summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/mxc_nand.c
blob: b2b612e3a4a470e493252e5abcc16a7bf983e054 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
/*
 * Copyright 2004-2007 Freescale Semiconductor, Inc.
 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
 * Copyright 2009 Ilya Yanok, <yanok@emcraft.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
 * MA 02110-1301, USA.
 */

#include <common.h>
#include <nand.h>
#include <linux/err.h>
#include <asm/io.h>
#ifdef CONFIG_MX27
#include <asm/arch/imx-regs.h>
#endif

#define DRIVER_NAME "mxc_nand"

struct nfc_regs {
/* NFC RAM BUFFER Main area 0 */
	uint8_t main_area0[0x200];
	uint8_t main_area1[0x200];
	uint8_t main_area2[0x200];
	uint8_t main_area3[0x200];
/* SPARE BUFFER Spare area 0 */
	uint8_t spare_area0[0x10];
	uint8_t spare_area1[0x10];
	uint8_t spare_area2[0x10];
	uint8_t spare_area3[0x10];
	uint8_t pad[0x5c0];
/* NFC registers */
	uint16_t nfc_buf_size;
	uint16_t reserved;
	uint16_t nfc_buf_addr;
	uint16_t nfc_flash_addr;
	uint16_t nfc_flash_cmd;
	uint16_t nfc_config;
	uint16_t nfc_ecc_status_result;
	uint16_t nfc_rsltmain_area;
	uint16_t nfc_rsltspare_area;
	uint16_t nfc_wrprot;
	uint16_t nfc_unlockstart_blkaddr;
	uint16_t nfc_unlockend_blkaddr;
	uint16_t nfc_nf_wrprst;
	uint16_t nfc_config1;
	uint16_t nfc_config2;
};

/*
 * Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
 * for Command operation
 */
#define NFC_CMD            0x1

/*
 * Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
 * for Address operation
 */
#define NFC_ADDR           0x2

/*
 * Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
 * for Input operation
 */
#define NFC_INPUT          0x4

/*
 * Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
 * for Data Output operation
 */
#define NFC_OUTPUT         0x8

/*
 * Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
 * for Read ID operation
 */
#define NFC_ID             0x10

/*
 * Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
 * for Read Status operation
 */
#define NFC_STATUS         0x20

/*
 * Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
 * Status operation
 */
#define NFC_INT            0x8000

#define NFC_SP_EN           (1 << 2)
#define NFC_ECC_EN          (1 << 3)
#define NFC_BIG             (1 << 5)
#define NFC_RST             (1 << 6)
#define NFC_CE              (1 << 7)
#define NFC_ONE_CYCLE       (1 << 8)

typedef enum {false, true} bool;

struct mxc_nand_host {
	struct mtd_info		mtd;
	struct nand_chip	*nand;

	struct nfc_regs __iomem	*regs;
	int			spare_only;
	int			status_request;
	int			pagesize_2k;
	int			clk_act;
	uint16_t		col_addr;
};

static struct mxc_nand_host mxc_host;
static struct mxc_nand_host *host = &mxc_host;

/* Define delays in microsec for NAND device operations */
#define TROP_US_DELAY   2000
/* Macros to get byte and bit positions of ECC */
#define COLPOS(x)  ((x) >> 3)
#define BITPOS(x) ((x) & 0xf)

/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1

/* OOB placement block for use with hardware ecc generation */
#ifdef CONFIG_MXC_NAND_HWECC
static struct nand_ecclayout nand_hw_eccoob = {
	.eccbytes = 5,
	.eccpos = {6, 7, 8, 9, 10},
	.oobfree = {{0, 5}, {11, 5}, }
};
#else
static struct nand_ecclayout nand_soft_eccoob = {
	.eccbytes = 6,
	.eccpos = {6, 7, 8, 9, 10, 11},
	.oobfree = {{0, 5}, {12, 4}, }
};
#endif

static struct nand_ecclayout nand_hw_eccoob_largepage = {
	.eccbytes = 20,
	.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
		   38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
	.oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
};

#ifdef CONFIG_MX27
static int is_16bit_nand(void)
{
	struct system_control_regs *sc_regs =
		(struct system_control_regs *)IMX_SYSTEM_CTL_BASE;

	if (readl(&sc_regs->fmcr) & NF_16BIT_SEL)
		return 1;
	else
		return 0;
}
#elif defined(CONFIG_MX31)
static int is_16bit_nand(void)
{
	struct clock_control_regs *sc_regs =
		(struct clock_control_regs *)CCM_BASE;

	if (readl(&sc_regs->rcsr) & CCM_RCSR_NF16B)
		return 1;
	else
		return 0;
}
#else
#warning "8/16 bit NAND autodetection not supported"
static int is_16bit_nand(void)
{
	return 0;
}
#endif

static uint32_t *mxc_nand_memcpy32(uint32_t *dest, uint32_t *source, size_t size)
{
	uint32_t *d = dest;

	size >>= 2;
	while (size--)
		__raw_writel(__raw_readl(source++), d++);
	return dest;
}

