summaryrefslogtreecommitdiff
path: root/drivers/mtd/nand/atmel_nand.c
blob: 1d8c860f1afff900b06726b2747238daa1f075f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
/*
 * (C) Copyright 2007-2008
 * Stelian Pop <stelian@popies.net>
 * Lead Tech Design <www.leadtechdesign.com>
 *
 * (C) Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
 *
 * Add Programmable Multibit ECC support for various AT91 SoC
 *     (C) Copyright 2012 ATMEL, Hong Xu
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/arch/hardware.h>
#include <asm/arch/gpio.h>
#include <asm/arch/at91_pio.h>

#include <malloc.h>
#include <nand.h>
#include <watchdog.h>

#ifdef CONFIG_ATMEL_NAND_HWECC

/* Register access macros */
#define ecc_readl(add, reg)				\
	readl(AT91_BASE_SYS + add + ATMEL_ECC_##reg)
#define ecc_writel(add, reg, value)			\
	writel((value), AT91_BASE_SYS + add + ATMEL_ECC_##reg)

#include "atmel_nand_ecc.h"	/* Hardware ECC registers */

#ifdef CONFIG_ATMEL_NAND_HW_PMECC

struct atmel_nand_host {
	struct pmecc_regs __iomem *pmecc;
	struct pmecc_errloc_regs __iomem *pmerrloc;
	void __iomem		*pmecc_rom_base;

	u8		pmecc_corr_cap;
	u16		pmecc_sector_size;
	u32		pmecc_index_table_offset;

	int		pmecc_bytes_per_sector;
	int		pmecc_sector_number;
	int		pmecc_degree;	/* Degree of remainders */
	int		pmecc_cw_len;	/* Length of codeword */

	/* lookup table for alpha_to and index_of */
	void __iomem	*pmecc_alpha_to;
	void __iomem	*pmecc_index_of;

	/* data for pmecc computation */
	int16_t	*pmecc_smu;
	int16_t	*pmecc_partial_syn;
	int16_t	*pmecc_si;
	int16_t	*pmecc_lmu; /* polynomal order */
	int	*pmecc_mu;
	int	*pmecc_dmu;
	int	*pmecc_delta;
};

static struct atmel_nand_host pmecc_host;
static struct nand_ecclayout atmel_pmecc_oobinfo;

/*
 * Return number of ecc bytes per sector according to sector size and
 * correction capability
 *
 * Following table shows what at91 PMECC supported:
 * Correction Capability	Sector_512_bytes	Sector_1024_bytes
 * =====================	================	=================
 *                2-bits                 4-bytes                  4-bytes
 *                4-bits                 7-bytes                  7-bytes
 *                8-bits                13-bytes                 14-bytes
 *               12-bits                20-bytes                 21-bytes
 *               24-bits                39-bytes                 42-bytes
 */
static int pmecc_get_ecc_bytes(int cap, int sector_size)
{
	int m = 12 + sector_size / 512;
	return (m * cap + 7) / 8;
}

static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
	int oobsize, int ecc_len)
{
	int i;

	layout->eccbytes = ecc_len;

	/* ECC will occupy the last ecc_len bytes continuously */
	for (i = 0; i < ecc_len; i++)
		layout->eccpos[i] = oobsize - ecc_len + i;

	layout->oobfree[0].offset = 2;
	layout->oobfree[0].length =
		oobsize - ecc_len - layout->oobfree[0].offset;
}

static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
{
	int table_size;

	table_size = host->pmecc_sector_size == 512 ?
		PMECC_INDEX_TABLE_SIZE_512 : PMECC_INDEX_TABLE_SIZE_1024;

	/* the ALPHA lookup table is right behind the INDEX lookup table. */
	return host->pmecc_rom_base + host->pmecc_index_table_offset +
			table_size * sizeof(int16_t);
}

static void pmecc_data_free(struct atmel_nand_host *host)
{
	free(host->pmecc_partial_syn);
	free(host->pmecc_si);
	free(host->pmecc_lmu);
	free(host->pmecc_smu);
	free(host->pmecc_mu);
	free(host->pmecc_dmu);
	free(host->pmecc_delta);
}

static int pmecc_data_alloc(struct atmel_nand_host *host)
{
	const int cap = host->pmecc_corr_cap;
	int size;

	size = (2 * cap + 1) * sizeof(int16_t);
	host->pmecc_partial_syn = malloc(size);
	host->pmecc_si = malloc(size);
	host->pmecc_lmu = malloc((cap + 1) * sizeof(int16_t));
	host->pmecc_smu = malloc((cap + 2) * size);

	size = (cap + 1) * sizeof(int);
	host->pmecc_mu = malloc(size);
	host->pmecc_dmu = malloc(size);
	host->pmecc_delta = malloc(size);

	if (host->pmecc_partial_syn &&
			host->pmecc_si &&
			host->pmecc_lmu &&
			host->pmecc_smu &&
			host->pmecc_mu &&
			host->pmecc_dmu &&
			host->pmecc_delta)
		return 0;

