1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
|
/*
* Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
*/
/*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <common.h>
#include <nand.h>
#include <asm-arm/arch/mx31-regs.h>
/*
* Define delays in microsec for NAND device operations
*/
#define TROP_US_DELAY 2000
/*
* Macros to get byte and bit positions of ECC
*/
#define COLPOS(x) ((x) >> 4)
#define BITPOS(x) ((x) & 0xf)
/* Define single bit Error positions in Main & Spare area */
#define MAIN_SINGLEBIT_ERROR 0x4
#define SPARE_SINGLEBIT_ERROR 0x1
struct nand_info {
int oob;
int read_status;
int largepage;
u16 col;
};
static struct nand_info nandinfo;
static int ecc_disabled;
/*
* OOB placement block for use with hardware ecc generation
*/
static struct nand_ecclayout nand_hw_eccoob_8 = {
.eccbytes = 5,
.eccpos = {6, 7, 8, 9, 10},
.oobfree = {
{0, 5},
{11, 5}
}
};
static struct nand_ecclayout nand_hw_eccoob_2k = {
.eccbytes = 20,
.eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
.oobfree = {
{0, 5},
{11, 10},
{27, 10},
{43, 10},
{59, 5}
}
};
/* Define some generic bad / good block scan pattern which are used
* while scanning a device for factory marked good / bad blocks. */
static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
static struct nand_bbt_descr smallpage_memorybased = {
.options = NAND_BBT_SCAN2NDPAGE,
.offs = 5,
.len = 1,
.pattern = scan_ff_pattern
};
static struct nand_bbt_descr largepage_memorybased = {
.options = 0,
.offs = 0,
.len = 2,
.pattern = scan_ff_pattern
};
/* Generic flash bbt decriptors */
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = bbt_pattern
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 0,
.len = 4,
.veroffs = 4,
.maxblocks = 4,
.pattern = mirror_pattern
};
/**
* memcpy variant that copies 32 bit words. This is needed since the
* NFC only allows 32 bit accesses. Added for U-boot.
*/
static void *memcpy_32(void *dest, const void *src, size_t n)
{
u32 *dst_32 = (u32 *) dest;
const u32 *src_32 = (u32 *) src;
while (n > 0) {
*dst_32++ = *src_32++;
n -= 4;
}
return dest;
}
/**
* This function polls the NANDFC to wait for the basic operation to
* complete by checking the INT bit of config2 register.
*
* @param max_retries number of retry attempts (separated by 1 us)
*/
static void wait_op_done(int max_retries)
{
while (max_retries-- > 0) {
if (NFC_CONFIG2 & NFC_INT) {
NFC_CONFIG2 &= ~NFC_INT;
break;
}
udelay(1);
}
if (max_retries <= 0)
MTDDEBUG(MTD_DEBUG_LEVEL0, "wait: INT not set\n");
}
/**
* This function issues the specified command to the NAND device and
* waits for completion.
*
* @param cmd command for NAND Flash
*/
static void send_cmd(u16 cmd)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_cmd(0x%x)\n", cmd);
NFC_FLASH_CMD = (u16) cmd;
NFC_CONFIG2 = NFC_CMD;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
}
/**
* This function sends an address (or partial address) to the
* NAND device. The address is used to select the source/destination for
* a NAND command.
*
* @param addr address to be written to NFC.
* @param islast 1 if this is the last address cycle for command
*/
static void send_addr(u16 addr)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_addr(0x%x %d)\n", addr);
NFC_FLASH_ADDR = addr;
NFC_CONFIG2 = NFC_ADDR;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
}
/**
* This function requests the NANDFC to initate the transfer
* of data currently in the NANDFC RAM buffer to the NAND device.
