summaryrefslogtreecommitdiff
path: root/cpu/ppc4xx/spd_sdram.c
blob: bf5d22429d6d0a9029da01e12b0ac7a5468a689d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
/*
 * (C) Copyright 2001
 * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com
 *
 * Based on code by:
 *
 * Kenneth Johansson ,Ericsson AB.
 * kenneth.johansson@etx.ericsson.se
 *
 * hacked up by bill hunter. fixed so we could run before
 * serial_init and console_init. previous version avoided this by
 * running out of cache memory during serial/console init, then running
 * this code later.
 *
 * (C) Copyright 2002
 * Jun Gu, Artesyn Technology, jung@artesyncp.com
 * Support for IBM 440 based on OpenBIOS draminit.c from IBM.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <ppc4xx.h>

#ifdef CONFIG_SPD_EEPROM

/*
 * Set default values
 */
#ifndef	CFG_I2C_SPEED
#define	CFG_I2C_SPEED	50000
#endif

#ifndef	CFG_I2C_SLAVE
#define	CFG_I2C_SLAVE	0xFE
#endif

#ifndef  CONFIG_440              /* for 405 WALNUT board */

#define  SDRAM0_CFG_DCE          0x80000000
#define  SDRAM0_CFG_SRE          0x40000000
#define  SDRAM0_CFG_PME          0x20000000
#define  SDRAM0_CFG_MEMCHK       0x10000000
#define  SDRAM0_CFG_REGEN        0x08000000
#define  SDRAM0_CFG_ECCDD        0x00400000
#define  SDRAM0_CFG_EMDULR       0x00200000
#define  SDRAM0_CFG_DRW_SHIFT    (31-6)
#define  SDRAM0_CFG_BRPF_SHIFT   (31-8)

#define  SDRAM0_TR_CASL_SHIFT    (31-8)
#define  SDRAM0_TR_PTA_SHIFT     (31-13)
#define  SDRAM0_TR_CTP_SHIFT     (31-15)
#define  SDRAM0_TR_LDF_SHIFT     (31-17)
#define  SDRAM0_TR_RFTA_SHIFT    (31-29)
#define  SDRAM0_TR_RCD_SHIFT     (31-31)

#define  SDRAM0_RTR_SHIFT        (31-15)
#define  SDRAM0_ECCCFG_SHIFT     (31-11)

/* SDRAM0_CFG enable macro  */
#define SDRAM0_CFG_BRPF(x) ( ( x & 0x3)<< SDRAM0_CFG_BRPF_SHIFT )

#define SDRAM0_BXCR_SZ_MASK  0x000e0000
#define SDRAM0_BXCR_AM_MASK  0x0000e000

#define SDRAM0_BXCR_SZ_SHIFT (31-14)
#define SDRAM0_BXCR_AM_SHIFT (31-18)

#define SDRAM0_BXCR_SZ(x)  ( (( x << SDRAM0_BXCR_SZ_SHIFT) & SDRAM0_BXCR_SZ_MASK) )
#define SDRAM0_BXCR_AM(x)  ( (( x << SDRAM0_BXCR_AM_SHIFT) & SDRAM0_BXCR_AM_MASK) )

#ifdef CONFIG_SPDDRAM_SILENT
# define SPD_ERR(x) do { return 0; } while (0)
#else
# define SPD_ERR(x) do { printf(x); return(0); } while (0)
#endif

#define sdram_HZ_to_ns(hertz) (1000000000/(hertz))

/* function prototypes */
int spd_read(uint addr);


/*
 * This function is reading data from the DIMM module EEPROM over the SPD bus
 * and uses that to program the sdram controller.
 *
 * This works on boards that has the same schematics that the IBM walnut has.
 *
 * Input: null for default I2C spd functions or a pointer to a custom function
 * returning spd_data.
 */

long int spd_sdram(int(read_spd)(uint addr))
{
	int bus_period,tmp,row,col;
	int total_size,bank_size,bank_code;
	int ecc_on;
	int mode;
	int bank_cnt;

	int sdram0_pmit=0x07c00000;
	int sdram0_besr0=-1;
	int sdram0_besr1=-1;
	int sdram0_eccesr=-1;
	int sdram0_ecccfg;

	int sdram0_rtr=0;
	int sdram0_tr=0;

	int sdram0_b0cr;
	int sdram0_b1cr;
	int sdram0_b2cr;
	int sdram0_b3cr;

	int sdram0_cfg=0;

	int t_rp;
	int t_rcd;
	int t_ras;
	int t_rc;
	int min_cas;

	if(read_spd == 0){
		read_spd=spd_read;
	/*
	 * Make sure I2C controller is initialized
	 * before continuing.
	 */
		i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);
	}


