summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand_legacy/nand_legacy.c
blob: fafefad60fefa6b572c5f2bc31f6028036a9fdec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
/*
 * (C) 2006 Denx
 * Driver for NAND support, Rick Bronson
 * borrowed heavily from:
 * (c) 1999 Machine Vision Holdings, Inc.
 * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
 *
 * Added 16-bit nand support
 * (C) 2004 Texas Instruments
 */

#include <common.h>
#include <command.h>
#include <malloc.h>
#include <asm/io.h>
#include <watchdog.h>

#if defined(CONFIG_CMD_NAND) && defined(CFG_NAND_LEGACY)

#include <linux/mtd/nand_legacy.h>
#include <linux/mtd/nand_ids.h>
#include <jffs2/jffs2.h>

#ifdef CONFIG_OMAP1510
void archflashwp(void *archdata, int wp);
#endif

#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1)))

#undef	PSYCHO_DEBUG
#undef	NAND_DEBUG

/* ****************** WARNING *********************
 * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will
 * erase (or at least attempt to erase) blocks that are marked
 * bad. This can be very handy if you are _sure_ that the block
 * is OK, say because you marked a good block bad to test bad
 * block handling and you are done testing, or if you have
 * accidentally marked blocks bad.
 *
 * Erasing factory marked bad blocks is a _bad_ idea. If the
 * erase succeeds there is no reliable way to find them again,
 * and attempting to program or erase bad blocks can affect
 * the data in _other_ (good) blocks.
 */
#define	 ALLOW_ERASE_BAD_DEBUG 0

#define CONFIG_MTD_NAND_ECC  /* enable ECC */
#define CONFIG_MTD_NAND_ECC_JFFS2

/* bits for nand_legacy_rw() `cmd'; or together as needed */
#define NANDRW_READ	0x01
#define NANDRW_WRITE	0x00
#define NANDRW_JFFS2	0x02
#define NANDRW_JFFS2_SKIP	0x04


/*
 * Exported variables etc.
 */

/* Definition of the out of band configuration structure */
struct nand_oob_config {
	/* position of ECC bytes inside oob */
	int ecc_pos[6];
	/* position of  bad blk flag inside oob -1 = inactive */
	int badblock_pos;
	/* position of ECC valid flag inside oob -1 = inactive */
	int eccvalid_pos;
} oob_config = { {0}, 0, 0};

struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}};

int curr_device = -1; /* Current NAND Device */


/*
 * Exported functionss
 */
int nand_legacy_erase(struct nand_chip* nand, size_t ofs,
		     size_t len, int clean);
int nand_legacy_rw(struct nand_chip* nand, int cmd,
		  size_t start, size_t len,
		  size_t * retlen, u_char * buf);
void nand_print(struct nand_chip *nand);
void nand_print_bad(struct nand_chip *nand);
int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
		 size_t * retlen, u_char * buf);
int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
		 size_t * retlen, const u_char * buf);

/*
 * Internals
 */
static int NanD_WaitReady(struct nand_chip *nand, int ale_wait);
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
		 size_t * retlen, u_char *buf, u_char *ecc_code);
static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
			   size_t * retlen, const u_char * buf,
			   u_char * ecc_code);
#ifdef CONFIG_MTD_NAND_ECC
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc);
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code);
#endif


/*
 *
 * Function definitions
 *
 */

/* returns 0 if block containing pos is OK:
 *		valid erase block and
 *		not marked bad, or no bad mark position is specified
 * returns 1 if marked bad or otherwise invalid
 */
static int check_block (struct nand_chip *nand, unsigned long pos)
{
	size_t retlen;
	uint8_t oob_data;
	uint16_t oob_data16[6];
	int page0 = pos & (-nand->erasesize);
	int page1 = page0 + nand->oobblock;
	int badpos = oob_config.badblock_pos;

	if (pos >= nand->totlen)
		return 1;

	if (badpos < 0)
		return 0;	/* no way to check, assume OK */

	if (nand->bus16) {
		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16)
		    || (oob_data16[2] & 0xff00) != 0xff00)
			return 1;
		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16)
		    || (oob_data16[2] & 0xff00) != 0xff00)
			return 1;
	} else {
		/* Note - bad block marker can be on first or second page */
		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data)
		    || oob_data != 0xff
		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data)
		    || oob_data != 0xff)
			return 1;
	}

	return 0;
}

/* print bad blocks in NAND flash */
void nand_print_bad(struct nand_chip* nand)
{
	unsigned long pos;

	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) {
		if (check_block(nand, pos))
			printf(" 0x%8.8lx\n", pos);
	}
	puts("\n");
}