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param oob set to 1 if only the spare area is transferred
*/
static void send_prog_page(u8 buf_id)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", nandinfo.oob);
/* NANDFC buffer 0 is used for page read/write */
NFC_BUF_ADDR = buf_id;
/* Configure spare or page+spare access */
if (!nandinfo.largepage) {
if (nandinfo.oob)
NFC_CONFIG1 |= NFC_SP_EN;
else
NFC_CONFIG1 &= ~NFC_SP_EN;
}
NFC_CONFIG2 = NFC_INPUT;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
}
/**
* This function will correct the single bit ECC error
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param eccpos Ecc byte and bit position
* @param oob set to 1 if only spare area needs correction
*/
static void mxc_nd_correct_error(u8 buf_id, u16 eccpos, int oob)
{
u16 col;
u8 pos;
u16 *buf;
/* Get col & bit position of error
these macros works for both 8 & 16 bits */
col = COLPOS(eccpos); /* Get half-word position */
pos = BITPOS(eccpos); /* Get bit position */
MTDDEBUG(MTD_DEBUG_LEVEL3,
"mxc_nd_correct_error (col=%d pos=%d)\n", col, pos);
/* Set the pointer for main / spare area */
if (!oob)
buf = (u16 *)(MAIN_AREA0 + col + (256 * buf_id));
else
buf = (u16 *)(SPARE_AREA0 + col + (8 * buf_id));
/* Fix the data */
*buf ^= 1 << pos;
}
/**
* This function will maintains state of single bit Error
* in Main & spare area
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param spare set to 1 if only spare area needs correction
*/
static void mxc_nd_correct_ecc(u8 buf_id, int spare)
{
u16 value, ecc_status;
/* Read the ECC result */
ecc_status = NFC_ECC_STATUS_RESULT;
MTDDEBUG(MTD_DEBUG_LEVEL3,
"mxc_nd_correct_ecc (Ecc status=%x)\n", ecc_status);
if (((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR)
|| ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR)) {
if (ecc_disabled) {
if ((ecc_status & 0xC) == MAIN_SINGLEBIT_ERROR) {
value = NFC_RSLTMAIN_AREA;
/* Correct single bit error in Mainarea
NFC will not correct the error in
current page */
mxc_nd_correct_error(buf_id, value, 0);
}
if ((ecc_status & 0x3) == SPARE_SINGLEBIT_ERROR) {
value = NFC_RSLTSPARE_AREA;
/* Correct single bit error in Mainarea
NFC will not correct the error in
current page */
mxc_nd_correct_error(buf_id, value, 1);
}
} else {
/* Disable ECC */
NFC_CONFIG1 &= ~NFC_ECC_EN;
ecc_disabled = 1;
}
} else if (ecc_status == 0) {
if (ecc_disabled) {
/* Enable ECC */
NFC_CONFIG1 |= NFC_ECC_EN;
ecc_disabled = 0;
}
} /* else 2-bit Error. Do nothing */
}
/**
* This function requests the NANDFC to initated the transfer
* of data from the NAND device into in the NANDFC ram buffer.
*
* @param buf_id Specify Internal RAM Buffer number (0-3)
* @param oob set 1 if only the spare area is
* transferred
*/
static void send_read_page(u8 buf_id)
{
MTDDEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", nandinfo.oob);
/* NANDFC buffer 0 is used for page read/write */
NFC_BUF_ADDR = buf_id;
/* Configure spare or page+spare access */
if (!nandinfo.largepage) {
if (nandinfo.oob)
NFC_CONFIG1 |= NFC_SP_EN;
else
NFC_CONFIG1 &= ~NFC_SP_EN;
}
NFC_CONFIG2 = NFC_OUTPUT;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
/* If there are single bit errors in
two consecutive page reads then
the error is not corrected by the
NFC for the second page.
Correct single bit error in driver */
mxc_nd_correct_ecc(buf_id, nandinfo.oob);
}
/**
* This function requests the NANDFC to perform a read of the
* NAND device ID.
