reg = readl(base + QUADSPI_SMPR);
writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
| QUADSPI_SMPR_FSPHS_MASK
| QUADSPI_SMPR_HSENA_MASK
| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
/* Enable the module */
writel(QUADSPI_MCR_RESERVED_MASK | LE_64 << QUADSPI_MCR_END_CFG_SHIFT,
base + QUADSPI_MCR);
/* We do not enable the interrupt */
/* init for AHB read */
fsl_qspi_init_abh_read(q);
/*
* High level code use page_size and max_write_size to calculate
* the number of bytes that should be programmed once.
*/
q->slave.max_write_size = q->devtype_data->txfifo;
return 0;
}
void spi_init(void)
{
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
unsigned int max_hz, unsigned int mode)
{
struct fsl_qspi *q;
int ret;
if (bus > 1) {
puts("FSL_QSPI: Not a valid bus !\n");
return NULL;
}
if (cs > 1) {
puts("FSL_QSPI: Not a valid cs !\n");
return NULL;
}
q = spi_alloc_slave(struct fsl_qspi, bus, cs);
if (!q) {
puts("FSL_QSPI: SPI Slave not allocated !\n");
return NULL;
}
q->iobase = CONFIG_QSPI_BASE;
q->bank_memmap_phy[0] = CONFIG_QSPI_MEMMAP_BASE;
q->bank_memmap_phy[1] = q->bank_memmap_phy[0] + QUADSPI_AHBMAP_BANK_MAXSIZE;
q->bank_memmap_phy[2] = q->bank_memmap_phy[1] + QUADSPI_AHBMAP_BANK_MAXSIZE;
q->bank_memmap_phy[3] = q->bank_memmap_phy[2] + QUADSPI_AHBMAP_BANK_MAXSIZE;
/* Init the QuadSPI controller */
ret = fsl_qspi_init(q);
if (ret) {
puts("FSL_QSPI: init failed!\n");
return NULL;
}
return &q->slave;
}
void spi_free_slave(struct spi_slave *slave)
{
struct fsl_qspi *q;
q = container_of(slave, struct fsl_qspi, slave);
free(q->devtype_data);
free(q);
}
int spi_claim_bus(struct spi_slave *q)
{
return 0;
}
void spi_release_bus(struct spi_slave *q)
{
}
/* Get the SEQID for the command */
static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
{
switch (cmd) {
case OPCODE_QUAD_READ:
case OPCODE_QUAD_READ_4B:
return SEQID_QUAD_READ;
case OPCODE_FAST_READ:
case OPCODE_FAST_READ_4B:
return SEQID_FAST_READ;
case OPCODE_WREN:
return SEQID_WREN;
case OPCODE_RDSR:
return SEQID_RDSR;
case OPCODE_SE:
return SEQID_SE;
case OPCODE_CHIP_ERASE:
return SEQID_CHIP_ERASE;
case OPCODE_PP:
case OPCODE_PP_4B:
return SEQID_PP;
case OPCODE_RDID:
return SEQID_RDID;
case OPCODE_WRSR:
return SEQID_WRSR;
case OPCODE_RDCR:
return SEQID_RDCR;
case OPCODE_DDR_QUAD_READ:
return SEQID_DDR_QUAD_READ;
case OPCODE_BE_4K:
return SEQID_BE_4K;
default:
break;
}
return -1;
}
/* return 1 on success */
static int fsl_qspi_wait_to_complete(struct fsl_qspi *q)
{
u32 base = q->iobase;
u32 reg;
/*printf("QuadSPI: poll the busy bit\n");*/
while (1) {
reg = readl(base + QUADSPI_SR);
if (reg & 1)
continue;
else
return 1;
}
return 0;
}
/*
* If we have changed the content of the flash by writing or erasing,
* we need to invalidate the AHB buffer. If we do not do so, we may read out
* the wrong data. The spec tells us reset the AHB domain and Serial Flash
* domain at the same time.
*/
static inline void fsl_qspi_invalid(struct fsl_qspi *q)
{
u32 reg;
reg = readl(q->iobase + QUADSPI_MCR);
reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
writel(reg, q->iobase + QUADSPI_MCR);
/*
* The minimum delay : 1 AHB + 2 SFCK clocks.
* Delay 1 us is enough.