	/*
	 * Calculate the bus period, we do it this
	 * way to minimize stack utilization.
	 */
    	tmp = (mfdcr(pllmd) >> (31-6)) & 0xf;	/* get FBDV bits */
	tmp = CONFIG_SYS_CLK_FREQ * tmp;	/* get plb freq */
	bus_period = sdram_HZ_to_ns(tmp);	/* get sdram speed */

     	/* Make shure we are using SDRAM */
	if (read_spd(2) != 0x04){
          SPD_ERR("SDRAM - non SDRAM memory module found\n");
     	  }

/*------------------------------------------------------------------
  configure memory timing register

  data from DIMM:
  27	IN Row Precharge Time ( t RP)
  29	MIN RAS to CAS Delay ( t RCD)
  127   Component and Clock Detail ,clk0-clk3, junction temp, CAS
  -------------------------------------------------------------------*/

     /*
      * first figure out which cas latency mode to use
      * use the min supported mode
      */

	tmp = read_spd(127) & 0x6;
     if(tmp == 0x02){      	   /* only cas = 2 supported */
     	  min_cas = 2;
/*     	  t_ck = read_spd(9); */
/*     	  t_ac = read_spd(10); */
	  }
     else if (tmp == 0x04){         /* only cas = 3 supported */
     	  min_cas = 3;
/*     	  t_ck = read_spd(9); */
/*     	  t_ac = read_spd(10); */
	  }
     else if (tmp == 0x06){         /* 2,3 supported, so use 2 */
     	  min_cas = 2;
/*     	  t_ck = read_spd(23); */
/*     	  t_ac = read_spd(24); */
	  }
     else {
	     SPD_ERR("SDRAM - unsupported CAS latency \n");
	}

     /* get some timing values, t_rp,t_rcd,t_ras,t_rc
     */
     t_rp = read_spd(27);
     t_rcd = read_spd(29);
     t_ras = read_spd(30);
     t_rc = t_ras + t_rp;

     /* The following timing calcs subtract 1 before deviding.
      * this has effect of using ceiling instead of floor rounding,
      * and also subtracting 1 to convert number to reg value
      */
     /* set up CASL */
     sdram0_tr = (min_cas - 1) << SDRAM0_TR_CASL_SHIFT;
     /* set up PTA */
     sdram0_tr |= (((t_rp - 1)/bus_period) & 0x3) << SDRAM0_TR_PTA_SHIFT;
     /* set up CTP */
     tmp = ((t_rc - t_rcd - t_rp -1) / bus_period) & 0x3;
     if(tmp<1) tmp=1;
     sdram0_tr |= tmp << SDRAM0_TR_CTP_SHIFT;
     /* set LDF	= 2 cycles, reg value = 1 */
     sdram0_tr |= 1 << SDRAM0_TR_LDF_SHIFT;
     /* set RFTA = t_rfc/bus_period, use t_rfc = t_rc */
	tmp = ( (t_rc - 1) / bus_period)-3;
	if(tmp<0)tmp=0;
	if(tmp>6)tmp=6;
	sdram0_tr |= tmp << SDRAM0_TR_RFTA_SHIFT;
     /* set RCD = t_rcd/bus_period*/
     sdram0_tr |= (((t_rcd - 1) / bus_period) &0x3) << SDRAM0_TR_RCD_SHIFT ;


/*------------------------------------------------------------------
  configure RTR register
  -------------------------------------------------------------------*/
     row = read_spd(3);
     col = read_spd(4);
     tmp = read_spd(12) & 0x7f ; /* refresh type less self refresh bit */
     switch(tmp){
	case 0x00:
	  tmp=15625;
	  break;
	case 0x01:
	  tmp=15625/4;
	  break;
	case 0x02:
	  tmp=15625/2;
	  break;
	case 0x03:
	  tmp=15625*2;
	  break;
	case 0x04:
	  tmp=15625*4;
	  break;
	case 0x05:
	  tmp=15625*8;
	  break;
	default:
     	  SPD_ERR("SDRAM - Bad refresh period \n");
	}
	/* convert from nsec to bus cycles */
	tmp = tmp/bus_period;
	sdram0_rtr = (tmp & 0x3ff8)<<  SDRAM0_RTR_SHIFT;