*/
static void send_read_id(void)
{
/* NANDFC buffer 0 is used for device ID output */
NFC_BUF_ADDR = 0x0;
/* Read ID into main buffer */
NFC_CONFIG1 &= ~NFC_SP_EN;
NFC_CONFIG2 = NFC_ID;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
}
/**
* This function requests the NANDFC to perform a read of the
* NAND device status and returns the current status.
*
* @return device status
*/
static u16 get_dev_status(void)
{
volatile u16 *mainbuf = MAIN_AREA1;
u32 store;
u16 ret;
/* Issue status request to NAND device */
/* store the main area1 first word, later do recovery */
store = *((u32 *) mainbuf);
/*
* NANDFC buffer 1 is used for device status to prevent
* corruption of read/write buffer on status requests.
*/
NFC_BUF_ADDR = 1;
/* Read status into main buffer */
NFC_CONFIG1 &= ~NFC_SP_EN;
NFC_CONFIG2 = NFC_STATUS;
/* Wait for operation to complete */
wait_op_done(TROP_US_DELAY);
/* Status is placed in first word of main buffer */
/* get status, then recovery area 1 data */
ret = mainbuf[0];
*((u32 *) mainbuf) = store;
return ret;
}
static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
{
/*
* If HW ECC is enabled, we turn it on during init. There is
* no need to enable again here.
*/
}
static int mxc_nand_correct_data(struct mtd_info *mtd, unsigned char *dat,
unsigned char *read_ecc, unsigned char *calc_ecc)
{
/*
* 1-Bit errors are automatically corrected in HW. No need for
* additional correction. 2-Bit errors cannot be corrected by
* HW ECC, so we need to return failure
*/
u16 ecc_status = NFC_ECC_STATUS_RESULT;
if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
MTDDEBUG(MTD_DEBUG_LEVEL0,
"MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
return -1;
}
return 0;
}
static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *dat,
unsigned char *ecc_code)
{
/*
* Just return success. HW ECC does not read/write the NFC spare
* buffer. Only the FLASH spare area contains the calcuated ECC.
*/
return 0;
}
/**
* This function reads byte from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static unsigned char mxc_nand_read_byte(struct mtd_info *mtd)
{
unsigned char ret_val = 0;
u16 col, rd_word;
volatile u16 *mainbuf = MAIN_AREA0;
volatile u16 *sparebuf = SPARE_AREA0;
/* Check for status request */
if (nandinfo.read_status)
return get_dev_status() & 0xFF;
/* Get column for 16-bit access */
col = nandinfo.col >> 1;
/* If we are accessing the spare region */
if (nandinfo.oob)
rd_word = sparebuf[col];
else
rd_word = mainbuf[col];
/* Pick upper/lower byte of word from RAM buffer */
if (nandinfo.col & 0x1)
ret_val = (rd_word >> 8) & 0xFF;
else
ret_val = rd_word & 0xFF;
/* Update saved column address */
nandinfo.col++;
return ret_val;
}
/**
* This function reads word from the NAND Flash
*
* @param mtd MTD structure for the NAND Flash
*
* @return data read from the NAND Flash
*/
static u16 mxc_nand_read_word(struct mtd_info *mtd)
{
u16 col;
u16 rd_word, ret_val;
volatile u16 *p;
MTDDEBUG(MTD_DEBUG_LEVEL3, "mxc_nand_read_word(col = %d)\n", nandinfo.col);
col = nandinfo.col;
/* Adjust saved column address */
if (col < mtd->writesize && nandinfo.oob)
col += mtd->writesize;
if (col < mtd->writesize)
p = (MAIN_AREA0) + (col >> 1);
else
p = (SPARE_AREA0) + ((col - mtd->writesize) >> 1);
if (col & 1) {
rd_word = *p;
ret_val = (rd_word >> 8) & 0xff;
rd_word = *(p + 1);
ret_val |= (rd_word << 8) & 0xff00;
} else
ret_val = *p;
/* Update saved column address */
nandinfo.col = col + 2;
return ret_val;
}
/**
* This function writes data of length \b len to buffer \b buf. The data