/*
 * This function polls the NANDFC to wait for the basic operation to
 * complete by checking the INT bit of config2 register.
 */
static void wait_op_done(struct mxc_nand_host *host, int max_retries,
				uint16_t param)
{
	uint32_t tmp;

	while (max_retries-- > 0) {
		if (readw(&host->regs->nfc_config2) & NFC_INT) {
			tmp = readw(&host->regs->nfc_config2);
			tmp  &= ~NFC_INT;
			writew(tmp, &host->regs->nfc_config2);
			break;
		}
		udelay(1);
	}
	if (max_retries < 0) {
		MTDDEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
				__func__, param);
	}
}

/*
 * This function issues the specified command to the NAND device and
 * waits for completion.
 */
static void send_cmd(struct mxc_nand_host *host, uint16_t cmd)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x)\n", cmd);

	writew(cmd, &host->regs->nfc_flash_cmd);
	writew(NFC_CMD, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, cmd);
}

/*
 * This function sends an address (or partial address) to the
 * NAND device. The address is used to select the source/destination for
 * a NAND command.
 */
static void send_addr(struct mxc_nand_host *host, uint16_t addr)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x)\n", addr);

	writew(addr, &host->regs->nfc_flash_addr);
	writew(NFC_ADDR, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, addr);
}

/*
 * This function requests the NANDFC to initate the transfer
 * of data currently in the NANDFC RAM buffer to the NAND device.
 */
static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
			int spare_only)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);

	writew(buf_id, &host->regs->nfc_buf_addr);

	/* Configure spare or page+spare access */
	if (!host->pagesize_2k) {
		uint16_t config1 = readw(&host->regs->nfc_config1);
		if (spare_only)
			config1 |= NFC_SP_EN;
		else
			config1 &= ~(NFC_SP_EN);
		writew(config1, &host->regs->nfc_config1);
	}

	writew(NFC_INPUT, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, spare_only);
}

/*
 * Requests NANDFC to initated the transfer of data from the
 * NAND device into in the NANDFC ram buffer.
 */
static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
		int spare_only)
{
	MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);

	writew(buf_id, &host->regs->nfc_buf_addr);

	/* Configure spare or page+spare access */
	if (!host->pagesize_2k) {
		uint32_t config1 = readw(&host->regs->nfc_config1);
		if (spare_only)
			config1 |= NFC_SP_EN;
		else
			config1 &= ~NFC_SP_EN;
		writew(config1, &host->regs->nfc_config1);
	}

	writew(NFC_OUTPUT, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, spare_only);
}

/* Request the NANDFC to perform a read of the NAND device ID. */
static void send_read_id(struct mxc_nand_host *host)
{
	uint16_t tmp;

	/* NANDFC buffer 0 is used for device ID output */
	writew(0x0, &host->regs->nfc_buf_addr);

	/* Read ID into main buffer */
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_SP_EN;
	writew(tmp, &host->regs->nfc_config1);

	writew(NFC_ID, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, 0);
}

/*
 * This function requests the NANDFC to perform a read of the
 * NAND device status and returns the current status.
 */
static uint16_t get_dev_status(struct mxc_nand_host *host)
{
	void __iomem *main_buf = host->regs->main_area1;
	uint32_t store;
	uint16_t ret, tmp;
	/* Issue status request to NAND device */

	/* store the main area1 first word, later do recovery */
	store = readl(main_buf);
	/* NANDFC buffer 1 is used for device status */
	writew(1, &host->regs->nfc_buf_addr);

	/* Read status into main buffer */
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_SP_EN;
	writew(tmp, &host->regs->nfc_config1);

	writew(NFC_STATUS, &host->regs->nfc_config2);

	/* Wait for operation to complete */
	wait_op_done(host, TROP_US_DELAY, 0);

	/*
	 *  Status is placed in first word of main buffer
	 * get status, then recovery area 1 data
	 */
	ret = readw(main_buf);
	writel(store, main_buf);

	return ret;
}

/* This function is used by upper layer to checks if device is ready */
static int mxc_nand_dev_ready(struct mtd_info *mtd)
{
	/*
	 * NFC handles R/B internally. Therefore, this function
	 * always returns status as ready.
	 */
	return 1;
}