/*------------------------------------------------------------------
  determine the number of banks used
  -------------------------------------------------------------------*/
	/* byte 7:6 is module data width */
	if(read_spd(7) != 0)
	    SPD_ERR("SDRAM - unsupported module width\n");
	tmp = read_spd(6);
	if (tmp < 32)
	    SPD_ERR("SDRAM - unsupported module width\n");
	else if (tmp < 64)
	    bank_cnt=1;		/* one bank per sdram side */
	else if (tmp < 73)
	    bank_cnt=2;	/* need two banks per side */
	else if (tmp < 161)
	    bank_cnt=4;	/* need four banks per side */
	else
	    SPD_ERR("SDRAM - unsupported module width\n");

	/* byte 5 is the module row count (refered to as dimm "sides") */
	tmp = read_spd(5);
	if(tmp==1);
	else if(tmp==2) bank_cnt *=2;
	else if(tmp==4) bank_cnt *=4;
	else bank_cnt = 8; 		/* 8 is an error code */

	if(bank_cnt > 4)	/* we only have 4 banks to work with */
	    SPD_ERR("SDRAM - unsupported module rows for this width\n");

	/* now check for ECC ability of module. We only support ECC
	 *   on 32 bit wide devices with 8 bit ECC.
	 */
	if ( (read_spd(11)==2) && ((read_spd(6)==40) || (read_spd(14)==8)) ){
	   sdram0_ecccfg=0xf<<SDRAM0_ECCCFG_SHIFT;
	   ecc_on = 1;
   	}
	else{
	   sdram0_ecccfg=0;
	   ecc_on = 0;
   	}

/*------------------------------------------------------------------
	calculate total size
  -------------------------------------------------------------------*/
	/* calculate total size and do sanity check */
	tmp = read_spd(31);
	total_size=1<<22;	/* total_size = 4MB */
	/* now multiply 4M by the smallest device row density */
	/* note that we don't support asymetric rows */
	while (((tmp & 0x0001) == 0) && (tmp != 0)){
	    total_size= total_size<<1;
	    tmp = tmp>>1;
	    }
	total_size *= read_spd(5);	/* mult by module rows (dimm sides) */

/*------------------------------------------------------------------
	map  rows * cols * banks to a mode
 -------------------------------------------------------------------*/

	switch( row )
	{
	case 11:
		switch ( col )
		{
		case 8:
			mode=4; /* mode 5 */
			break;
		case 9:
		case 10:
			mode=0; /* mode 1 */
			break;
		default:
	     	SPD_ERR("SDRAM - unsupported mode\n");
		}
		break;
	case 12:
		switch ( col )
		{
		case 8:
			mode=3; /* mode 4 */
			break;
		case 9:
		case 10:
			mode=1; /* mode 2 */
			break;
		default:
	     	SPD_ERR("SDRAM - unsupported mode\n");
		}
		break;
	case 13:
		switch ( col )
		{
		case 8:
			mode=5; /* mode 6 */
			break;
		case 9:
		case 10:
			if (read_spd(17) ==2 )
				mode=6; /* mode 7 */
			else
				mode=2; /* mode 3 */
			break;
		case 11:
			mode=2; /* mode 3 */
			break;
		default:
	     	SPD_ERR("SDRAM - unsupported mode\n");
		}
		break;
	default:
	     SPD_ERR("SDRAM - unsupported mode\n");
	}

/*------------------------------------------------------------------
	using the calculated values, compute the bank
	config register values.
 -------------------------------------------------------------------*/
	sdram0_b1cr = 0;
	sdram0_b2cr = 0;
	sdram0_b3cr = 0;

	/* compute the size of each bank */
	bank_size = total_size / bank_cnt;
	/* convert bank size to bank size code for ppc4xx
		by takeing log2(bank_size) - 22 */
	tmp=bank_size; 		/* start with tmp = bank_size */
	bank_code=0;			/* and bank_code = 0 */
	while (tmp>1){ 		/* this takes log2 of tmp */
		bank_code++;		/* and stores result in bank_code */
		tmp=tmp>>1;
		}				/* bank_code is now log2(bank_size) */
	bank_code-=22;				/* subtract 22 to get the code */

	tmp = SDRAM0_BXCR_SZ(bank_code) | SDRAM0_BXCR_AM(mode) | 1;
    	sdram0_b0cr = (bank_size) * 0 | tmp;
    	if(bank_cnt>1) sdram0_b2cr = (bank_size) * 1 | tmp;
    	if(bank_cnt>2) sdram0_b1cr = (bank_size) * 2 | tmp;
    	if(bank_cnt>3) sdram0_b3cr = (bank_size) * 3 | tmp;


	/*
	 *   enable sdram controller DCE=1
	 *  enable burst read prefetch to 32 bytes BRPF=2
	 *  leave other functions off
	 */

/*------------------------------------------------------------------
	now that we've done our calculations, we are ready to
	program all the registers.
 -------------------------------------------------------------------*/