* to be written on NAND Flash is first copied to RAMbuffer. After the
* Data Input Operation by the NFC, the data is written to NAND Flash.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be written to NAND Flash
* @param len number of bytes to be written
*/
static void mxc_nand_write_buf(struct mtd_info *mtd,
const unsigned char *buf, int len)
{
int n;
int col;
int i = 0;
MTDDEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_write_buf(col = %d, len = %d)\n", nandinfo.col, len);
col = nandinfo.col;
/* Adjust saved column address */
if (col < mtd->writesize && nandinfo.oob)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
if (len > mtd->writesize + mtd->oobsize - col)
MTDDEBUG(MTD_DEBUG_LEVEL1, "Error: too much data.\n");
n = min(len, n);
MTDDEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: col = %d, n = %d\n", __FUNCTION__, __LINE__, col, n);
while (n) {
volatile u32 *p;
if (col < mtd->writesize)
p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3));
else
p = (volatile u32 *)((ulong) (SPARE_AREA0) -
mtd->writesize + (col & ~3));
MTDDEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n",
__FUNCTION__, __LINE__, p);
if (((col | (int)&buf[i]) & 3) || n < 16) {
u32 data = 0;
if (col & 3 || n < 4)
data = *p;
switch (col & 3) {
case 0:
if (n) {
data = (data & 0xffffff00) |
(buf[i++] << 0);
n--;
col++;
}
case 1:
if (n) {
data = (data & 0xffff00ff) |
(buf[i++] << 8);
n--;
col++;
}
case 2:
if (n) {
data = (data & 0xff00ffff) |
(buf[i++] << 16);
n--;
col++;
}
case 3:
if (n) {
data = (data & 0x00ffffff) |
(buf[i++] << 24);
n--;
col++;
}
}
*p = data;
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
MTDDEBUG(MTD_DEBUG_LEVEL3,
"%s:%d: n = %d, m = %d, i = %d, col = %d\n",
__FUNCTION__, __LINE__, n, m, i, col);
memcpy_32((void *)(p), &buf[i], m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
nandinfo.col = col;
}
/**
* This function id is used to read the data buffer from the NAND Flash. To
* read the data from NAND Flash first the data output cycle is initiated by
* the NFC, which copies the data to RAMbuffer. This data of length \b len is
* then copied to buffer \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be read from NAND Flash
* @param len number of bytes to be read
*/
static void mxc_nand_read_buf(struct mtd_info *mtd, unsigned char *buf, int len)
{
int n;
int col;
int i = 0;
MTDDEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_read_buf(col = %d, len = %d)\n", nandinfo.col, len);
col = nandinfo.col;
/**
* Adjust saved column address
* for nand_read_oob will pass col within oobsize
*/
if (col < mtd->writesize && nandinfo.oob)
col += mtd->writesize;
n = mtd->writesize + mtd->oobsize - col;
n = min(len, n);
while (n) {
volatile u32 *p;
if (col < mtd->writesize)
p = (volatile u32 *)((ulong) (MAIN_AREA0) + (col & ~3));
else
p = (volatile u32 *)((ulong) (SPARE_AREA0) -
mtd->writesize + (col & ~3));
if (((col | (int)&buf[i]) & 3) || n < 16) {
u32 data;
data = *p;
switch (col & 3) {
case 0:
if (n) {
buf[i++] = (u8) (data);
n--;
col++;
}
case 1:
if (n) {
buf[i++] = (u8) (data >> 8);
n--;
col++;
}
case 2:
if (n) {
buf[i++] = (u8) (data >> 16);
n--;
col++;
}
case 3:
if (n) {
buf[i++] = (u8) (data >> 24);
n--;
col++;
}
}
} else {
int m = mtd->writesize - col;
if (col >= mtd->writesize)
m += mtd->oobsize;
m = min(n, m) & ~3;
memcpy_32(&buf[i], (void *)(p), m);
col += m;
i += m;
n -= m;
}
}
/* Update saved column address */
nandinfo.col = col;
}
/**
* This function is used by the upper layer to verify the data in NAND Flash
* with the data in the \b buf.