	/* error happened */
	pmecc_data_free(host);
	return -ENOMEM;

}

static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i;
	uint32_t value;

	/* Fill odd syndromes */
	for (i = 0; i < host->pmecc_corr_cap; i++) {
		value = readl(&host->pmecc->rem_port[sector].rem[i / 2]);
		if (i & 1)
			value >>= 16;
		value &= 0xffff;
		host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
	}
}

static void pmecc_substitute(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int16_t __iomem *alpha_to = host->pmecc_alpha_to;
	int16_t __iomem *index_of = host->pmecc_index_of;
	int16_t *partial_syn = host->pmecc_partial_syn;
	const int cap = host->pmecc_corr_cap;
	int16_t *si;
	int i, j;

	/* si[] is a table that holds the current syndrome value,
	 * an element of that table belongs to the field
	 */
	si = host->pmecc_si;

	memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));

	/* Computation 2t syndromes based on S(x) */
	/* Odd syndromes */
	for (i = 1; i < 2 * cap; i += 2) {
		for (j = 0; j < host->pmecc_degree; j++) {
			if (partial_syn[i] & (0x1 << j))
				si[i] = readw(alpha_to + i * j) ^ si[i];
		}
	}
	/* Even syndrome = (Odd syndrome) ** 2 */
	for (i = 2, j = 1; j <= cap; i = ++j << 1) {
		if (si[j] == 0) {
			si[i] = 0;
		} else {
			int16_t tmp;

			tmp = readw(index_of + si[j]);
			tmp = (tmp * 2) % host->pmecc_cw_len;
			si[i] = readw(alpha_to + tmp);
		}
	}
}

/*
 * This function defines a Berlekamp iterative procedure for
 * finding the value of the error location polynomial.
 * The input is si[], initialize by pmecc_substitute().
 * The output is smu[][].
 *
 * This function is written according to chip datasheet Chapter:
 * Find the Error Location Polynomial Sigma(x) of Section:
 * Programmable Multibit ECC Control (PMECC).
 */
static void pmecc_get_sigma(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;

	int16_t *lmu = host->pmecc_lmu;
	int16_t *si = host->pmecc_si;
	int *mu = host->pmecc_mu;
	int *dmu = host->pmecc_dmu;	/* Discrepancy */
	int *delta = host->pmecc_delta; /* Delta order */
	int cw_len = host->pmecc_cw_len;
	const int16_t cap = host->pmecc_corr_cap;
	const int num = 2 * cap + 1;
	int16_t __iomem	*index_of = host->pmecc_index_of;
	int16_t __iomem	*alpha_to = host->pmecc_alpha_to;
	int i, j, k;
	uint32_t dmu_0_count, tmp;
	int16_t *smu = host->pmecc_smu;

	/* index of largest delta */
	int ro;
	int largest;
	int diff;

	/* Init the Sigma(x) */
	memset(smu, 0, sizeof(int16_t) * ARRAY_SIZE(smu));

	dmu_0_count = 0;

	/* First Row */

	/* Mu */
	mu[0] = -1;

	smu[0] = 1;

	/* discrepancy set to 1 */
	dmu[0] = 1;
	/* polynom order set to 0 */
	lmu[0] = 0;
	/* delta[0] = (mu[0] * 2 - lmu[0]) >> 1; */
	delta[0] = -1;

	/* Second Row */

	/* Mu */
	mu[1] = 0;
	/* Sigma(x) set to 1 */
	smu[num] = 1;

	/* discrepancy set to S1 */
	dmu[1] = si[1];

	/* polynom order set to 0 */
	lmu[1] = 0;

	/* delta[1] = (mu[1] * 2 - lmu[1]) >> 1; */
	delta[1] = 0;

	for (i = 1; i <= cap; i++) {
		mu[i + 1] = i << 1;
		/* Begin Computing Sigma (Mu+1) and L(mu) */
		/* check if discrepancy is set to 0 */
		if (dmu[i] == 0) {
			dmu_0_count++;

			tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
			if ((cap - (lmu[i] >> 1) - 1) & 0x1)
				tmp += 2;
			else
				tmp += 1;

			if (dmu_0_count == tmp) {
				for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
					smu[(cap + 1) * num + j] =
							smu[i * num + j];

				lmu[cap + 1] = lmu[i];
				return;
			}

			/* copy polynom */
			for (j = 0; j <= lmu[i] >> 1; j++)
				smu[(i + 1) * num + j] = smu[i * num + j];

			/* copy previous polynom order to the next */
			lmu[i + 1] = lmu[i];
		} else {
			ro = 0;
			largest = -1;
			/* find largest delta with dmu != 0 */
			for (j = 0; j < i; j++) {
				if ((dmu[j]) && (delta[j] > largest)) {
					largest = delta[j];
					ro = j;
				}
			}