/* cmd: 0: NANDRW_WRITE			write, fail on bad block
 *	1: NANDRW_READ			read, fail on bad block
 *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks
 *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks
 *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks
 */
int nand_legacy_rw (struct nand_chip* nand, int cmd,
		   size_t start, size_t len,
		   size_t * retlen, u_char * buf)
{
	int ret = 0, n, total = 0;
	char eccbuf[6];
	/* eblk (once set) is the start of the erase block containing the
	 * data being processed.
	 */
	unsigned long eblk = ~0;	/* force mismatch on first pass */
	unsigned long erasesize = nand->erasesize;

	while (len) {
		if ((start & (-erasesize)) != eblk) {
			/* have crossed into new erase block, deal with
			 * it if it is sure marked bad.
			 */
			eblk = start & (-erasesize); /* start of block */
			if (check_block(nand, eblk)) {
				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) {
					while (len > 0 &&
					       start - eblk < erasesize) {
						*(buf++) = 0xff;
						++start;
						++total;
						--len;
					}
					continue;
				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) {
					start += erasesize;
					continue;
				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) {
					/* skip bad block */
					start += erasesize;
					continue;
				} else {
					ret = 1;
					break;
				}
			}
		}
		/* The ECC will not be calculated correctly if
		   less than 512 is written or read */
		/* Is request at least 512 bytes AND it starts on a proper boundry */
		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200))
			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n");

		if (cmd & NANDRW_READ) {
			ret = nand_read_ecc(nand, start,
					   min(len, eblk + erasesize - start),
					   (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
		} else {
			ret = nand_write_ecc(nand, start,
					    min(len, eblk + erasesize - start),
					    (size_t *)&n, (u_char*)buf, (u_char *)eccbuf);
		}

		if (ret)
			break;

		start  += n;
		buf   += n;
		total += n;
		len   -= n;
	}
	if (retlen)
		*retlen = total;

	return ret;
}

void nand_print(struct nand_chip *nand)
{
	if (nand->numchips > 1) {
		printf("%s at 0x%lx,\n"
		       "\t  %d chips %s, size %d MB, \n"
		       "\t  total size %ld MB, sector size %ld kB\n",
		       nand->name, nand->IO_ADDR, nand->numchips,
		       nand->chips_name, 1 << (nand->chipshift - 20),
		       nand->totlen >> 20, nand->erasesize >> 10);
	}
	else {
		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR);
		print_size(nand->totlen, ", ");
		print_size(nand->erasesize, " sector)\n");
	}
}

/* ------------------------------------------------------------------------- */

static int NanD_WaitReady(struct nand_chip *nand, int ale_wait)
{
	/* This is inline, to optimise the common case, where it's ready instantly */
	int ret = 0;

#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */
	if(ale_wait)
		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */
	else
		udelay(10);
#else	/* has functional r/b signal */
	NAND_WAIT_READY(nand);
#endif
	return ret;
}

/* NanD_Command: Send a flash command to the flash chip */

static inline int NanD_Command(struct nand_chip *nand, unsigned char command)
{
	unsigned long nandptr = nand->IO_ADDR;

	/* Assert the CLE (Command Latch Enable) line to the flash chip */
	NAND_CTL_SETCLE(nandptr);

	/* Send the command */
	WRITE_NAND_COMMAND(command, nandptr);

	/* Lower the CLE line */
	NAND_CTL_CLRCLE(nandptr);

#ifdef NAND_NO_RB
	if(command == NAND_CMD_RESET){
		u_char ret_val;
		NanD_Command(nand, NAND_CMD_STATUS);
		do {
			ret_val = READ_NAND(nandptr);/* wait till ready */
		} while((ret_val & 0x40) != 0x40);
	}
#endif
	return NanD_WaitReady(nand, 0);
}

/* NanD_Address: Set the current address for the flash chip */

static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs)
{
	unsigned long nandptr;
	int i;

	nandptr = nand->IO_ADDR;

	/* Assert the ALE (Address Latch Enable) line to the flash chip */
	NAND_CTL_SETALE(nandptr);

	/* Send the address */
	/* Devices with 256-byte page are addressed as:
	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
	 * there is no device on the market with page256
	 * and more than 24 bits.
	 * Devices with 512-byte page are addressed as:
	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
	 * 25-31 is sent only if the chip support it.
	 * bit 8 changes the read command to be sent
	 * (NAND_CMD_READ0 or NAND_CMD_READ1).
	 */

	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE)
		WRITE_NAND_ADDRESS(ofs, nandptr);

	ofs = ofs >> nand->page_shift;

	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) {
			WRITE_NAND_ADDRESS(ofs, nandptr);
		}
	}

	/* Lower the ALE line */
	NAND_CTL_CLRALE(nandptr);

	/* Wait for the chip to respond */
	return NanD_WaitReady(nand, 1);
}

/* NanD_SelectChip: Select a given flash chip within the current floor */

static inline int NanD_SelectChip(struct nand_chip *nand, int chip)
{
	/* Wait for it to be ready */
	return NanD_WaitReady(nand, 0);
}

/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */

static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip)
{
	int mfr, id, i;

	NAND_ENABLE_CE(nand);  /* set pin low */
	/* Reset the chip */
	if (NanD_Command(nand, NAND_CMD_RESET)) {
#ifdef NAND_DEBUG
		printf("NanD_Command (reset) for %d,%d returned true\n",
		       floor, chip);
#endif
		NAND_DISABLE_CE(nand);  /* set pin high */
		return 0;
	}

	/* Read the NAND chip ID: 1. Send ReadID command */
	if (NanD_Command(nand, NAND_CMD_READID)) {
#ifdef NAND_DEBUG
		printf("NanD_Command (ReadID) for %d,%d returned true\n",
		       floor, chip);
#endif
		NAND_DISABLE_CE(nand);  /* set pin high */
		return 0;
	}

	/* Read the NAND chip ID: 2. Send address byte zero */
	NanD_Address(nand, ADDR_COLUMN, 0);