*
* @param mtd MTD structure for the NAND Flash
* @param buf data to be verified
* @param len length of the data to be verified
*
* @return -EFAULT if error else 0
*/
static int
mxc_nand_verify_buf(struct mtd_info *mtd, const unsigned char *buf, int len)
{
return -1; /* Was -EFAULT */
}
/**
* This function is used by upper layer for select and deselect of the NAND
* chip.
*
* @param mtd MTD structure for the NAND Flash
* @param chip val indicating select or deselect
*/
static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
{
}
/**
* This function is used by the upper layer to write command to NAND Flash
* for different operations to be carried out on NAND Flash
*
* @param mtd MTD structure for the NAND Flash
* @param command command for NAND Flash
* @param column column offset for the page read
* @param page_addr page to be read from NAND Flash
*/
static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
int column, int page_addr)
{
MTDDEBUG(MTD_DEBUG_LEVEL3,
"mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
command, column, page_addr);
/* Reset command state information */
nandinfo.read_status = 0;
nandinfo.oob = 0;
/* Command pre-processing step */
switch (command) {
case NAND_CMD_STATUS:
nandinfo.col = 0;
nandinfo.read_status = 1;
break;
case NAND_CMD_READ0:
nandinfo.col = column;
break;
case NAND_CMD_READOOB:
nandinfo.col = column;
nandinfo.oob = 1;
if (nandinfo.largepage)
command = NAND_CMD_READ0;
break;
case NAND_CMD_SEQIN:
if (column >= mtd->writesize) {
/* write oob routine caller */
if (nandinfo.largepage) {
/*
* FIXME: before send SEQIN command for
* write OOB, we must read one page out.
* For 2K nand has no READ1 command to set
* current HW pointer to spare area, we must
* write the whole page including OOB together.
*/
/* call itself to read a page */
mxc_nand_command(mtd, NAND_CMD_READ0, 0,
page_addr);
}
nandinfo.col = column - mtd->writesize;
nandinfo.oob = 1;
/* Set program pointer to spare region */
if (!nandinfo.largepage)
send_cmd(NAND_CMD_READOOB);
} else {
nandinfo.oob = 0;
nandinfo.col = column;
/* Set program pointer to page start */
if (!nandinfo.largepage)
send_cmd(NAND_CMD_READ0);
}
break;
case NAND_CMD_PAGEPROG:
if (ecc_disabled) {
/* Enable Ecc for page writes */
NFC_CONFIG1 |= NFC_ECC_EN;
}
send_prog_page(0);
if (nandinfo.largepage) {
/* data in 4 areas datas */
send_prog_page(1);
send_prog_page(2);
send_prog_page(3);
}
break;
case NAND_CMD_ERASE1:
break;
}
/*
* Write out the command to the device.
*/
send_cmd(command);
/*
* Write out column address, if necessary
*/
if (column != -1) {
/*
* MXC NANDFC can only perform full page+spare or
* spare-only read/write. When the upper layers
* layers perform a read/write buf operation,
* we will used the saved column adress to index into
* the full page.