			/* compute difference */
			diff = (mu[i] - mu[ro]);

			/* Compute degree of the new smu polynomial */
			if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
				lmu[i + 1] = lmu[i];
			else
				lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;

			/* Init smu[i+1] with 0 */
			for (k = 0; k < num; k++)
				smu[(i + 1) * num + k] = 0;

			/* Compute smu[i+1] */
			for (k = 0; k <= lmu[ro] >> 1; k++) {
				int16_t a, b, c;

				if (!(smu[ro * num + k] && dmu[i]))
					continue;
				a = readw(index_of + dmu[i]);
				b = readw(index_of + dmu[ro]);
				c = readw(index_of + smu[ro * num + k]);
				tmp = a + (cw_len - b) + c;
				a = readw(alpha_to + tmp % cw_len);
				smu[(i + 1) * num + (k + diff)] = a;
			}

			for (k = 0; k <= lmu[i] >> 1; k++)
				smu[(i + 1) * num + k] ^= smu[i * num + k];
		}

		/* End Computing Sigma (Mu+1) and L(mu) */
		/* In either case compute delta */
		delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;

		/* Do not compute discrepancy for the last iteration */
		if (i >= cap)
			continue;

		for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
			tmp = 2 * (i - 1);
			if (k == 0) {
				dmu[i + 1] = si[tmp + 3];
			} else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
				int16_t a, b, c;
				a = readw(index_of +
						smu[(i + 1) * num + k]);
				b = si[2 * (i - 1) + 3 - k];
				c = readw(index_of + b);
				tmp = a + c;
				tmp %= cw_len;
				dmu[i + 1] = readw(alpha_to + tmp) ^
					dmu[i + 1];
			}
		}
	}
}

static int pmecc_err_location(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	const int cap = host->pmecc_corr_cap;
	const int num = 2 * cap + 1;
	int sector_size = host->pmecc_sector_size;
	int err_nbr = 0;	/* number of error */
	int roots_nbr;		/* number of roots */
	int i;
	uint32_t val;
	int16_t *smu = host->pmecc_smu;
	int timeout = PMECC_MAX_TIMEOUT_US;

	writel(PMERRLOC_DISABLE, &host->pmerrloc->eldis);

	for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
		writel(smu[(cap + 1) * num + i], &host->pmerrloc->sigma[i]);
		err_nbr++;
	}

	val = PMERRLOC_ELCFG_NUM_ERRORS(err_nbr - 1);
	if (sector_size == 1024)
		val |= PMERRLOC_ELCFG_SECTOR_1024;

	writel(val, &host->pmerrloc->elcfg);
	writel(sector_size * 8 + host->pmecc_degree * cap,
			&host->pmerrloc->elen);

	while (--timeout) {
		if (readl(&host->pmerrloc->elisr) & PMERRLOC_CALC_DONE)
			break;
		WATCHDOG_RESET();
		udelay(1);
	}

	if (!timeout) {
		printk(KERN_ERR "atmel_nand : Timeout to calculate PMECC error location\n");
		return -1;
	}

	roots_nbr = (readl(&host->pmerrloc->elisr) & PMERRLOC_ERR_NUM_MASK)
			>> 8;
	/* Number of roots == degree of smu hence <= cap */
	if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
		return err_nbr - 1;

	/* Number of roots does not match the degree of smu
	 * unable to correct error */
	return -1;
}

static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
		int sector_num, int extra_bytes, int err_nbr)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i = 0;
	int byte_pos, bit_pos, sector_size, pos;
	uint32_t tmp;
	uint8_t err_byte;

	sector_size = host->pmecc_sector_size;

	while (err_nbr) {
		tmp = readl(&host->pmerrloc->el[i]) - 1;
		byte_pos = tmp / 8;
		bit_pos  = tmp % 8;

		if (byte_pos >= (sector_size + extra_bytes))
			BUG();	/* should never happen */

		if (byte_pos < sector_size) {
			err_byte = *(buf + byte_pos);
			*(buf + byte_pos) ^= (1 << bit_pos);

			pos = sector_num * host->pmecc_sector_size + byte_pos;
			printk(KERN_INFO "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
				pos, bit_pos, err_byte, *(buf + byte_pos));
		} else {
			/* Bit flip in OOB area */
			tmp = sector_num * host->pmecc_bytes_per_sector
					+ (byte_pos - sector_size);
			err_byte = ecc[tmp];
			ecc[tmp] ^= (1 << bit_pos);

			pos = tmp + nand_chip->ecc.layout->eccpos[0];
			printk(KERN_INFO "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
				pos, bit_pos, err_byte, ecc[tmp]);
		}

		i++;
		err_nbr--;
	}

	return;
}

static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
	u8 *ecc)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	int i, err_nbr, eccbytes;
	uint8_t *buf_pos;