	/* Read the manufacturer and device id codes from the device */

	mfr = READ_NAND(nand->IO_ADDR);

	id = READ_NAND(nand->IO_ADDR);

	NAND_DISABLE_CE(nand);  /* set pin high */

#ifdef NAND_DEBUG
	printf("NanD_Command (ReadID) got %x %x\n", mfr, id);
#endif
	if (mfr == 0xff || mfr == 0) {
		/* No response - return failure */
		return 0;
	}

	/* Check it's the same as the first chip we identified.
	 * M-Systems say that any given nand_chip device should only
	 * contain _one_ type of flash part, although that's not a
	 * hardware restriction. */
	if (nand->mfr) {
		if (nand->mfr == mfr && nand->id == id) {
			return 1;	/* This is another the same the first */
		} else {
			printf("Flash chip at floor %d, chip %d is different:\n",
			       floor, chip);
		}
	}

	/* Print and store the manufacturer and ID codes. */
	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
		if (mfr == nand_flash_ids[i].manufacture_id &&
		    id == nand_flash_ids[i].model_id) {
#ifdef NAND_DEBUG
			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, "
			       "Chip ID: 0x%2.2X (%s)\n", mfr, id,
			       nand_flash_ids[i].name);
#endif
			if (!nand->mfr) {
				nand->mfr = mfr;
				nand->id = id;
				nand->chipshift =
				    nand_flash_ids[i].chipshift;
				nand->page256 = nand_flash_ids[i].page256;
				nand->eccsize = 256;
				if (nand->page256) {
					nand->oobblock = 256;
					nand->oobsize = 8;
					nand->page_shift = 8;
				} else {
					nand->oobblock = 512;
					nand->oobsize = 16;
					nand->page_shift = 9;
				}
				nand->pageadrlen = nand_flash_ids[i].pageadrlen;
				nand->erasesize  = nand_flash_ids[i].erasesize;
				nand->chips_name = nand_flash_ids[i].name;
				nand->bus16	 = nand_flash_ids[i].bus16;
				return 1;
			}
			return 0;
		}
	}


#ifdef NAND_DEBUG
	/* We haven't fully identified the chip. Print as much as we know. */
	printf("Unknown flash chip found: %2.2X %2.2X\n",
	       id, mfr);
#endif

	return 0;
}

/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */

static void NanD_ScanChips(struct nand_chip *nand)
{
	int floor, chip;
	int numchips[NAND_MAX_FLOORS];
	int maxchips = NAND_MAX_CHIPS;
	int ret = 1;

	nand->numchips = 0;
	nand->mfr = 0;
	nand->id = 0;


	/* For each floor, find the number of valid chips it contains */
	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
		ret = 1;
		numchips[floor] = 0;
		for (chip = 0; chip < maxchips && ret != 0; chip++) {

			ret = NanD_IdentChip(nand, floor, chip);
			if (ret) {
				numchips[floor]++;
				nand->numchips++;
			}
		}
	}

	/* If there are none at all that we recognise, bail */
	if (!nand->numchips) {
#ifdef NAND_DEBUG
		puts ("No NAND flash chips recognised.\n");
#endif
		return;
	}

	/* Allocate an array to hold the information for each chip */
	nand->chips = malloc(sizeof(struct Nand) * nand->numchips);
	if (!nand->chips) {
		puts ("No memory for allocating chip info structures\n");
		return;
	}

	ret = 0;

	/* Fill out the chip array with {floor, chipno} for each
	 * detected chip in the device. */
	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) {
		for (chip = 0; chip < numchips[floor]; chip++) {
			nand->chips[ret].floor = floor;
			nand->chips[ret].chip = chip;
			nand->chips[ret].curadr = 0;
			nand->chips[ret].curmode = 0x50;
			ret++;
		}
	}

	/* Calculate and print the total size of the device */
	nand->totlen = nand->numchips * (1 << nand->chipshift);

#ifdef NAND_DEBUG
	printf("%d flash chips found. Total nand_chip size: %ld MB\n",
	       nand->numchips, nand->totlen >> 20);
#endif
}

/* we need to be fast here, 1 us per read translates to 1 second per meg */
static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr)
{
	unsigned long nandptr = nand->IO_ADDR;

	NanD_Command (nand, NAND_CMD_READ0);

	if (nand->bus16) {
		u16 val;

		while (cntr >= 16) {
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			cntr -= 16;
		}

		while (cntr > 0) {
			val = READ_NAND (nandptr);
			*data_buf++ = val & 0xff;
			*data_buf++ = val >> 8;
			cntr -= 2;
		}
	} else {
		while (cntr >= 16) {
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			*data_buf++ = READ_NAND (nandptr);
			cntr -= 16;
		}

		while (cntr > 0) {
			*data_buf++ = READ_NAND (nandptr);
			cntr--;
		}
	}
}

/*
 * NAND read with ECC
 */
static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len,
		 size_t * retlen, u_char *buf, u_char *ecc_code)
{
	int col, page;
	int ecc_status = 0;
#ifdef CONFIG_MTD_NAND_ECC
	int j;
	int ecc_failed = 0;
	u_char *data_poi;
	u_char ecc_calc[6];
#endif

	/* Do not allow reads past end of device */
	if ((start + len) > nand->totlen) {
		printf ("%s: Attempt read beyond end of device %x %x %x\n",
			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen);
		*retlen = 0;
		return -1;
	}