#define mtsdram0(reg, data)  mtdcr(memcfga,reg);mtdcr(memcfgd,data)
	/* disable memcontroller so updates work */
	sdram0_cfg = 0;
	mtsdram0( mem_mcopt1, sdram0_cfg );

	mtsdram0( mem_besra , sdram0_besr0 );
	mtsdram0( mem_besrb , sdram0_besr1 );
	mtsdram0( mem_rtr   , sdram0_rtr );
	mtsdram0( mem_pmit  , sdram0_pmit );
	mtsdram0( mem_mb0cf , sdram0_b0cr );
	mtsdram0( mem_mb1cf , sdram0_b1cr );
	mtsdram0( mem_mb2cf , sdram0_b2cr );
	mtsdram0( mem_mb3cf , sdram0_b3cr );
	mtsdram0( mem_sdtr1 , sdram0_tr );
	mtsdram0( mem_ecccf , sdram0_ecccfg );
	mtsdram0( mem_eccerr, sdram0_eccesr );

	/* SDRAM have a power on delay,  500 micro should do */
	udelay(500);
	sdram0_cfg = SDRAM0_CFG_DCE | SDRAM0_CFG_BRPF(1) | SDRAM0_CFG_ECCDD | SDRAM0_CFG_EMDULR;
	if(ecc_on) sdram0_cfg |= SDRAM0_CFG_MEMCHK;
	mtsdram0( mem_mcopt1, sdram0_cfg );


	/* kernel 2.4.2 from mvista has a bug with memory over 128MB */
#ifdef MVISTA_MEM_BUG
	if (total_size > 128*1024*1024 )
		total_size=128*1024*1024;
#endif
	return (total_size);
}

int spd_read(uint addr)
{
	char data[2];

	if (i2c_read(SPD_EEPROM_ADDRESS, addr, 1, data, 1) == 0)
		return (int)data[0];
	else
		return 0;
}

#else                             /* CONFIG_440 */

/*-----------------------------------------------------------------------------
|  Memory Controller Options 0
+-----------------------------------------------------------------------------*/
#define SDRAM_CFG0_DCEN           0x80000000  /* SDRAM Controller Enable      */
#define SDRAM_CFG0_MCHK_MASK      0x30000000  /* Memory data errchecking mask */
#define SDRAM_CFG0_MCHK_NON       0x00000000  /* No ECC generation            */
#define SDRAM_CFG0_MCHK_GEN       0x20000000  /* ECC generation               */
#define SDRAM_CFG0_MCHK_CHK       0x30000000  /* ECC generation and checking  */
#define SDRAM_CFG0_RDEN           0x08000000  /* Registered DIMM enable       */
#define SDRAM_CFG0_PMUD           0x04000000  /* Page management unit         */
#define SDRAM_CFG0_DMWD_MASK      0x02000000  /* DRAM width mask              */
#define SDRAM_CFG0_DMWD_32        0x00000000  /* 32 bits                      */
#define SDRAM_CFG0_DMWD_64        0x02000000  /* 64 bits                      */
#define SDRAM_CFG0_UIOS_MASK      0x00C00000  /* Unused IO State              */
#define SDRAM_CFG0_PDP            0x00200000  /* Page deallocation policy     */

/*-----------------------------------------------------------------------------
|  Memory Controller Options 1
+-----------------------------------------------------------------------------*/
#define SDRAM_CFG1_SRE            0x80000000  /* Self-Refresh Entry           */
#define SDRAM_CFG1_PMEN           0x40000000  /* Power Management Enable      */

/*-----------------------------------------------------------------------------+
|  SDRAM DEVPOT Options
+-----------------------------------------------------------------------------*/
#define SDRAM_DEVOPT_DLL          0x80000000
#define SDRAM_DEVOPT_DS           0x40000000

/*-----------------------------------------------------------------------------+
|  SDRAM MCSTS Options
+-----------------------------------------------------------------------------*/
#define SDRAM_MCSTS_MRSC          0x80000000
#define SDRAM_MCSTS_SRMS          0x40000000
#define SDRAM_MCSTS_CIS           0x20000000

/*-----------------------------------------------------------------------------
|  SDRAM Refresh Timer Register
+-----------------------------------------------------------------------------*/
#define SDRAM_RTR_RINT_MASK       0xFFFF0000
#define SDRAM_RTR_RINT_ENCODE(n)  (((n) << 16) & SDRAM_RTR_RINT_MASK)
#define sdram_HZ_to_ns(hertz)     (1000000000/(hertz))

/*-----------------------------------------------------------------------------+
|  SDRAM UABus Base Address Reg
+-----------------------------------------------------------------------------*/
#define SDRAM_UABBA_UBBA_MASK     0x0000000F

