1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
|
/*
* (C) Copyright 2002
* David Mueller, ELSOFT AG, d.mueller@elsoft.ch
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/* This code should work for both the S3C2400 and the S3C2410
* as they seem to have the same I2C controller inside.
* The different address mapping is handled by the s3c24xx.h files below.
*/
#include <common.h>
#if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
#include <asm/arch/clk.h>
#include <asm/arch/cpu.h>
#else
#include <asm/arch/s3c24x0_cpu.h>
#endif
#include <asm/io.h>
#include <i2c.h>
#include "s3c24x0_i2c.h"
#ifdef CONFIG_HARD_I2C
#define I2C_WRITE 0
#define I2C_READ 1
#define I2C_OK 0
#define I2C_NOK 1
#define I2C_NACK 2
#define I2C_NOK_LA 3 /* Lost arbitration */
#define I2C_NOK_TOUT 4 /* time out */
#define I2CSTAT_BSY 0x20 /* Busy bit */
#define I2CSTAT_NACK 0x01 /* Nack bit */
#define I2CCON_ACKGEN 0x80 /* Acknowledge generation */
#define I2CCON_IRPND 0x10 /* Interrupt pending bit */
#define I2C_MODE_MT 0xC0 /* Master Transmit Mode */
#define I2C_MODE_MR 0x80 /* Master Receive Mode */
#define I2C_START_STOP 0x20 /* START / STOP */
#define I2C_TXRX_ENA 0x10 /* I2C Tx/Rx enable */
#define I2C_TIMEOUT 1 /* 1 second */
static unsigned int g_current_bus; /* Stores Current I2C Bus */
#if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
static int GetI2CSDA(void)
{
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
#ifdef CONFIG_S3C2410
return (readl(&gpio->gpedat) & 0x8000) >> 15;
#endif
#ifdef CONFIG_S3C2400
return (readl(&gpio->pgdat) & 0x0020) >> 5;
#endif
}
#if 0
static void SetI2CSDA(int x)
{
rGPEDAT = (rGPEDAT & ~0x8000) | (x & 1) << 15;
}
#endif
static void SetI2CSCL(int x)
{
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
#ifdef CONFIG_S3C2410
writel((readl(&gpio->gpedat) & ~0x4000) |
(x & 1) << 14, &gpio->gpedat);
#endif
#ifdef CONFIG_S3C2400
writel((readl(&gpio->pgdat) & ~0x0040) | (x & 1) << 6, &gpio->pgdat);
#endif
}
#endif
static int WaitForXfer(struct s3c24x0_i2c *i2c)
{
int i;
i = I2C_TIMEOUT * 10000;
while (!(readl(&i2c->iiccon) & I2CCON_IRPND) && (i > 0)) {
udelay(100);
i--;
}
return (readl(&i2c->iiccon) & I2CCON_IRPND) ? I2C_OK : I2C_NOK_TOUT;
}
static int IsACK(struct s3c24x0_i2c *i2c)
{
return !(readl(&i2c->iicstat) & I2CSTAT_NACK);
}
static void ReadWriteByte(struct s3c24x0_i2c *i2c)
{
writel(readl(&i2c->iiccon) & ~I2CCON_IRPND, &i2c->iiccon);
}
static struct s3c24x0_i2c *get_base_i2c(void)
{
#ifdef CONFIG_EXYNOS4
struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
+ (EXYNOS4_I2C_SPACING
* g_current_bus));
return i2c;
#elif defined CONFIG_EXYNOS5
struct s3c24x0_i2c *i2c = (struct s3c24x0_i2c *)(samsung_get_base_i2c()
+ (EXYNOS5_I2C_SPACING
* g_current_bus));
return i2c;
#else
return s3c24x0_get_base_i2c();
#endif
}
static void i2c_ch_init(struct s3c24x0_i2c *i2c, int speed, int slaveadd)
{
ulong freq, pres = 16, div;
#if (defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
freq = get_i2c_clk();
#else
freq = get_PCLK();
#endif
/* calculate prescaler and divisor values */
if ((freq / pres / (16 + 1)) > speed)
/* set prescaler to 512 */
pres = 512;
div = 0;
while ((freq / pres / (div + 1)) > speed)
div++;
/* set prescaler, divisor according to freq, also set ACKGEN, IRQ */
writel((div & 0x0F) | 0xA0 | ((pres == 512) ? 0x40 : 0), &i2c->iiccon);
/* init to SLAVE REVEIVE and set slaveaddr */
writel(0, &i2c->iicstat);
writel(slaveadd, &i2c->iicadd);
/* program Master Transmit (and implicit STOP) */
writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
}
/*
* MULTI BUS I2C support
*/
#ifdef CONFIG_I2C_MULTI_BUS