	/* First we calculate the starting page */
	/*page = shr(start, nand->page_shift);*/
	page = start >> nand->page_shift;

	/* Get raw starting column */
	col = start & (nand->oobblock - 1);

	/* Initialize return value */
	*retlen = 0;

	/* Select the NAND device */
	NAND_ENABLE_CE(nand);  /* set pin low */

	/* Loop until all data read */
	while (*retlen < len) {

#ifdef CONFIG_MTD_NAND_ECC
		/* Do we have this page in cache ? */
		if (nand->cache_page == page)
			goto readdata;
		/* Send the read command */
		NanD_Command(nand, NAND_CMD_READ0);
		if (nand->bus16) {
			NanD_Address(nand, ADDR_COLUMN_PAGE,
				     (page << nand->page_shift) + (col >> 1));
		} else {
			NanD_Address(nand, ADDR_COLUMN_PAGE,
				     (page << nand->page_shift) + col);
		}

		/* Read in a page + oob data */
		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize);

		/* copy data into cache, for read out of cache and if ecc fails */
		if (nand->data_cache) {
			memcpy (nand->data_cache, nand->data_buf,
				nand->oobblock + nand->oobsize);
		}

		/* Pick the ECC bytes out of the oob data */
		for (j = 0; j < 6; j++) {
			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])];
		}

		/* Calculate the ECC and verify it */
		/* If block was not written with ECC, skip ECC */
		if (oob_config.eccvalid_pos != -1 &&
		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) {

			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]);
			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) {
			case -1:
				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
				ecc_failed++;
				break;
			case 1:
			case 2:	/* transfer ECC corrected data to cache */
				if (nand->data_cache)
					memcpy (nand->data_cache, nand->data_buf, 256);
				break;
			}
		}

		if (oob_config.eccvalid_pos != -1 &&
		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) {

			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]);
			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) {
			case -1:
				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page);
				ecc_failed++;
				break;
			case 1:
			case 2:	/* transfer ECC corrected data to cache */
				if (nand->data_cache)
					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256);
				break;
			}
		}
readdata:
		/* Read the data from ECC data buffer into return buffer */
		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf;
		data_poi += col;
		if ((*retlen + (nand->oobblock - col)) >= len) {
			memcpy (buf + *retlen, data_poi, len - *retlen);
			*retlen = len;
		} else {
			memcpy (buf + *retlen, data_poi,  nand->oobblock - col);
			*retlen += nand->oobblock - col;
		}
		/* Set cache page address, invalidate, if ecc_failed */
		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1;

		ecc_status += ecc_failed;
		ecc_failed = 0;

#else
		/* Send the read command */
		NanD_Command(nand, NAND_CMD_READ0);
		if (nand->bus16) {
			NanD_Address(nand, ADDR_COLUMN_PAGE,
				     (page << nand->page_shift) + (col >> 1));
		} else {
			NanD_Address(nand, ADDR_COLUMN_PAGE,
				     (page << nand->page_shift) + col);
		}

		/* Read the data directly into the return buffer */
		if ((*retlen + (nand->oobblock - col)) >= len) {
			NanD_ReadBuf(nand, buf + *retlen, len - *retlen);
			*retlen = len;
			/* We're done */
			continue;
		} else {
			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col);
			*retlen += nand->oobblock - col;
			}
#endif
		/* For subsequent reads align to page boundary. */
		col = 0;
		/* Increment page address */
		page++;
	}

	/* De-select the NAND device */
	NAND_DISABLE_CE(nand);  /* set pin high */

	/*
	 * Return success, if no ECC failures, else -EIO
	 * fs driver will take care of that, because
	 * retlen == desired len and result == -EIO
	 */
	return ecc_status ? -1 : 0;
}

/*
 *	Nand_page_program function is used for write and writev !
 */
static int nand_write_page (struct nand_chip *nand,
			    int page, int col, int last, u_char * ecc_code)
{

	int i;
	unsigned long nandptr = nand->IO_ADDR;

#ifdef CONFIG_MTD_NAND_ECC
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3;
#endif
#endif
	/* pad oob area */
	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++)
		nand->data_buf[i] = 0xff;

#ifdef CONFIG_MTD_NAND_ECC
	/* Zero out the ECC array */
	for (i = 0; i < 6; i++)
		ecc_code[i] = 0x00;

	/* Read back previous written data, if col > 0 */
	if (col) {
		NanD_Command (nand, NAND_CMD_READ0);
		if (nand->bus16) {
			NanD_Address (nand, ADDR_COLUMN_PAGE,
				      (page << nand->page_shift) + (col >> 1));
		} else {
			NanD_Address (nand, ADDR_COLUMN_PAGE,
				      (page << nand->page_shift) + col);
		}

		if (nand->bus16) {
			u16 val;

			for (i = 0; i < col; i += 2) {
				val = READ_NAND (nandptr);
				nand->data_buf[i] = val & 0xff;
				nand->data_buf[i + 1] = val >> 8;
			}
		} else {
			for (i = 0; i < col; i++)
				nand->data_buf[i] = READ_NAND (nandptr);
		}
	}