/*-----------------------------------------------------------------------------+
|  Memory Bank 0-7 configuration
+-----------------------------------------------------------------------------*/
#define SDRAM_BXCR_SDBA_MASK      0xff800000      /* Base address             */
#define SDRAM_BXCR_SDSZ_MASK      0x000e0000      /* Size                     */
#define SDRAM_BXCR_SDSZ_8         0x00020000      /*   8M                     */
#define SDRAM_BXCR_SDSZ_16        0x00040000      /*  16M                     */
#define SDRAM_BXCR_SDSZ_32        0x00060000      /*  32M                     */
#define SDRAM_BXCR_SDSZ_64        0x00080000      /*  64M                     */
#define SDRAM_BXCR_SDSZ_128       0x000a0000      /* 128M                     */
#define SDRAM_BXCR_SDSZ_256       0x000c0000      /* 256M                     */
#define SDRAM_BXCR_SDSZ_512       0x000e0000      /* 512M                     */
#define SDRAM_BXCR_SDAM_MASK      0x0000e000      /* Addressing mode          */
#define SDRAM_BXCR_SDAM_1         0x00000000      /*   Mode 1                 */
#define SDRAM_BXCR_SDAM_2         0x00002000      /*   Mode 2                 */
#define SDRAM_BXCR_SDAM_3         0x00004000      /*   Mode 3                 */
#define SDRAM_BXCR_SDAM_4         0x00006000      /*   Mode 4                 */
#define SDRAM_BXCR_SDBE           0x00000001      /* Memory Bank Enable       */

/*-----------------------------------------------------------------------------+
|  SDRAM TR0 Options
+-----------------------------------------------------------------------------*/
#define SDRAM_TR0_SDWR_MASK       0x80000000
#define   SDRAM_TR0_SDWR_2_CLK    0x00000000
#define   SDRAM_TR0_SDWR_3_CLK    0x80000000
#define SDRAM_TR0_SDWD_MASK       0x40000000
#define   SDRAM_TR0_SDWD_0_CLK    0x00000000
#define   SDRAM_TR0_SDWD_1_CLK    0x40000000
#define SDRAM_TR0_SDCL_MASK       0x01800000
#define   SDRAM_TR0_SDCL_2_0_CLK  0x00800000
#define   SDRAM_TR0_SDCL_2_5_CLK  0x01000000
#define   SDRAM_TR0_SDCL_3_0_CLK  0x01800000
#define SDRAM_TR0_SDPA_MASK       0x000C0000
#define   SDRAM_TR0_SDPA_2_CLK    0x00040000
#define   SDRAM_TR0_SDPA_3_CLK    0x00080000
#define   SDRAM_TR0_SDPA_4_CLK    0x000C0000
#define SDRAM_TR0_SDCP_MASK       0x00030000
#define   SDRAM_TR0_SDCP_2_CLK    0x00000000
#define   SDRAM_TR0_SDCP_3_CLK    0x00010000
#define   SDRAM_TR0_SDCP_4_CLK    0x00020000
#define   SDRAM_TR0_SDCP_5_CLK    0x00030000
#define SDRAM_TR0_SDLD_MASK       0x0000C000
#define   SDRAM_TR0_SDLD_1_CLK    0x00000000
#define   SDRAM_TR0_SDLD_2_CLK    0x00004000
#define SDRAM_TR0_SDRA_MASK       0x0000001C
#define   SDRAM_TR0_SDRA_6_CLK    0x00000000
#define   SDRAM_TR0_SDRA_7_CLK    0x00000004
#define   SDRAM_TR0_SDRA_8_CLK    0x00000008
#define   SDRAM_TR0_SDRA_9_CLK    0x0000000C
#define   SDRAM_TR0_SDRA_10_CLK   0x00000010
#define   SDRAM_TR0_SDRA_11_CLK   0x00000014
#define   SDRAM_TR0_SDRA_12_CLK   0x00000018
#define   SDRAM_TR0_SDRA_13_CLK   0x0000001C
#define SDRAM_TR0_SDRD_MASK       0x00000003
#define   SDRAM_TR0_SDRD_2_CLK    0x00000001
#define   SDRAM_TR0_SDRD_3_CLK    0x00000002
#define   SDRAM_TR0_SDRD_4_CLK    0x00000003