	eccbytes = nand_chip->ecc.bytes;
	for (i = 0; i < eccbytes; i++)
		if (ecc[i] != 0xff)
			goto normal_check;
	/* Erased page, return OK */
	return 0;

normal_check:
	for (i = 0; i < host->pmecc_sector_number; i++) {
		err_nbr = 0;
		if (pmecc_stat & 0x1) {
			buf_pos = buf + i * host->pmecc_sector_size;

			pmecc_gen_syndrome(mtd, i);
			pmecc_substitute(mtd);
			pmecc_get_sigma(mtd);

			err_nbr = pmecc_err_location(mtd);
			if (err_nbr == -1) {
				printk(KERN_ERR "PMECC: Too many errors\n");
				mtd->ecc_stats.failed++;
				return -EIO;
			} else {
				pmecc_correct_data(mtd, buf_pos, ecc, i,
					host->pmecc_bytes_per_sector, err_nbr);
				mtd->ecc_stats.corrected += err_nbr;
			}
		}
		pmecc_stat >>= 1;
	}

	return 0;
}

static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
	struct atmel_nand_host *host = chip->priv;
	int eccsize = chip->ecc.size;
	uint8_t *oob = chip->oob_poi;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint32_t stat;
	int timeout = PMECC_MAX_TIMEOUT_US;

	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);
	pmecc_writel(host->pmecc, cfg, ((pmecc_readl(host->pmecc, cfg))
		& ~PMECC_CFG_WRITE_OP) | PMECC_CFG_AUTO_ENABLE);

	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);

	chip->read_buf(mtd, buf, eccsize);
	chip->read_buf(mtd, oob, mtd->oobsize);

	while (--timeout) {
		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
			break;
		WATCHDOG_RESET();
		udelay(1);
	}

	if (!timeout) {
		printk(KERN_ERR "atmel_nand : Timeout to read PMECC page\n");
		return -1;
	}

	stat = pmecc_readl(host->pmecc, isr);
	if (stat != 0)
		if (pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]) != 0)
			return -EIO;

	return 0;
}

static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
		struct nand_chip *chip, const uint8_t *buf,
		int oob_required)
{
	struct atmel_nand_host *host = chip->priv;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	int i, j;
	int timeout = PMECC_MAX_TIMEOUT_US;

	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);

	pmecc_writel(host->pmecc, cfg, (pmecc_readl(host->pmecc, cfg) |
		PMECC_CFG_WRITE_OP) & ~PMECC_CFG_AUTO_ENABLE);

	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DATA);

	chip->write_buf(mtd, (u8 *)buf, mtd->writesize);

	while (--timeout) {
		if (!(pmecc_readl(host->pmecc, sr) & PMECC_SR_BUSY))
			break;
		WATCHDOG_RESET();
		udelay(1);
	}

	if (!timeout) {
		printk(KERN_ERR "atmel_nand : Timeout to read PMECC status, fail to write PMECC in oob\n");
		goto out;
	}

	for (i = 0; i < host->pmecc_sector_number; i++) {
		for (j = 0; j < host->pmecc_bytes_per_sector; j++) {
			int pos;

			pos = i * host->pmecc_bytes_per_sector + j;
			chip->oob_poi[eccpos[pos]] =
				readb(&host->pmecc->ecc_port[i].ecc[j]);
		}
	}
	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
out:
	return 0;
}

static void atmel_pmecc_core_init(struct mtd_info *mtd)
{
	struct nand_chip *nand_chip = mtd->priv;
	struct atmel_nand_host *host = nand_chip->priv;
	uint32_t val = 0;
	struct nand_ecclayout *ecc_layout;

	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_RST);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_DISABLE);

	switch (host->pmecc_corr_cap) {
	case 2:
		val = PMECC_CFG_BCH_ERR2;
		break;
	case 4:
		val = PMECC_CFG_BCH_ERR4;
		break;
	case 8:
		val = PMECC_CFG_BCH_ERR8;
		break;
	case 12:
		val = PMECC_CFG_BCH_ERR12;
		break;
	case 24:
		val = PMECC_CFG_BCH_ERR24;
		break;
	}

	if (host->pmecc_sector_size == 512)
		val |= PMECC_CFG_SECTOR512;
	else if (host->pmecc_sector_size == 1024)
		val |= PMECC_CFG_SECTOR1024;

	switch (host->pmecc_sector_number) {
	case 1:
		val |= PMECC_CFG_PAGE_1SECTOR;
		break;
	case 2:
		val |= PMECC_CFG_PAGE_2SECTORS;
		break;
	case 4:
		val |= PMECC_CFG_PAGE_4SECTORS;
		break;
	case 8:
		val |= PMECC_CFG_PAGE_8SECTORS;
		break;
	}

	val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
		| PMECC_CFG_AUTO_DISABLE);
	pmecc_writel(host->pmecc, cfg, val);

	ecc_layout = nand_chip->ecc.layout;
	pmecc_writel(host->pmecc, sarea, mtd->oobsize - 1);
	pmecc_writel(host->pmecc, saddr, ecc_layout->eccpos[0]);
	pmecc_writel(host->pmecc, eaddr,
			ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
	/* See datasheet about PMECC Clock Control Register */
	pmecc_writel(host->pmecc, clk, PMECC_CLK_133MHZ);
	pmecc_writel(host->pmecc, idr, 0xff);
	pmecc_writel(host->pmecc, ctrl, PMECC_CTRL_ENABLE);
}