#ifdef CONFIG_MXC_NAND_HWECC
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
	/*
	 * If HW ECC is enabled, we turn it on during init. There is
	 * no need to enable again here.
	 */
}

static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
				 u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	/*
	 * 1-Bit errors are automatically corrected in HW.  No need for
	 * additional correction.  2-Bit errors cannot be corrected by
	 * HW ECC, so we need to return failure
	 */
	uint16_t ecc_status = readw(&host->regs->nfc_ecc_status_result);

	if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
		MTDDEBUG(MTD_DEBUG_LEVEL0,
		      "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
		return -1;
	}

	return 0;
}

static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
				  u_char *ecc_code)
{
	return 0;
}
#endif

static u_char mxc_nand_read_byte(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint8_t ret = 0;
	uint16_t col;
	uint16_t __iomem *main_buf =
		(uint16_t __iomem *)host->regs->main_area0;
	uint16_t __iomem *spare_buf =
		(uint16_t __iomem *)host->regs->spare_area0;
	union {
		uint16_t word;
		uint8_t bytes[2];
	} nfc_word;

	/* Check for status request */
	if (host->status_request)
		return get_dev_status(host) & 0xFF;

	/* Get column for 16-bit access */
	col = host->col_addr >> 1;

	/* If we are accessing the spare region */
	if (host->spare_only)
		nfc_word.word = readw(&spare_buf[col]);
	else
		nfc_word.word = readw(&main_buf[col]);

	/* Pick upper/lower byte of word from RAM buffer */
	ret = nfc_word.bytes[host->col_addr & 0x1];

	/* Update saved column address */
	if (nand_chip->options & NAND_BUSWIDTH_16)
		host->col_addr += 2;
	else
		host->col_addr++;

	return ret;
}

static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	uint16_t col, ret;
	uint16_t __iomem *p;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_read_word(col = %d)\n", host->col_addr);

	col = host->col_addr;
	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	if (col < mtd->writesize) {
		p = (uint16_t __iomem *)(host->regs->main_area0 + (col >> 1));
	} else {
		p = (uint16_t __iomem *)(host->regs->spare_area0 +
				((col - mtd->writesize) >> 1));
	}

	if (col & 1) {
		union {
			uint16_t word;
			uint8_t bytes[2];
		} nfc_word[3];

		nfc_word[0].word = readw(p);
		nfc_word[1].word = readw(p + 1);

		nfc_word[2].bytes[0] = nfc_word[0].bytes[1];
		nfc_word[2].bytes[1] = nfc_word[1].bytes[0];

		ret = nfc_word[2].word;
	} else {
		ret = readw(p);
	}

	/* Update saved column address */
	host->col_addr = col + 2;

	return ret;
}

/*
 * Write data of length len to buffer buf. The data to be
 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
 * Operation by the NFC, the data is written to NAND Flash
 */
static void mxc_nand_write_buf(struct mtd_info *mtd,
				const u_char *buf, int len)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	int n, col, i = 0;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
	      len);

	col = host->col_addr;

	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	n = mtd->writesize + mtd->oobsize - col;
	n = min(len, n);

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);

	while (n > 0) {
		void __iomem *p;

		if (col < mtd->writesize) {
			p = host->regs->main_area0 + (col & ~3);
		} else {
			p = host->regs->spare_area0 -
						mtd->writesize + (col & ~3);
		}

		MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
		      __LINE__, p);

		if (((col | (unsigned long)&buf[i]) & 3) || n < 4) {
			union {
				uint32_t word;
				uint8_t bytes[4];
			} nfc_word;

			nfc_word.word = readl(p);
			nfc_word.bytes[col & 3] = buf[i++];
			n--;
			col++;

			writel(nfc_word.word, p);
		} else {
			int m = mtd->writesize - col;

			if (col >= mtd->writesize)
				m += mtd->oobsize;

			m = min(n, m) & ~3;

			MTDDEBUG(MTD_DEBUG_LEVEL3,
			      "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
			      __func__,  __LINE__, n, m, i, col);

			mxc_nand_memcpy32(p, (uint32_t *)&buf[i], m);
			col += m;
			i += m;
			n -= m;
		}
	}
	/* Update saved column address */
	host->col_addr = col;
}

/*
 * Read the data buffer from the NAND Flash. To read the data from NAND
 * Flash first the data output cycle is initiated by the NFC, which copies
 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
 */
static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;
	int n, col, i = 0;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);

	col = host->col_addr;