	/* Calculate and write the ECC if we have enough data */
	if ((col < nand->eccsize) && (last >= nand->eccsize)) {
		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0]));
		for (i = 0; i < 3; i++) {
			nand->data_buf[(nand->oobblock +
					oob_config.ecc_pos[i])] = ecc_code[i];
		}
		if (oob_config.eccvalid_pos != -1) {
			nand->data_buf[nand->oobblock +
				       oob_config.eccvalid_pos] = 0xf0;
		}
	}

	/* Calculate and write the second ECC if we have enough data */
	if ((nand->oobblock == 512) && (last == nand->oobblock)) {
		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3]));
		for (i = 3; i < 6; i++) {
			nand->data_buf[(nand->oobblock +
					oob_config.ecc_pos[i])] = ecc_code[i];
		}
		if (oob_config.eccvalid_pos != -1) {
			nand->data_buf[nand->oobblock +
				       oob_config.eccvalid_pos] &= 0x0f;
		}
	}
#endif
	/* Prepad for partial page programming !!! */
	for (i = 0; i < col; i++)
		nand->data_buf[i] = 0xff;

	/* Postpad for partial page programming !!! oob is already padded */
	for (i = last; i < nand->oobblock; i++)
		nand->data_buf[i] = 0xff;

	/* Send command to begin auto page programming */
	NanD_Command (nand, NAND_CMD_READ0);
	NanD_Command (nand, NAND_CMD_SEQIN);
	if (nand->bus16) {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + (col >> 1));
	} else {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + col);
	}

	/* Write out complete page of data */
	if (nand->bus16) {
		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) {
			WRITE_NAND (nand->data_buf[i] +
				    (nand->data_buf[i + 1] << 8),
				    nand->IO_ADDR);
		}
	} else {
		for (i = 0; i < (nand->oobblock + nand->oobsize); i++)
			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR);
	}

	/* Send command to actually program the data */
	NanD_Command (nand, NAND_CMD_PAGEPROG);
	NanD_Command (nand, NAND_CMD_STATUS);
#ifdef NAND_NO_RB
	{
		u_char ret_val;

		do {
			ret_val = READ_NAND (nandptr);	/* wait till ready */
		} while ((ret_val & 0x40) != 0x40);
	}
#endif
	/* See if device thinks it succeeded */
	if (READ_NAND (nand->IO_ADDR) & 0x01) {
		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__,
			page);
		return -1;
	}
#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
	/*
	 * The NAND device assumes that it is always writing to
	 * a cleanly erased page. Hence, it performs its internal
	 * write verification only on bits that transitioned from
	 * 1 to 0. The device does NOT verify the whole page on a
	 * byte by byte basis. It is possible that the page was
	 * not completely erased or the page is becoming unusable
	 * due to wear. The read with ECC would catch the error
	 * later when the ECC page check fails, but we would rather
	 * catch it early in the page write stage. Better to write
	 * no data than invalid data.
	 */

	/* Send command to read back the page */
	if (col < nand->eccsize)
		NanD_Command (nand, NAND_CMD_READ0);
	else
		NanD_Command (nand, NAND_CMD_READ1);
	if (nand->bus16) {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + (col >> 1));
	} else {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + col);
	}

	/* Loop through and verify the data */
	if (nand->bus16) {
		for (i = col; i < last; i = +2) {
			if ((nand->data_buf[i] +
			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) {
				printf ("%s: Failed write verify, page 0x%08x ",
					__FUNCTION__, page);
				return -1;
			}
		}
	} else {
		for (i = col; i < last; i++) {
			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) {
				printf ("%s: Failed write verify, page 0x%08x ",
					__FUNCTION__, page);
				return -1;
			}
		}
	}

#ifdef CONFIG_MTD_NAND_ECC
	/*
	 * We also want to check that the ECC bytes wrote
	 * correctly for the same reasons stated above.
	 */
	NanD_Command (nand, NAND_CMD_READOOB);
	if (nand->bus16) {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + (col >> 1));
	} else {
		NanD_Address (nand, ADDR_COLUMN_PAGE,
			      (page << nand->page_shift) + col);
	}
	if (nand->bus16) {
		for (i = 0; i < nand->oobsize; i += 2) {
			u16 val;

			val = READ_NAND (nand->IO_ADDR);
			nand->data_buf[i] = val & 0xff;
			nand->data_buf[i + 1] = val >> 8;
		}
	} else {
		for (i = 0; i < nand->oobsize; i++) {
			nand->data_buf[i] = READ_NAND (nand->IO_ADDR);
		}
	}
	for (i = 0; i < ecc_bytes; i++) {
		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) {
			printf ("%s: Failed ECC write "
				"verify, page 0x%08x, "
				"%6i bytes were succesful\n",
				__FUNCTION__, page, i);
			return -1;
		}
	}
#endif	/* CONFIG_MTD_NAND_ECC */
#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */
	return 0;
}

static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len,
			   size_t * retlen, const u_char * buf, u_char * ecc_code)
{
	int i, page, col, cnt, ret = 0;

	/* Do not allow write past end of device */
	if ((to + len) > nand->totlen) {
		printf ("%s: Attempt to write past end of page\n", __FUNCTION__);
		return -1;
	}

	/* Shift to get page */
	page = ((int) to) >> nand->page_shift;

	/* Get the starting column */
	col = to & (nand->oobblock - 1);