*/
udelay(1);
reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
writel(reg, q->iobase + QUADSPI_MCR);
}
static int
fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
{
u32 base = q->iobase;
int seqid;
u32 reg, reg2;
int err;
int bank_id;
/* check the SR first, wait previous cmd completed*/
do {
reg2 = readl(base + QUADSPI_SR);
if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
udelay(1);
printf("The controller is busy, 0x%x\n", reg2);
continue;
}
break;
} while (1);
/* save the reg */
reg = readl(base + QUADSPI_MCR);
/* get the bank index */
bank_id = ((q->slave.bus) << 1) + (q->slave.cs);
writel(q->bank_memmap_phy[bank_id] + addr, base + QUADSPI_SFAR);
writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
base + QUADSPI_RBCT);
writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
/* trigger the LUT now */
seqid = fsl_qspi_get_seqid(q, cmd);
writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
/* Wait until completed */
err = fsl_qspi_wait_to_complete(q);
if (!err)
err = -1;
else
err = 0;
/* restore the MCR */
writel(reg, base + QUADSPI_MCR);
if ((OPCODE_SE == cmd) || (OPCODE_PP == cmd) || (OPCODE_BE_4K == cmd))
fsl_qspi_invalid(q);
return err;
}
/*
* An IC bug makes us to re-arrange the 32-bit data.
* The following chips, such as IMX6SLX, have fixed this bug.
*/
static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
{
return a;
}
/* Read out the data from the AHB buffer. */
static void fsl_qspi_ahb_read(struct fsl_qspi *q,
unsigned int addr, int len, u8 *rxbuf)
{
int bank_id;
/* get the bank index */
bank_id = ((q->slave.bus) << 1) + (q->slave.cs);
/* Read out the data directly from the AHB buffer.*/
memcpy(rxbuf, (u8 *)(q->bank_memmap_phy[bank_id] + addr), len);
}
/* Read out the data from the QUADSPI_RBDR buffer registers. */
static void fsl_qspi_ip_read(struct fsl_qspi *q, int len, u8 *rxbuf)
{
u32 tmp;
int i = 0;
while (len > 0) {
tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
tmp = fsl_qspi_endian_xchg(q, tmp);
if (len >= 4) {
memcpy(rxbuf, &tmp, 4);
rxbuf += 4;
} else {
memcpy(rxbuf, &tmp, len);
break;
}
len -= 4;
i++;
}
}
/* Write data to the QUADSPI_TBDR buffer registers. */
static void fsl_qspi_write_data(struct fsl_qspi *q, int len, u8* txbuf)
{
u32 tmp;
u32 t1, t2;
int j;
/* clear the TX FIFO. */
tmp = readl(q->iobase + QUADSPI_MCR);
writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
/* fill the TX data to the FIFO */
t2 = len % 4;
t1 = len >> 2; /* 4 Bytes aligned */
for (j = 0; j < t1; j++) {
memcpy(&tmp, txbuf, 4);
tmp = fsl_qspi_endian_xchg(q, tmp);
writel(tmp, q->iobase + QUADSPI_TBDR);
txbuf += 4;
}
if (t2) {
tmp = 0;
memcpy(&tmp, txbuf, t2);
tmp = fsl_qspi_endian_xchg(q, tmp);
writel(tmp, q->iobase + QUADSPI_TBDR);
}
}
/* see the spi_flash_read_write() */
int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
void *din, unsigned long flags)
{
struct fsl_qspi *q = container_of(slave, struct fsl_qspi, slave);
int len = bitlen / 8;
int ret = 0;
u8 *buf;
static u8 opcode;
static unsigned int addr;
if (!opcode && (flags & SPI_XFER_BEGIN)) {
/* spi_xfer for cmd phase */
buf = (u8 *)dout;
opcode = buf[0];
if (len > 1)
addr = buf[1] << 16 | buf[2] << 8 | buf[3];
/* if transfer cmd only */
if (flags & SPI_XFER_END)
ret = fsl_qspi_runcmd(q, opcode, addr, 0);
} else if (opcode) {
/* spi_xfer for data phase */
if (din) {
/* read*/
buf = (u8 *)din;
if (OPCODE_FAST_READ == opcode) {
fsl_qspi_ahb_read(q, addr, len, buf);
} else {
ret = fsl_qspi_runcmd(q, opcode, addr, len);
if (!ret)
fsl_qspi_ip_read(q, len, buf);
}
} else if (dout) {
/* write data, prepare data first */
buf = (u8 *)dout;
fsl_qspi_write_data(q, len, buf);
/* then run page program cmd */
ret = fsl_qspi_runcmd(q, opcode, addr, len);
}
}
if (ret || (flags & SPI_XFER_END)) {
opcode = 0;
addr = 0;
}
return ret;
}
|