#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
/*
 * get_onfi_ecc_param - Get ECC requirement from ONFI parameters
 * @ecc_bits: store the ONFI ECC correct bits capbility
 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
 *
 * Returns -1 if ONFI parameters is not supported. In this case @ecc_bits,
 * @sector_size are initialize to 0.
 * Return 0 if success to get the ECC requirement.
 */
static int get_onfi_ecc_param(struct nand_chip *chip,
		int *ecc_bits, int *sector_size)
{
	*ecc_bits = *sector_size = 0;

	if (chip->onfi_params.ecc_bits == 0xff)
		/* TODO: the sector_size and ecc_bits need to be find in
		 * extended ecc parameter, currently we don't support it.
		 */
		return -1;

	*ecc_bits = chip->onfi_params.ecc_bits;

	/* The default sector size (ecc codeword size) is 512 */
	*sector_size = 512;

	return 0;
}

/*
 * pmecc_choose_ecc - Get ecc requirement from ONFI parameters. If
 *                    pmecc_corr_cap or pmecc_sector_size is 0, then set it as
 *                    ONFI ECC parameters.
 * @host: point to an atmel_nand_host structure.
 *        if host->pmecc_corr_cap is 0 then set it as the ONFI ecc_bits.
 *        if host->pmecc_sector_size is 0 then set it as the ONFI sector_size.
 * @chip: point to an nand_chip structure.
 * @cap: store the ONFI ECC correct bits capbility
 * @sector_size: in how many bytes that ONFI require to correct @ecc_bits
 *
 * Return 0 if success. otherwise return the error code.
 */
static int pmecc_choose_ecc(struct atmel_nand_host *host,
		struct nand_chip *chip,
		int *cap, int *sector_size)
{
	/* Get ECC requirement from ONFI parameters */
	*cap = *sector_size = 0;
	if (chip->onfi_version) {
		if (!get_onfi_ecc_param(chip, cap, sector_size)) {
			MTDDEBUG(MTD_DEBUG_LEVEL1, "ONFI params, minimum required ECC: %d bits in %d bytes\n",
				*cap, *sector_size);
		} else {
			dev_info(host->dev, "NAND chip ECC reqirement is in Extended ONFI parameter, we don't support yet.\n");
		}
	} else {
		dev_info(host->dev, "NAND chip is not ONFI compliant, assume ecc_bits is 2 in 512 bytes");
	}
	if (*cap == 0 && *sector_size == 0) {
		/* Non-ONFI compliant or use extended ONFI parameters */
		*cap = 2;
		*sector_size = 512;
	}

	/* If head file doesn't specify then use the one in ONFI parameters */
	if (host->pmecc_corr_cap == 0) {
		/* use the most fitable ecc bits (the near bigger one ) */
		if (*cap <= 2)
			host->pmecc_corr_cap = 2;
		else if (*cap <= 4)
			host->pmecc_corr_cap = 4;
		else if (*cap <= 8)
			host->pmecc_corr_cap = 8;
		else if (*cap <= 12)
			host->pmecc_corr_cap = 12;
		else if (*cap <= 24)
			host->pmecc_corr_cap = 24;
		else
			return -EINVAL;
	}
	if (host->pmecc_sector_size == 0) {
		/* use the most fitable sector size (the near smaller one ) */
		if (*sector_size >= 1024)
			host->pmecc_sector_size = 1024;
		else if (*sector_size >= 512)
			host->pmecc_sector_size = 512;
		else
			return -EINVAL;
	}
	return 0;
}
#endif

static int atmel_pmecc_nand_init_params(struct nand_chip *nand,
		struct mtd_info *mtd)
{
	struct atmel_nand_host *host;
	int cap, sector_size;

	host = nand->priv = &pmecc_host;

	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.calculate = NULL;
	nand->ecc.correct = NULL;
	nand->ecc.hwctl = NULL;

#ifdef CONFIG_SYS_NAND_ONFI_DETECTION
	host->pmecc_corr_cap = host->pmecc_sector_size = 0;