*/
send_addr(0);
if (nandinfo.largepage)
/* another col addr cycle for 2k page */
send_addr(0);
}
/*
* Write out page address, if necessary
*/
if (page_addr != -1) {
/* paddr_0 - p_addr_7 */
send_addr((page_addr & 0xff));
if (nandinfo.largepage) {
/* One more address cycle for higher
* density devices */
if (mtd->size >= 0x10000000) {
/* paddr_8 - paddr_15 */
send_addr((page_addr >> 8) & 0xff);
send_addr((page_addr >> 16) & 0xff);
} else
/* paddr_8 - paddr_15 */
send_addr((page_addr >> 8) & 0xff);
} else {
/* One more address cycle for higher
* density devices */
if (mtd->size >= 0x4000000) {
/* paddr_8 - paddr_15 */
send_addr((page_addr >> 8) & 0xff);
send_addr((page_addr >> 16) & 0xff);
} else
/* paddr_8 - paddr_15 */
send_addr((page_addr >> 8) & 0xff);
}
}
/*
* Command post-processing step
*/
switch (command) {
case NAND_CMD_RESET:
break;
case NAND_CMD_READOOB:
case NAND_CMD_READ0:
if (nandinfo.largepage) {
/* send read confirm command */
send_cmd(NAND_CMD_READSTART);
/* read for each AREA */
send_read_page(0);
send_read_page(1);
send_read_page(2);
send_read_page(3);
} else
send_read_page(0);
break;
case NAND_CMD_READID:
send_read_id();
nandinfo.col = column;
break;
case NAND_CMD_PAGEPROG:
if (ecc_disabled) {
/* Disable Ecc after page writes */
NFC_CONFIG1 &= ~NFC_ECC_EN;
}
break;
case NAND_CMD_ERASE2:
break;
}
}
static int mxc_nand_scan_bbt(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
/* Config before scanning */
/* Do not rely on NFMS_BIT, set/clear NFMS bit based
* on mtd->writesize */
if (mtd->writesize == 2048)
NFMS |= 1 << NFMS_BIT;
else if ((NFMS >> NFMS_BIT) & 0x1)
NFMS &= ~(1 << NFMS_BIT);
/* use flash based bbt */
this->bbt_td = &bbt_main_descr;
this->bbt_md = &bbt_mirror_descr;
/* update flash based bbt */
this->options |= NAND_USE_FLASH_BBT;
if (!this->badblock_pattern) {
if (nandinfo.largepage)
this->badblock_pattern = &smallpage_memorybased;
else
this->badblock_pattern = (mtd->writesize > 512) ?
&largepage_memorybased : &smallpage_memorybased;
}
/* Build bad block table */
return nand_scan_bbt(mtd, this->badblock_pattern);
}
int board_nand_init(struct nand_chip *nand)
{
nand->chip_delay = 0;
nand->cmdfunc = mxc_nand_command;
nand->select_chip = mxc_nand_select_chip;
nand->read_byte = mxc_nand_read_byte;
nand->read_word = mxc_nand_read_word;
nand->write_buf = mxc_nand_write_buf;
nand->read_buf = mxc_nand_read_buf;
nand->verify_buf = mxc_nand_verify_buf;
nand->scan_bbt = mxc_nand_scan_bbt;
nand->ecc.calculate = mxc_nand_calculate_ecc;
nand->ecc.correct = mxc_nand_correct_data;
nand->ecc.hwctl = mxc_nand_enable_hwecc;
nand->ecc.mode = NAND_ECC_HW;
nand->ecc.bytes = 3;
nand->ecc.size = 512;
/* Reset NAND */
NFC_CONFIG1 |= NFC_INT_MSK | NFC_RST | NFC_ECC_EN;
/* Unlock the internal RAM buffer */
NFC_CONFIG = 0x2;
/* Block to be unlocked */
NFC_UNLOCKSTART_BLKADDR = 0x0;
NFC_UNLOCKEND_BLKADDR = 0x4000;
/* Unlock Block Command for given address range */
NFC_WRPROT = 0x4;
/* Only 8 bit bus support for now */
nand->options |= 0;
if ((NFMS >> NFMS_BIT) & 1) {
nandinfo.largepage = 1;
nand->ecc.layout = &nand_hw_eccoob_2k;
} else {
nandinfo.largepage = 0;
nand->ecc.layout = &nand_hw_eccoob_8;
}
return 0;
}
|