/*-----------------------------------------------------------------------------+
|  SDRAM TR1 Options
+-----------------------------------------------------------------------------*/
#define SDRAM_TR1_RDSS_MASK         0xC0000000
#define   SDRAM_TR1_RDSS_TR0        0x00000000
#define   SDRAM_TR1_RDSS_TR1        0x40000000
#define   SDRAM_TR1_RDSS_TR2        0x80000000
#define   SDRAM_TR1_RDSS_TR3        0xC0000000
#define SDRAM_TR1_RDSL_MASK         0x00C00000
#define   SDRAM_TR1_RDSL_STAGE1     0x00000000
#define   SDRAM_TR1_RDSL_STAGE2     0x00400000
#define   SDRAM_TR1_RDSL_STAGE3     0x00800000
#define SDRAM_TR1_RDCD_MASK         0x00000800
#define   SDRAM_TR1_RDCD_RCD_0_0    0x00000000
#define   SDRAM_TR1_RDCD_RCD_1_2    0x00000800
#define SDRAM_TR1_RDCT_MASK         0x000001FF
#define   SDRAM_TR1_RDCT_ENCODE(x)  (((x) << 0) & SDRAM_TR1_RDCT_MASK)
#define   SDRAM_TR1_RDCT_DECODE(x)  (((x) & SDRAM_TR1_RDCT_MASK) >> 0)
#define   SDRAM_TR1_RDCT_MIN        0x00000000
#define   SDRAM_TR1_RDCT_MAX        0x000001FF

/*-----------------------------------------------------------------------------+
|  SDRAM WDDCTR Options
+-----------------------------------------------------------------------------*/
#define SDRAM_WDDCTR_WRCP_MASK       0xC0000000
#define   SDRAM_WDDCTR_WRCP_0DEG     0x00000000
#define   SDRAM_WDDCTR_WRCP_90DEG    0x40000000
#define   SDRAM_WDDCTR_WRCP_180DEG   0x80000000
#define SDRAM_WDDCTR_DCD_MASK        0x000001FF

/*-----------------------------------------------------------------------------+
|  SDRAM CLKTR Options
+-----------------------------------------------------------------------------*/
#define SDRAM_CLKTR_CLKP_MASK       0xC0000000
#define   SDRAM_CLKTR_CLKP_0DEG     0x00000000
#define   SDRAM_CLKTR_CLKP_90DEG    0x40000000
#define   SDRAM_CLKTR_CLKP_180DEG   0x80000000
#define SDRAM_CLKTR_DCDT_MASK       0x000001FF

/*-----------------------------------------------------------------------------+
|  SDRAM DLYCAL Options
+-----------------------------------------------------------------------------*/
#define SDRAM_DLYCAL_DLCV_MASK      0x000003FC
#define   SDRAM_DLYCAL_DLCV_ENCODE(x) (((x)<<2) & SDRAM_DLYCAL_DLCV_MASK)
#define   SDRAM_DLYCAL_DLCV_DECODE(x) (((x) & SDRAM_DLYCAL_DLCV_MASK)>>2)

/*-----------------------------------------------------------------------------+
|  General Definition
+-----------------------------------------------------------------------------*/
#define DEFAULT_SPD_ADDR1   0x53
#define DEFAULT_SPD_ADDR2   0x52
#define ONE_BILLION         1000000000
#define MAXBANKS            4               /* at most 4 dimm banks */
#define MAX_SPD_BYTES       256
#define NUMHALFCYCLES       4
#define NUMMEMTESTS         8
#define NUMMEMWORDS         8
#define MAXBXCR             4
#define TRUE                1
#define FALSE               0

const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
    {0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
     0xFFFFFFFF, 0xFFFFFFFF},
    {0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
     0x00000000, 0x00000000},
    {0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
     0x55555555, 0x55555555},
    {0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
     0xAAAAAAAA, 0xAAAAAAAA},
    {0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
     0x5A5A5A5A, 0x5A5A5A5A},
    {0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
     0xA5A5A5A5, 0xA5A5A5A5},
    {0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
     0x55AA55AA, 0x55AA55AA},
    {0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
     0xAA55AA55, 0xAA55AA55}
};


unsigned char spd_read(uchar chip, uint addr);

void get_spd_info(unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void check_mem_type
                 (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void check_volt_type
                 (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void program_cfg0(unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void program_cfg1(unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void program_rtr (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void program_tr0 (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks);

void program_tr1 (void);

void program_ecc (unsigned long  num_bytes);

unsigned
long  program_bxcr(unsigned long* dimm_populated,
                   unsigned char* iic0_dimm_addr,
                   unsigned long  num_dimm_banks);