#ifdef CONFIG_PMECC_CAP
	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
#endif
#ifdef CONFIG_PMECC_SECTOR_SIZE
	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
#endif
	/* Get ECC requirement of ONFI parameters. And if CONFIG_PMECC_CAP or
	 * CONFIG_PMECC_SECTOR_SIZE not defined, then use ecc_bits, sector_size
	 * from ONFI.
	 */
	if (pmecc_choose_ecc(host, nand, &cap, &sector_size)) {
		dev_err(host->dev, "The NAND flash's ECC requirement(ecc_bits: %d, sector_size: %d) are not support!",
				cap, sector_size);
		return -EINVAL;
	}

	if (cap > host->pmecc_corr_cap)
		dev_info(host->dev, "WARNING: Using different ecc correct bits(%d bit) from Nand ONFI ECC reqirement (%d bit).\n",
				host->pmecc_corr_cap, cap);
	if (sector_size < host->pmecc_sector_size)
		dev_info(host->dev, "WARNING: Using different ecc correct sector size (%d bytes) from Nand ONFI ECC reqirement (%d bytes).\n",
				host->pmecc_sector_size, sector_size);
#else	/* CONFIG_SYS_NAND_ONFI_DETECTION */
	host->pmecc_corr_cap = CONFIG_PMECC_CAP;
	host->pmecc_sector_size = CONFIG_PMECC_SECTOR_SIZE;
#endif

	cap = host->pmecc_corr_cap;
	sector_size = host->pmecc_sector_size;

	/* TODO: need check whether cap & sector_size is validate */

	if (host->pmecc_sector_size == 512)
		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_512;
	else
		host->pmecc_index_table_offset = ATMEL_PMECC_INDEX_OFFSET_1024;

	MTDDEBUG(MTD_DEBUG_LEVEL1,
		"Initialize PMECC params, cap: %d, sector: %d\n",
		cap, sector_size);

	host->pmecc = (struct pmecc_regs __iomem *) ATMEL_BASE_PMECC;
	host->pmerrloc = (struct pmecc_errloc_regs __iomem *)
			ATMEL_BASE_PMERRLOC;
	host->pmecc_rom_base = (void __iomem *) ATMEL_BASE_ROM;

	/* ECC is calculated for the whole page (1 step) */
	nand->ecc.size = mtd->writesize;

	/* set ECC page size and oob layout */
	switch (mtd->writesize) {
	case 2048:
	case 4096:
	case 8192:
		host->pmecc_degree = (sector_size == 512) ?
			PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
		host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
		host->pmecc_sector_number = mtd->writesize / sector_size;
		host->pmecc_bytes_per_sector = pmecc_get_ecc_bytes(
			cap, sector_size);
		host->pmecc_alpha_to = pmecc_get_alpha_to(host);
		host->pmecc_index_of = host->pmecc_rom_base +
			host->pmecc_index_table_offset;

		nand->ecc.steps = 1;
		nand->ecc.bytes = host->pmecc_bytes_per_sector *
				       host->pmecc_sector_number;

		if (nand->ecc.bytes > MTD_MAX_ECCPOS_ENTRIES_LARGE) {
			dev_err(host->dev, "too large eccpos entries. max support ecc.bytes is %d\n",
					MTD_MAX_ECCPOS_ENTRIES_LARGE);
			return -EINVAL;
		}

		if (nand->ecc.bytes > mtd->oobsize - 2) {
			printk(KERN_ERR "No room for ECC bytes\n");
			return -EINVAL;
		}
		pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
					mtd->oobsize,
					nand->ecc.bytes);
		nand->ecc.layout = &atmel_pmecc_oobinfo;
		break;
	case 512:
	case 1024:
		/* TODO */
		printk(KERN_ERR "Unsupported page size for PMECC, use Software ECC\n");
	default:
		/* page size not handled by HW ECC */
		/* switching back to soft ECC */
		nand->ecc.mode = NAND_ECC_SOFT;
		nand->ecc.read_page = NULL;
		nand->ecc.postpad = 0;
		nand->ecc.prepad = 0;
		nand->ecc.bytes = 0;
		return 0;
	}

	/* Allocate data for PMECC computation */
	if (pmecc_data_alloc(host)) {
		dev_err(host->dev, "Cannot allocate memory for PMECC computation!\n");
		return -ENOMEM;
	}

	nand->ecc.read_page = atmel_nand_pmecc_read_page;
	nand->ecc.write_page = atmel_nand_pmecc_write_page;
	nand->ecc.strength = cap;

	atmel_pmecc_core_init(mtd);

	return 0;
}

#else

/* oob layout for large page size
 * bad block info is on bytes 0 and 1
 * the bytes have to be consecutives to avoid
 * several NAND_CMD_RNDOUT during read
 */
static struct nand_ecclayout atmel_oobinfo_large = {
	.eccbytes = 4,
	.eccpos = {60, 61, 62, 63},
	.oobfree = {
		{2, 58}
	},
};

/* oob layout for small page size
 * bad block info is on bytes 4 and 5
 * the bytes have to be consecutives to avoid
 * several NAND_CMD_RNDOUT during read
 */
static struct nand_ecclayout atmel_oobinfo_small = {
	.eccbytes = 4,
	.eccpos = {0, 1, 2, 3},
	.oobfree = {
		{6, 10}
	},
};