	/* Initialize return length value */
	*retlen = 0;

	/* Select the NAND device */
#ifdef CONFIG_OMAP1510
	archflashwp(0,0);
#endif
#ifdef CFG_NAND_WP
	NAND_WP_OFF();
#endif

	NAND_ENABLE_CE(nand);  /* set pin low */

	/* Check the WP bit */
	NanD_Command(nand, NAND_CMD_STATUS);
	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
		ret = -1;
		goto out;
	}

	/* Loop until all data is written */
	while (*retlen < len) {
		/* Invalidate cache, if we write to this page */
		if (nand->cache_page == page)
			nand->cache_page = -1;

		/* Write data into buffer */
		if ((col + len) >= nand->oobblock) {
			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) {
				nand->data_buf[i] = buf[(*retlen + cnt)];
			}
		} else {
			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) {
				nand->data_buf[i] = buf[(*retlen + cnt)];
			}
		}
		/* We use the same function for write and writev !) */
		ret = nand_write_page (nand, page, col, i, ecc_code);
		if (ret)
			goto out;

		/* Next data start at page boundary */
		col = 0;

		/* Update written bytes count */
		*retlen += cnt;

		/* Increment page address */
		page++;
	}

	/* Return happy */
	*retlen = len;

out:
	/* De-select the NAND device */
	NAND_DISABLE_CE(nand);  /* set pin high */
#ifdef CONFIG_OMAP1510
	archflashwp(0,1);
#endif
#ifdef CFG_NAND_WP
	NAND_WP_ON();
#endif

	return ret;
}

/* read from the 16 bytes of oob data that correspond to a 512 byte
 * page or 2 256-byte pages.
 */
int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len,
			 size_t * retlen, u_char * buf)
{
	int len256 = 0;
	struct Nand *mychip;
	int ret = 0;

	mychip = &nand->chips[ofs >> nand->chipshift];

	/* update address for 2M x 8bit devices. OOB starts on the second */
	/* page to maintain compatibility with nand_read_ecc. */
	if (nand->page256) {
		if (!(ofs & 0x8))
			ofs += 0x100;
		else
			ofs -= 0x8;
	}

	NAND_ENABLE_CE(nand);  /* set pin low */
	NanD_Command(nand, NAND_CMD_READOOB);
	if (nand->bus16) {
		NanD_Address(nand, ADDR_COLUMN_PAGE,
			     ((ofs >> nand->page_shift) << nand->page_shift) +
				((ofs & (nand->oobblock - 1)) >> 1));
	} else {
		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
	}

	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
	/* Note: datasheet says it should automaticaly wrap to the */
	/*       next OOB block, but it didn't work here. mf.      */
	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
		len256 = (ofs | 0x7) + 1 - ofs;
		NanD_ReadBuf(nand, buf, len256);

		NanD_Command(nand, NAND_CMD_READOOB);
		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
	}

	NanD_ReadBuf(nand, &buf[len256], len - len256);

	*retlen = len;
	/* Reading the full OOB data drops us off of the end of the page,
	 * causing the flash device to go into busy mode, so we need
	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */

	ret = NanD_WaitReady(nand, 1);
	NAND_DISABLE_CE(nand);  /* set pin high */

	return ret;

}

/* write to the 16 bytes of oob data that correspond to a 512 byte
 * page or 2 256-byte pages.
 */
int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len,
		  size_t * retlen, const u_char * buf)
{
	int len256 = 0;
	int i;
	unsigned long nandptr = nand->IO_ADDR;

#ifdef PSYCHO_DEBUG
	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",
	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3],
	       buf[8], buf[9], buf[14],buf[15]);
#endif

	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */

	/* Reset the chip */
	NanD_Command(nand, NAND_CMD_RESET);

	/* issue the Read2 command to set the pointer to the Spare Data Area. */
	NanD_Command(nand, NAND_CMD_READOOB);
	if (nand->bus16) {
		NanD_Address(nand, ADDR_COLUMN_PAGE,
			     ((ofs >> nand->page_shift) << nand->page_shift) +
				((ofs & (nand->oobblock - 1)) >> 1));
	} else {
		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
	}

	/* update address for 2M x 8bit devices. OOB starts on the second */
	/* page to maintain compatibility with nand_read_ecc. */
	if (nand->page256) {
		if (!(ofs & 0x8))
			ofs += 0x100;
		else
			ofs -= 0x8;
	}

	/* issue the Serial Data In command to initial the Page Program process */
	NanD_Command(nand, NAND_CMD_SEQIN);
	if (nand->bus16) {
		NanD_Address(nand, ADDR_COLUMN_PAGE,
			     ((ofs >> nand->page_shift) << nand->page_shift) +
				((ofs & (nand->oobblock - 1)) >> 1));
	} else {
		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs);
	}

	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
	/* Note: datasheet says it should automaticaly wrap to the */
	/*       next OOB block, but it didn't work here. mf.      */
	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) {
		len256 = (ofs | 0x7) + 1 - ofs;
		for (i = 0; i < len256; i++)
			WRITE_NAND(buf[i], nandptr);