/*
 * This function is reading data from the DIMM module EEPROM over the SPD bus
 * and uses that to program the sdram controller.
 *
 * This works on boards that has the same schematics that the IBM walnut has.
 *
 * BUG: Don't handle ECC memory
 * BUG: A few values in the TR register is currently hardcoded
 */

long int spd_sdram(void) {
    unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
    unsigned long dimm_populated[sizeof(iic0_dimm_addr)];
    unsigned long total_size;
    unsigned long cfg0;
    unsigned long mcsts;
    unsigned long num_dimm_banks;               /* on board dimm banks */

    num_dimm_banks = sizeof(iic0_dimm_addr);

	/*
	 * Make sure I2C controller is initialized
	 * before continuing.
	 */
	i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);

    /*
     * Read the SPD information using I2C interface. Check to see if the
     * DIMM slots are populated.
     */
    get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * Check the memory type for the dimms plugged.
     */
    check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * Check the voltage type for the dimms plugged.
     */
    check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * program 440GP SDRAM controller options (SDRAM0_CFG0)
     */
    program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * program 440GP SDRAM controller options (SDRAM0_CFG1)
     */
    program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * program SDRAM refresh register (SDRAM0_RTR)
     */
    program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * program SDRAM Timing Register 0 (SDRAM0_TR0)
     */
    program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks);

    /*
     * program the BxCR registers to find out total sdram installed
     */
    total_size = program_bxcr(dimm_populated, iic0_dimm_addr,
        num_dimm_banks);

    /*
     * program SDRAM Clock Timing Register (SDRAM0_CLKTR)
     */
    mtsdram(mem_clktr, 0x40000000);

    /*
     * delay to ensure 200 usec has elapsed
     */
    udelay(400);

    /*
     * enable the memory controller
     */
    mfsdram(mem_cfg0, cfg0);
    mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN);

    /*
     * wait for SDRAM_CFG0_DC_EN to complete
     */
    while(1) {
        mfsdram(mem_mcsts, mcsts);
        if ((mcsts & SDRAM_MCSTS_MRSC) != 0) {
            break;
        }
    }

    /*
     * program SDRAM Timing Register 1, adding some delays
     */
    program_tr1();

    /*
     * if ECC is enabled, initialize parity bits
     */

	return total_size;
}

unsigned char spd_read(uchar chip, uint addr) {
	unsigned char data[2];

	if (i2c_read(chip, addr, 1, data, 1) == 0)
		return data[0];
	else
		return 0;
}

void get_spd_info(unsigned long*   dimm_populated,
                  unsigned char*   iic0_dimm_addr,
                  unsigned long    num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long dimm_found;
    unsigned char num_of_bytes;
    unsigned char total_size;

    dimm_found = FALSE;
    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        num_of_bytes = 0;
        total_size = 0;

        num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
        total_size = spd_read(iic0_dimm_addr[dimm_num], 1);

        if ((num_of_bytes != 0) && (total_size != 0)) {
            dimm_populated[dimm_num] = TRUE;
            dimm_found = TRUE;
#if 0
            printf("DIMM slot %lu: populated\n", dimm_num);
#endif
        }
        else {
            dimm_populated[dimm_num] = FALSE;
#if 0
            printf("DIMM slot %lu: Not populated\n", dimm_num);
#endif
        }
    }

    if (dimm_found == FALSE) {
        printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
        hang();
    }
}

void check_mem_type(unsigned long*   dimm_populated,
                    unsigned char*   iic0_dimm_addr,
                    unsigned long    num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned char dimm_type;

    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
            switch (dimm_type) {
            case 7:
#if 0
                printf("DIMM slot %lu: DDR SDRAM detected\n", dimm_num);
#endif
                break;
            default:
                printf("ERROR: Unsupported DIMM detected in slot %lu.\n",
                    dimm_num);
                printf("Only DDR SDRAM DIMMs are supported.\n");
                printf("Replace the DIMM module with a supported DIMM.\n\n");
                hang();
                break;
            }
        }
    }
}


void check_volt_type(unsigned long*   dimm_populated,
                     unsigned char*   iic0_dimm_addr,
                     unsigned long    num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long voltage_type;

    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
            if (voltage_type != 0x04) {
                printf("ERROR: DIMM %lu with unsupported voltage level.\n",
                    dimm_num);
                hang();
            }
            else {
#if 0
                printf("DIMM %lu voltage level supported.\n", dimm_num);
#endif
            }
            break;
        }
    }
}

void program_cfg0(unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long cfg0;
    unsigned long ecc_enabled;
    unsigned char ecc;
    unsigned char attributes;
    unsigned long data_width;
    unsigned long dimm_32bit;
    unsigned long dimm_64bit;

    /*
     * get Memory Controller Options 0 data
     */
    mfsdram(mem_cfg0, cfg0);

    /*
     * clear bits
     */
    cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK |
              SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD |
              SDRAM_CFG0_DMWD_MASK |
              SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP);