	/* Adjust saved column address */
	if (col < mtd->writesize && host->spare_only)
		col += mtd->writesize;

	n = mtd->writesize + mtd->oobsize - col;
	n = min(len, n);

	while (n > 0) {
		void __iomem *p;

		if (col < mtd->writesize) {
			p = host->regs->main_area0 + (col & ~3);
		} else {
			p = host->regs->spare_area0 -
					mtd->writesize + (col & ~3);
		}

		if (((col | (int)&buf[i]) & 3) || n < 4) {
			union {
				uint32_t word;
				uint8_t bytes[4];
			} nfc_word;

			nfc_word.word = readl(p);
			buf[i++] = nfc_word.bytes[col & 3];
			n--;
			col++;
		} else {
			int m = mtd->writesize - col;

			if (col >= mtd->writesize)
				m += mtd->oobsize;

			m = min(n, m) & ~3;
			mxc_nand_memcpy32((uint32_t *)&buf[i], p, m);

			col += m;
			i += m;
			n -= m;
		}
	}
	/* Update saved column address */
	host->col_addr = col;
}

/*
 * Used by the upper layer to verify the data in NAND Flash
 * with the data in the buf.
 */
static int mxc_nand_verify_buf(struct mtd_info *mtd,
				const u_char *buf, int len)
{
	u_char tmp[256];
	uint bsize;

	while (len) {
		bsize = min(len, 256);
		mxc_nand_read_buf(mtd, tmp, bsize);

		if (memcmp(buf, tmp, bsize))
			return 1;

		buf += bsize;
		len -= bsize;
	}

	return 0;
}

/*
 * This function is used by upper layer for select and
 * deselect of the NAND chip
 */
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	switch (chip) {
	case -1:
		/* TODO: Disable the NFC clock */
		if (host->clk_act)
			host->clk_act = 0;
		break;
	case 0:
		/* TODO: Enable the NFC clock */
		if (!host->clk_act)
			host->clk_act = 1;
		break;

	default:
		break;
	}
}

/*
 * Used by the upper layer to write command to NAND Flash for
 * different operations to be carried out on NAND Flash
 */
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
				int column, int page_addr)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct mxc_nand_host *host = nand_chip->priv;

	MTDDEBUG(MTD_DEBUG_LEVEL3,
	      "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
	      command, column, page_addr);

	/* Reset command state information */
	host->status_request = false;

	/* Command pre-processing step */
	switch (command) {

	case NAND_CMD_STATUS:
		host->col_addr = 0;
		host->status_request = true;
		break;

	case NAND_CMD_READ0:
		host->col_addr = column;
		host->spare_only = false;
		break;

	case NAND_CMD_READOOB:
		host->col_addr = column;
		host->spare_only = true;
		if (host->pagesize_2k)
			command = NAND_CMD_READ0; /* only READ0 is valid */
		break;

	case NAND_CMD_SEQIN:
		if (column >= mtd->writesize) {
			/*
			 * before sending SEQIN command for partial write,
			 * we need read one page out. FSL NFC does not support
			 * partial write. It alway send out 512+ecc+512+ecc ...
			 * for large page nand flash. But for small page nand
			 * flash, it does support SPARE ONLY operation.
			 */
			if (host->pagesize_2k) {
				/* call ourself to read a page */
				mxc_nand_command(mtd, NAND_CMD_READ0, 0,
						page_addr);
			}

			host->col_addr = column - mtd->writesize;
			host->spare_only = true;

			/* Set program pointer to spare region */
			if (!host->pagesize_2k)
				send_cmd(host, NAND_CMD_READOOB);
		} else {
			host->spare_only = false;
			host->col_addr = column;

			/* Set program pointer to page start */
			if (!host->pagesize_2k)
				send_cmd(host, NAND_CMD_READ0);
		}
		break;

	case NAND_CMD_PAGEPROG:
		send_prog_page(host, 0, host->spare_only);

		if (host->pagesize_2k) {
			/* data in 4 areas datas */
			send_prog_page(host, 1, host->spare_only);
			send_prog_page(host, 2, host->spare_only);
			send_prog_page(host, 3, host->spare_only);
		}

		break;
	}

	/* Write out the command to the device. */
	send_cmd(host, command);

	/* Write out column address, if necessary */
	if (column != -1) {
		/*
		 * MXC NANDFC can only perform full page+spare or
		 * spare-only read/write.  When the upper layers
		 * layers perform a read/write buf operation,
		 * we will used the saved column adress to index into
		 * the full page.
		 */
		send_addr(host, 0);
		if (host->pagesize_2k)
			/* another col addr cycle for 2k page */
			send_addr(host, 0);
	}