		NanD_Command(nand, NAND_CMD_PAGEPROG);
		NanD_Command(nand, NAND_CMD_STATUS);
#ifdef NAND_NO_RB
		{ u_char ret_val;
			do {
				ret_val = READ_NAND(nandptr); /* wait till ready */
			} while ((ret_val & 0x40) != 0x40);
		}
#endif
		if (READ_NAND(nandptr) & 1) {
			puts ("Error programming oob data\n");
			/* There was an error */
			NAND_DISABLE_CE(nand);  /* set pin high */
			*retlen = 0;
			return -1;
		}
		NanD_Command(nand, NAND_CMD_SEQIN);
		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff));
	}

	if (nand->bus16) {
		for (i = len256; i < len; i += 2) {
			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr);
		}
	} else {
		for (i = len256; i < len; i++)
			WRITE_NAND(buf[i], nandptr);
	}

	NanD_Command(nand, NAND_CMD_PAGEPROG);
	NanD_Command(nand, NAND_CMD_STATUS);
#ifdef NAND_NO_RB
	{	u_char ret_val;
		do {
			ret_val = READ_NAND(nandptr); /* wait till ready */
		} while ((ret_val & 0x40) != 0x40);
	}
#endif
	if (READ_NAND(nandptr) & 1) {
		puts ("Error programming oob data\n");
		/* There was an error */
		NAND_DISABLE_CE(nand);  /* set pin high */
		*retlen = 0;
		return -1;
	}

	NAND_DISABLE_CE(nand);  /* set pin high */
	*retlen = len;
	return 0;

}

int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean)
{
	/* This is defined as a structure so it will work on any system
	 * using native endian jffs2 (the default).
	 */
	static struct jffs2_unknown_node clean_marker = {
		JFFS2_MAGIC_BITMASK,
		JFFS2_NODETYPE_CLEANMARKER,
		8		/* 8 bytes in this node */
	};
	unsigned long nandptr;
	struct Nand *mychip;
	int ret = 0;

	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) {
		printf ("Offset and size must be sector aligned, erasesize = %d\n",
			(int) nand->erasesize);
		return -1;
	}

	nandptr = nand->IO_ADDR;

	/* Select the NAND device */
#ifdef CONFIG_OMAP1510
	archflashwp(0,0);
#endif
#ifdef CFG_NAND_WP
	NAND_WP_OFF();
#endif
    NAND_ENABLE_CE(nand);  /* set pin low */

	/* Check the WP bit */
	NanD_Command(nand, NAND_CMD_STATUS);
	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
		printf ("nand_write_ecc: Device is write protected!!!\n");
		ret = -1;
		goto out;
	}

	/* Check the WP bit */
	NanD_Command(nand, NAND_CMD_STATUS);
	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) {
		printf ("%s: Device is write protected!!!\n", __FUNCTION__);
		ret = -1;
		goto out;
	}

	/* FIXME: Do nand in the background. Use timers or schedule_task() */
	while(len) {
		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/
		mychip = &nand->chips[ofs >> nand->chipshift];

		/* always check for bad block first, genuine bad blocks
		 * should _never_  be erased.
		 */
		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) {
			/* Select the NAND device */
			NAND_ENABLE_CE(nand);  /* set pin low */

			NanD_Command(nand, NAND_CMD_ERASE1);
			NanD_Address(nand, ADDR_PAGE, ofs);
			NanD_Command(nand, NAND_CMD_ERASE2);

			NanD_Command(nand, NAND_CMD_STATUS);

#ifdef NAND_NO_RB
			{	u_char ret_val;
				do {
					ret_val = READ_NAND(nandptr); /* wait till ready */
				} while ((ret_val & 0x40) != 0x40);
			}
#endif
			if (READ_NAND(nandptr) & 1) {
				printf ("%s: Error erasing at 0x%lx\n",
					__FUNCTION__, (long)ofs);
				/* There was an error */
				ret = -1;
				goto out;
			}
			if (clean) {
				int n;	/* return value not used */
				int p, l;

				/* clean marker position and size depend
				 * on the page size, since 256 byte pages
				 * only have 8 bytes of oob data
				 */
				if (nand->page256) {
					p = NAND_JFFS2_OOB8_FSDAPOS;
					l = NAND_JFFS2_OOB8_FSDALEN;
				} else {
					p = NAND_JFFS2_OOB16_FSDAPOS;
					l = NAND_JFFS2_OOB16_FSDALEN;
				}

				ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n,
						     (u_char *)&clean_marker);
				/* quit here if write failed */
				if (ret)
					goto out;
			}
		}
		ofs += nand->erasesize;
		len -= nand->erasesize;
	}

out:
	/* De-select the NAND device */
	NAND_DISABLE_CE(nand);  /* set pin high */
#ifdef CONFIG_OMAP1510
	archflashwp(0,1);
#endif
#ifdef CFG_NAND_WP
	NAND_WP_ON();
#endif

	return ret;
}


static inline int nandcheck(unsigned long potential, unsigned long physadr)
{
	return 0;
}

unsigned long nand_probe(unsigned long physadr)
{
	struct nand_chip *nand = NULL;
	int i = 0, ChipID = 1;

#ifdef CONFIG_MTD_NAND_ECC_JFFS2
	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0;
	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1;
	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2;
	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3;
	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4;
	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5;
	oob_config.eccvalid_pos = 4;
#else
	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0;
	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1;
	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2;
	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3;
	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4;
	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5;
	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS;
#endif
	oob_config.badblock_pos = 5;