int i2c_set_bus_num(unsigned int bus)
{
struct s3c24x0_i2c *i2c;
if ((bus < 0) || (bus >= CONFIG_MAX_I2C_NUM)) {
debug("Bad bus: %d\n", bus);
return -1;
}
g_current_bus = bus;
i2c = get_base_i2c();
i2c_ch_init(i2c, CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE);
return 0;
}
unsigned int i2c_get_bus_num(void)
{
return g_current_bus;
}
#endif
void i2c_init(int speed, int slaveadd)
{
struct s3c24x0_i2c *i2c;
#if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
struct s3c24x0_gpio *gpio = s3c24x0_get_base_gpio();
#endif
int i;
/* By default i2c channel 0 is the current bus */
g_current_bus = 0;
i2c = get_base_i2c();
/* wait for some time to give previous transfer a chance to finish */
i = I2C_TIMEOUT * 1000;
while ((readl(&i2c->iicstat) & I2CSTAT_BSY) && (i > 0)) {
udelay(1000);
i--;
}
#if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5)
if ((readl(&i2c->iicstat) & I2CSTAT_BSY) || GetI2CSDA() == 0) {
#ifdef CONFIG_S3C2410
ulong old_gpecon = readl(&gpio->gpecon);
#endif
#ifdef CONFIG_S3C2400
ulong old_gpecon = readl(&gpio->pgcon);
#endif
/* bus still busy probably by (most) previously interrupted
transfer */
#ifdef CONFIG_S3C2410
/* set I2CSDA and I2CSCL (GPE15, GPE14) to GPIO */
writel((readl(&gpio->gpecon) & ~0xF0000000) | 0x10000000,
&gpio->gpecon);
#endif
#ifdef CONFIG_S3C2400
/* set I2CSDA and I2CSCL (PG5, PG6) to GPIO */
writel((readl(&gpio->pgcon) & ~0x00003c00) | 0x00001000,
&gpio->pgcon);
#endif
/* toggle I2CSCL until bus idle */
SetI2CSCL(0);
udelay(1000);
i = 10;
while ((i > 0) && (GetI2CSDA() != 1)) {
SetI2CSCL(1);
udelay(1000);
SetI2CSCL(0);
udelay(1000);
i--;
}
SetI2CSCL(1);
udelay(1000);
/* restore pin functions */
#ifdef CONFIG_S3C2410
writel(old_gpecon, &gpio->gpecon);
#endif
#ifdef CONFIG_S3C2400
writel(old_gpecon, &gpio->pgcon);
#endif
}
#endif /* #if !(defined CONFIG_EXYNOS4 || defined CONFIG_EXYNOS5) */
i2c_ch_init(i2c, speed, slaveadd);
}
/*
* cmd_type is 0 for write, 1 for read.
*
* addr_len can take any value from 0-255, it is only limited
* by the char, we could make it larger if needed. If it is
* 0 we skip the address write cycle.
*/
static int i2c_transfer(struct s3c24x0_i2c *i2c,
unsigned char cmd_type,
unsigned char chip,
unsigned char addr[],
unsigned char addr_len,
unsigned char data[],
unsigned short data_len)
{
int i, result;
if (data == 0 || data_len == 0) {
/*Don't support data transfer of no length or to address 0 */
debug("i2c_transfer: bad call\n");
return I2C_NOK;
}
/* Check I2C bus idle */
i = I2C_TIMEOUT * 1000;
while ((readl(&i2c->iicstat) & I2CSTAT_BSY) && (i > 0)) {
udelay(1000);
i--;
}
if (readl(&i2c->iicstat) & I2CSTAT_BSY)
return I2C_NOK_TOUT;
writel(readl(&i2c->iiccon) | I2CCON_ACKGEN, &i2c->iiccon);
result = I2C_OK;
switch (cmd_type) {
case I2C_WRITE:
if (addr && addr_len) {
writel(chip, &i2c->iicds);
/* send START */
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
&i2c->iicstat);
i = 0;
while ((i < addr_len) && (result == I2C_OK)) {
result = WaitForXfer(i2c);
writel(addr[i], &i2c->iicds);
ReadWriteByte(i2c);
i++;
}
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
result = WaitForXfer(i2c);
writel(data[i], &i2c->iicds);
ReadWriteByte(i2c);
i++;
}
} else {
writel(chip, &i2c->iicds);
/* send START */
writel(I2C_MODE_MT | I2C_TXRX_ENA | I2C_START_STOP,
&i2c->iicstat);
i = 0;
while ((i < data_len) && (result = I2C_OK)) {
result = WaitForXfer(i2c);
writel(data[i], &i2c->iicds);
ReadWriteByte(i2c);
i++;
}
}
if (result == I2C_OK)
result = WaitForXfer(i2c);
/* send STOP */
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
ReadWriteByte(i2c);
break;
case I2C_READ:
if (addr && addr_len) {
writel(I2C_MODE_MT | I2C_TXRX_ENA, &i2c->iicstat);
writel(chip, &i2c->iicds);
/* send START */
writel(readl(&i2c->iicstat) | I2C_START_STOP,
&i2c->iicstat);
result = WaitForXfer(i2c);
if (IsACK(i2c)) {
i = 0;
while ((i < addr_len) && (result == I2C_OK)) {
writel(addr[i], &i2c->iicds);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
i++;
}
writel(chip, &i2c->iicds);
/* resend START */
writel(I2C_MODE_MR | I2C_TXRX_ENA |
I2C_START_STOP, &i2c->iicstat);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
/* disable ACK for final READ */
if (i == data_len - 1)
writel(readl(&i2c->iiccon)
& ~I2CCON_ACKGEN,
&i2c->iiccon);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
data[i] = readl(&i2c->iicds);
i++;
}
} else {
result = I2C_NACK;
}
} else {
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
writel(chip, &i2c->iicds);
/* send START */
writel(readl(&i2c->iicstat) | I2C_START_STOP,
&i2c->iicstat);
result = WaitForXfer(i2c);
if (IsACK(i2c)) {
i = 0;
while ((i < data_len) && (result == I2C_OK)) {
/* disable ACK for final READ */
if (i == data_len - 1)
writel(readl(&i2c->iiccon) &
~I2CCON_ACKGEN,
&i2c->iiccon);
ReadWriteByte(i2c);
result = WaitForXfer(i2c);
data[i] = readl(&i2c->iicds);
i++;
}
} else {
result = I2C_NACK;
}
}
/* send STOP */
writel(I2C_MODE_MR | I2C_TXRX_ENA, &i2c->iicstat);
ReadWriteByte(i2c);
break;
default:
debug("i2c_transfer: bad call\n");
result = I2C_NOK;
break;
}
return result;
}
int i2c_probe(uchar chip)
{
struct s3c24x0_i2c *i2c;
uchar buf[1];
i2c = get_base_i2c();
buf[0] = 0;
/*
* What is needed is to send the chip address and verify that the
* address was <ACK>ed (i.e. there was a chip at that address which
* drove the data line low).
*/
return i2c_transfer(i2c, I2C_READ, chip << 1, 0, 0, buf, 1) != I2C_OK;
}
int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
struct s3c24x0_i2c *i2c;
uchar xaddr[4];
int ret;
if (alen > 4) {
debug("I2C read: addr len %d not supported\n", alen);
return 1;
}
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
* address and the extra bits end up in the "chip address"
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
* four 256 byte chips.
*
* Note that we consider the length of the address field to
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
if (alen > 0)
chip |= ((addr >> (alen * 8)) &
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c = get_base_i2c();
ret = i2c_transfer(i2c, I2C_READ, chip << 1, &xaddr[4 - alen], alen,
buffer, len);
if (ret != 0) {
debug("I2c read: failed %d\n", ret);
return 1;
}
return 0;
}
int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len)
{
struct s3c24x0_i2c *i2c;
uchar xaddr[4];
if (alen > 4) {
debug("I2C write: addr len %d not supported\n", alen);
return 1;
}
if (alen > 0) {
xaddr[0] = (addr >> 24) & 0xFF;
xaddr[1] = (addr >> 16) & 0xFF;
xaddr[2] = (addr >> 8) & 0xFF;
xaddr[3] = addr & 0xFF;
}
#ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW
/*
* EEPROM chips that implement "address overflow" are ones
* like Catalyst 24WC04/08/16 which has 9/10/11 bits of
* address and the extra bits end up in the "chip address"
* bit slots. This makes a 24WC08 (1Kbyte) chip look like
* four 256 byte chips.
*
* Note that we consider the length of the address field to
* still be one byte because the extra address bits are
* hidden in the chip address.
*/
if (alen > 0)
chip |= ((addr >> (alen * 8)) &
CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW);
#endif
i2c = get_base_i2c();
return (i2c_transfer
(i2c, I2C_WRITE, chip << 1, &xaddr[4 - alen], alen, buffer,
len) != 0);
}
#endif /* CONFIG_HARD_I2C */
|