/*
 * Calculate HW ECC
 *
 * function called after a write
 *
 * mtd:        MTD block structure
 * dat:        raw data (unused)
 * ecc_code:   buffer for ECC
 */
static int atmel_nand_calculate(struct mtd_info *mtd,
		const u_char *dat, unsigned char *ecc_code)
{
	unsigned int ecc_value;

	/* get the first 2 ECC bytes */
	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR);

	ecc_code[0] = ecc_value & 0xFF;
	ecc_code[1] = (ecc_value >> 8) & 0xFF;

	/* get the last 2 ECC bytes */
	ecc_value = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, NPR) & ATMEL_ECC_NPARITY;

	ecc_code[2] = ecc_value & 0xFF;
	ecc_code[3] = (ecc_value >> 8) & 0xFF;

	return 0;
}

/*
 * HW ECC read page function
 *
 * mtd:        mtd info structure
 * chip:       nand chip info structure
 * buf:        buffer to store read data
 * oob_required:    caller expects OOB data read to chip->oob_poi
 */
static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint32_t *eccpos = chip->ecc.layout->eccpos;
	uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
	uint8_t *ecc_pos;
	int stat;

	/* read the page */
	chip->read_buf(mtd, p, eccsize);

	/* move to ECC position if needed */
	if (eccpos[0] != 0) {
		/* This only works on large pages
		 * because the ECC controller waits for
		 * NAND_CMD_RNDOUTSTART after the
		 * NAND_CMD_RNDOUT.
		 * anyway, for small pages, the eccpos[0] == 0
		 */
		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
				mtd->writesize + eccpos[0], -1);
	}

	/* the ECC controller needs to read the ECC just after the data */
	ecc_pos = oob + eccpos[0];
	chip->read_buf(mtd, ecc_pos, eccbytes);

	/* check if there's an error */
	stat = chip->ecc.correct(mtd, p, oob, NULL);

	if (stat < 0)
		mtd->ecc_stats.failed++;
	else
		mtd->ecc_stats.corrected += stat;

	/* get back to oob start (end of page) */
	chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);

	/* read the oob */
	chip->read_buf(mtd, oob, mtd->oobsize);

	return 0;
}

/*
 * HW ECC Correction
 *
 * function called after a read
 *
 * mtd:        MTD block structure
 * dat:        raw data read from the chip
 * read_ecc:   ECC from the chip (unused)
 * isnull:     unused
 *
 * Detect and correct a 1 bit error for a page
 */
static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
		u_char *read_ecc, u_char *isnull)
{
	struct nand_chip *nand_chip = mtd->priv;
	unsigned int ecc_status;
	unsigned int ecc_word, ecc_bit;

	/* get the status from the Status Register */
	ecc_status = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, SR);

	/* if there's no error */
	if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
		return 0;

	/* get error bit offset (4 bits) */
	ecc_bit = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_BITADDR;
	/* get word address (12 bits) */
	ecc_word = ecc_readl(CONFIG_SYS_NAND_ECC_BASE, PR) & ATMEL_ECC_WORDADDR;
	ecc_word >>= 4;

	/* if there are multiple errors */
	if (ecc_status & ATMEL_ECC_MULERR) {
		/* check if it is a freshly erased block
		 * (filled with 0xff) */
		if ((ecc_bit == ATMEL_ECC_BITADDR)
				&& (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
			/* the block has just been erased, return OK */
			return 0;
		}
		/* it doesn't seems to be a freshly
		 * erased block.
		 * We can't correct so many errors */
		printk(KERN_WARNING "atmel_nand : multiple errors detected."
				" Unable to correct.\n");
		return -EIO;
	}

	/* if there's a single bit error : we can correct it */
	if (ecc_status & ATMEL_ECC_ECCERR) {
		/* there's nothing much to do here.
		 * the bit error is on the ECC itself.
		 */
		printk(KERN_WARNING "atmel_nand : one bit error on ECC code."
				" Nothing to correct\n");
		return 0;
	}

	printk(KERN_WARNING "atmel_nand : one bit error on data."
			" (word offset in the page :"
			" 0x%x bit offset : 0x%x)\n",
			ecc_word, ecc_bit);
	/* correct the error */
	if (nand_chip->options & NAND_BUSWIDTH_16) {
		/* 16 bits words */
		((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
	} else {
		/* 8 bits words */
		dat[ecc_word] ^= (1 << ecc_bit);
	}
	printk(KERN_WARNING "atmel_nand : error corrected\n");
	return 1;
}

/*
 * Enable HW ECC : unused on most chips
 */
static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
{
}

int atmel_hwecc_nand_init_param(struct nand_chip *nand, struct mtd_info *mtd)
{
	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.calculate = atmel_nand_calculate;
	nand->ecc.correct = atmel_nand_correct;
	nand->ecc.hwctl = atmel_nand_hwctl;
	nand->ecc.read_page = atmel_nand_read_page;
	nand->ecc.bytes = 4;

	if (nand->ecc.mode == NAND_ECC_HW) {
		/* ECC is calculated for the whole page (1 step) */
		nand->ecc.size = mtd->writesize;