	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) {
		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) {
			nand = &nand_dev_desc[i];
			break;
		}
	}
	if (!nand)
		return (0);

	memset((char *)nand, 0, sizeof(struct nand_chip));

	nand->IO_ADDR = physadr;
	nand->cache_page = -1;  /* init the cache page */
	NanD_ScanChips(nand);

	if (nand->totlen == 0) {
		/* no chips found, clean up and quit */
		memset((char *)nand, 0, sizeof(struct nand_chip));
		nand->ChipID = NAND_ChipID_UNKNOWN;
		return (0);
	}

	nand->ChipID = ChipID;
	if (curr_device == -1)
		curr_device = i;

	nand->data_buf = malloc (nand->oobblock + nand->oobsize);
	if (!nand->data_buf) {
		puts ("Cannot allocate memory for data structures.\n");
		return (0);
	}

	return (nand->totlen);
}

#ifdef CONFIG_MTD_NAND_ECC
/*
 * Pre-calculated 256-way 1 byte column parity
 */
static const u_char nand_ecc_precalc_table[] = {
	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30,
	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55,
	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56,
	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33,
	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59,
	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c,
	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f,
	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a,
	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
};


/*
 * Creates non-inverted ECC code from line parity
 */
static void nand_trans_result(u_char reg2, u_char reg3,
	u_char *ecc_code)
{
	u_char a, b, i, tmp1, tmp2;

	/* Initialize variables */
	a = b = 0x80;
	tmp1 = tmp2 = 0;

	/* Calculate first ECC byte */
	for (i = 0; i < 4; i++) {
		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */
			tmp1 |= b;
		b >>= 1;
		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */
			tmp1 |= b;
		b >>= 1;
		a >>= 1;
	}

	/* Calculate second ECC byte */
	b = 0x80;
	for (i = 0; i < 4; i++) {
		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */
			tmp2 |= b;
		b >>= 1;
		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */
			tmp2 |= b;
		b >>= 1;
		a >>= 1;
	}

	/* Store two of the ECC bytes */
	ecc_code[0] = tmp1;
	ecc_code[1] = tmp2;
}

/*
 * Calculate 3 byte ECC code for 256 byte block
 */
static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code)
{
	u_char idx, reg1, reg3;
	int j;

	/* Initialize variables */
	reg1 = reg3 = 0;
	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;

	/* Build up column parity */
	for(j = 0; j < 256; j++) {

		/* Get CP0 - CP5 from table */
		idx = nand_ecc_precalc_table[dat[j]];
		reg1 ^= idx;

		/* All bit XOR = 1 ? */
		if (idx & 0x40) {
			reg3 ^= (u_char) j;
		}
	}

	/* Create non-inverted ECC code from line parity */
	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code);

	/* Calculate final ECC code */
	ecc_code[0] = ~ecc_code[0];
	ecc_code[1] = ~ecc_code[1];
	ecc_code[2] = ((~reg1) << 2) | 0x03;
}

/*
 * Detect and correct a 1 bit error for 256 byte block
 */
static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc)
{
	u_char a, b, c, d1, d2, d3, add, bit, i;

	/* Do error detection */
	d1 = calc_ecc[0] ^ read_ecc[0];
	d2 = calc_ecc[1] ^ read_ecc[1];
	d3 = calc_ecc[2] ^ read_ecc[2];

	if ((d1 | d2 | d3) == 0) {
		/* No errors */
		return 0;
	} else {
		a = (d1 ^ (d1 >> 1)) & 0x55;
		b = (d2 ^ (d2 >> 1)) & 0x55;
		c = (d3 ^ (d3 >> 1)) & 0x54;

		/* Found and will correct single bit error in the data */
		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
			c = 0x80;
			add = 0;
			a = 0x80;
			for (i=0; i<4; i++) {
				if (d1 & c)
					add |= a;
				c >>= 2;
				a >>= 1;
			}
			c = 0x80;
			for (i=0; i<4; i++) {
				if (d2 & c)
					add |= a;
				c >>= 2;
				a >>= 1;
			}
			bit = 0;
			b = 0x04;
			c = 0x80;
			for (i=0; i<3; i++) {
				if (d3 & c)
					bit |= b;
				c >>= 2;
				b >>= 1;
			}
			b = 0x01;
			a = dat[add];
			a ^= (b << bit);
			dat[add] = a;
			return 1;
		}
		else {
			i = 0;
			while (d1) {
				if (d1 & 0x01)
					++i;
				d1 >>= 1;
			}
			while (d2) {
				if (d2 & 0x01)
					++i;
				d2 >>= 1;
			}
			while (d3) {
				if (d3 & 0x01)
					++i;
				d3 >>= 1;
			}
			if (i == 1) {
				/* ECC Code Error Correction */
				read_ecc[0] = calc_ecc[0];
				read_ecc[1] = calc_ecc[1];
				read_ecc[2] = calc_ecc[2];
				return 2;
			}
			else {
				/* Uncorrectable Error */
				return -1;
			}
		}
	}

	/* Should never happen */
	return -1;
}

#endif

#ifdef CONFIG_JFFS2_NAND
int read_jffs2_nand(size_t start, size_t len,
		size_t * retlen, u_char * buf, int nanddev)
{
	return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2,
			start, len, retlen, buf);
}
#endif /* CONFIG_JFFS2_NAND */

#endif