	/* Write out page address, if necessary */
	if (page_addr != -1) {
		/* paddr_0 - p_addr_7 */
		send_addr(host, (page_addr & 0xff));

		if (host->pagesize_2k) {
			send_addr(host, (page_addr >> 8) & 0xFF);
			if (mtd->size >= 0x10000000) {
				/* paddr_8 - paddr_15 */
				send_addr(host, (page_addr >> 8) & 0xff);
				send_addr(host, (page_addr >> 16) & 0xff);
			} else {
				/* paddr_8 - paddr_15 */
				send_addr(host, (page_addr >> 8) & 0xff);
			}
		} else {
			/* One more address cycle for higher density devices */
			if (mtd->size >= 0x4000000) {
				/* paddr_8 - paddr_15 */
				send_addr(host, (page_addr >> 8) & 0xff);
				send_addr(host, (page_addr >> 16) & 0xff);
			} else {
				/* paddr_8 - paddr_15 */
				send_addr(host, (page_addr >> 8) & 0xff);
			}
		}
	}

	/* Command post-processing step */
	switch (command) {

	case NAND_CMD_RESET:
		break;

	case NAND_CMD_READOOB:
	case NAND_CMD_READ0:
		if (host->pagesize_2k) {
			/* send read confirm command */
			send_cmd(host, NAND_CMD_READSTART);
			/* read for each AREA */
			send_read_page(host, 0, host->spare_only);
			send_read_page(host, 1, host->spare_only);
			send_read_page(host, 2, host->spare_only);
			send_read_page(host, 3, host->spare_only);
		} else {
			send_read_page(host, 0, host->spare_only);
		}
		break;

	case NAND_CMD_READID:
		host->col_addr = 0;
		send_read_id(host);
		break;

	case NAND_CMD_PAGEPROG:
		break;

	case NAND_CMD_STATUS:
		break;

	case NAND_CMD_ERASE2:
		break;
	}
}

int board_nand_init(struct nand_chip *this)
{
	struct mtd_info *mtd;
	uint16_t tmp;
	int err = 0;

	/* structures must be linked */
	mtd = &host->mtd;
	mtd->priv = this;
	host->nand = this;

	/* 5 us command delay time */
	this->chip_delay = 5;

	this->priv = host;
	this->dev_ready = mxc_nand_dev_ready;
	this->cmdfunc = mxc_nand_command;
	this->select_chip = mxc_nand_select_chip;
	this->read_byte = mxc_nand_read_byte;
	this->read_word = mxc_nand_read_word;
	this->write_buf = mxc_nand_write_buf;
	this->read_buf = mxc_nand_read_buf;
	this->verify_buf = mxc_nand_verify_buf;

	host->regs = (struct nfc_regs __iomem *)CONFIG_MXC_NAND_REGS_BASE;
	host->clk_act = 1;

#ifdef CONFIG_MXC_NAND_HWECC
	this->ecc.calculate = mxc_nand_calculate_ecc;
	this->ecc.hwctl = mxc_nand_enable_hwecc;
	this->ecc.correct = mxc_nand_correct_data;
	this->ecc.mode = NAND_ECC_HW;
	this->ecc.size = 512;
	this->ecc.bytes = 3;
	this->ecc.layout = &nand_hw_eccoob;
	tmp = readw(&host->regs->nfc_config1);
	tmp |= NFC_ECC_EN;
	writew(tmp, &host->regs->nfc_config1);
#else
	this->ecc.layout = &nand_soft_eccoob;
	this->ecc.mode = NAND_ECC_SOFT;
	tmp = readw(&host->regs->nfc_config1);
	tmp &= ~NFC_ECC_EN;
	writew(tmp, &host->regs->nfc_config1);
#endif

	/* Reset NAND */
	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);

	/*
	 * preset operation
	 * Unlock the internal RAM Buffer
	 */
	writew(0x2, &host->regs->nfc_config);

	/* Blocks to be unlocked */
	writew(0x0, &host->regs->nfc_unlockstart_blkaddr);
	writew(0x4000, &host->regs->nfc_unlockend_blkaddr);

	/* Unlock Block Command for given address range */
	writew(0x4, &host->regs->nfc_wrprot);

	/* NAND bus width determines access funtions used by upper layer */
	if (is_16bit_nand())
		this->options |= NAND_BUSWIDTH_16;

#ifdef CONFIG_SYS_NAND_LARGEPAGE
	host->pagesize_2k = 1;
	this->ecc.layout = &nand_hw_eccoob_largepage;
#else
	host->pagesize_2k = 0;
#endif

	return err;
}