		/* set ECC page size and oob layout */
		switch (mtd->writesize) {
		case 512:
			nand->ecc.layout = &atmel_oobinfo_small;
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
					ATMEL_ECC_PAGESIZE_528);
			break;
		case 1024:
			nand->ecc.layout = &atmel_oobinfo_large;
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
					ATMEL_ECC_PAGESIZE_1056);
			break;
		case 2048:
			nand->ecc.layout = &atmel_oobinfo_large;
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
					ATMEL_ECC_PAGESIZE_2112);
			break;
		case 4096:
			nand->ecc.layout = &atmel_oobinfo_large;
			ecc_writel(CONFIG_SYS_NAND_ECC_BASE, MR,
					ATMEL_ECC_PAGESIZE_4224);
			break;
		default:
			/* page size not handled by HW ECC */
			/* switching back to soft ECC */
			nand->ecc.mode = NAND_ECC_SOFT;
			nand->ecc.calculate = NULL;
			nand->ecc.correct = NULL;
			nand->ecc.hwctl = NULL;
			nand->ecc.read_page = NULL;
			nand->ecc.postpad = 0;
			nand->ecc.prepad = 0;
			nand->ecc.bytes = 0;
			break;
		}
	}

	return 0;
}

#endif /* CONFIG_ATMEL_NAND_HW_PMECC */

#endif /* CONFIG_ATMEL_NAND_HWECC */

static void at91_nand_hwcontrol(struct mtd_info *mtd,
					 int cmd, unsigned int ctrl)
{
	struct nand_chip *this = mtd->priv;

	if (ctrl & NAND_CTRL_CHANGE) {
		ulong IO_ADDR_W = (ulong) this->IO_ADDR_W;
		IO_ADDR_W &= ~(CONFIG_SYS_NAND_MASK_ALE
			     | CONFIG_SYS_NAND_MASK_CLE);

		if (ctrl & NAND_CLE)
			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_CLE;
		if (ctrl & NAND_ALE)
			IO_ADDR_W |= CONFIG_SYS_NAND_MASK_ALE;

#ifdef CONFIG_SYS_NAND_ENABLE_PIN
		at91_set_gpio_value(CONFIG_SYS_NAND_ENABLE_PIN,
				    !(ctrl & NAND_NCE));
#endif
		this->IO_ADDR_W = (void *) IO_ADDR_W;
	}

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, this->IO_ADDR_W);
}

#ifdef CONFIG_SYS_NAND_READY_PIN
static int at91_nand_ready(struct mtd_info *mtd)
{
	return at91_get_gpio_value(CONFIG_SYS_NAND_READY_PIN);
}
#endif

#ifndef CONFIG_SYS_NAND_BASE_LIST
#define CONFIG_SYS_NAND_BASE_LIST { CONFIG_SYS_NAND_BASE }
#endif
static struct nand_chip nand_chip[CONFIG_SYS_MAX_NAND_DEVICE];
static ulong base_addr[CONFIG_SYS_MAX_NAND_DEVICE] = CONFIG_SYS_NAND_BASE_LIST;

int atmel_nand_chip_init(int devnum, ulong base_addr)
{
	int ret;
	struct mtd_info *mtd = &nand_info[devnum];
	struct nand_chip *nand = &nand_chip[devnum];

	mtd->priv = nand;
	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr;

#ifdef CONFIG_NAND_ECC_BCH
	nand->ecc.mode = NAND_ECC_SOFT_BCH;
#else
	nand->ecc.mode = NAND_ECC_SOFT;
#endif
#ifdef CONFIG_SYS_NAND_DBW_16
	nand->options = NAND_BUSWIDTH_16;
#endif
	nand->cmd_ctrl = at91_nand_hwcontrol;
#ifdef CONFIG_SYS_NAND_READY_PIN
	nand->dev_ready = at91_nand_ready;
#endif
	nand->chip_delay = 75;

	ret = nand_scan_ident(mtd, CONFIG_SYS_NAND_MAX_CHIPS, NULL);
	if (ret)
		return ret;

#ifdef CONFIG_ATMEL_NAND_HWECC
#ifdef CONFIG_ATMEL_NAND_HW_PMECC
	ret = atmel_pmecc_nand_init_params(nand, mtd);
#else
	ret = atmel_hwecc_nand_init_param(nand, mtd);
#endif
	if (ret)
		return ret;
#endif

	ret = nand_scan_tail(mtd);
	if (!ret)
		nand_register(devnum);

	return ret;
}

void board_nand_init(void)
{
	int i;
	for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; i++)
		if (atmel_nand_chip_init(i, base_addr[i]))
			printk(KERN_ERR "atmel_nand: Fail to initialize #%d chip",
				i);
}