    /*
     * FIXME: assume the DDR SDRAMs in both banks are the same
     */
    ecc_enabled = TRUE;
    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            ecc = spd_read(iic0_dimm_addr[dimm_num], 11);
            if (ecc != 0x02) {
                ecc_enabled = FALSE;
            }

            /*
             * program Registered DIMM Enable
             */
            attributes = spd_read(iic0_dimm_addr[dimm_num], 21);
            if ((attributes & 0x02) != 0x00) {
                cfg0 |= SDRAM_CFG0_RDEN;
            }

            /*
             * program DDR SDRAM Data Width
             */
            data_width =
                (unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) +
                (((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8);
            if (data_width == 64 || data_width == 72) {
                dimm_64bit = TRUE;
                cfg0 |= SDRAM_CFG0_DMWD_64;
            }
            else if (data_width == 32 || data_width == 40) {
                dimm_32bit = TRUE;
                cfg0 |= SDRAM_CFG0_DMWD_32;
            }
            else {
                printf("WARNING: DIMM with datawidth of %lu bits.\n",
                    data_width);
                printf("Only DIMMs with 32 or 64 bit datawidths supported.\n");
                hang();
            }
            break;
        }
    }

    /*
     * program Memory Data Error Checking
     */
    if (ecc_enabled == TRUE) {
        cfg0 |= SDRAM_CFG0_MCHK_GEN;
    }
    else {
        cfg0 |= SDRAM_CFG0_MCHK_NON;
    }

    /*
     * program Page Management Unit
     */
    cfg0 |= SDRAM_CFG0_PMUD;

    /*
     * program Memory Controller Options 0
     * Note: DCEN must be enabled after all DDR SDRAM controller
     * configuration registers get initialized.
     */
    mtsdram(mem_cfg0, cfg0);
}

void program_cfg1(unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks)
{
    unsigned long cfg1;
    mfsdram(mem_cfg1, cfg1);

    /*
     * Self-refresh exit, disable PM
     */
    cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN);

    /*
     * program Memory Controller Options 1
     */
    mtsdram(mem_cfg1, cfg1);
}

void program_rtr (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long bus_period_x_10;
    unsigned long refresh_rate = 0;
    unsigned char refresh_rate_type;
    unsigned long refresh_interval;
    unsigned long sdram_rtr;
    PPC440_SYS_INFO sys_info;

    /*
     * get the board info
     */
    get_sys_info(&sys_info);
    bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);


    for (dimm_num = 0;  dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12);
            switch (refresh_rate_type) {
            case 0x00:
                refresh_rate = 15625;
                break;
            case 0x011:
                refresh_rate = 15625/4;
                break;
            case 0x02:
                refresh_rate = 15625/2;
                break;
            case 0x03:
                refresh_rate = 15626*2;
                break;
            case 0x04:
                refresh_rate = 15625*4;
                break;
            case 0x05:
                refresh_rate = 15625*8;
                break;
            default:
                printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n",
                    dimm_num);
                printf("Replace the DIMM module with a supported DIMM.\n");
                break;
            }

            break;
        }
    }

    refresh_interval = refresh_rate * 10 / bus_period_x_10;
    sdram_rtr = (refresh_interval & 0x3ff8) <<  16;

    /*
     * program Refresh Timer Register (SDRAM0_RTR)
     */
    mtsdram(mem_rtr, sdram_rtr);
}

void program_tr0 (unsigned long* dimm_populated,
                  unsigned char* iic0_dimm_addr,
                  unsigned long  num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long tr0;
    unsigned char wcsbc;
    unsigned char t_rp_ns;
    unsigned char t_rcd_ns;
    unsigned char t_ras_ns;
    unsigned long t_rp_clk;
    unsigned long t_ras_rcd_clk;
    unsigned long t_rcd_clk;
    unsigned long t_rfc_clk;
    unsigned long plb_check;
    unsigned char cas_bit;
    unsigned long cas_index;
    unsigned char cas_2_0_available;
    unsigned char cas_2_5_available;
    unsigned char cas_3_0_available;
    unsigned long cycle_time_ns_x_10[3];
    unsigned long tcyc_3_0_ns_x_10;
    unsigned long tcyc_2_5_ns_x_10;
    unsigned long tcyc_2_0_ns_x_10;
    unsigned long tcyc_reg;
    unsigned long bus_period_x_10;
    PPC440_SYS_INFO sys_info;
    unsigned long residue;

    /*
     * get the board info
     */
    get_sys_info(&sys_info);
    bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10);

    /*
     * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
     */
    mfsdram(mem_tr0, tr0);
    tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK |
             SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK |
             SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK |
             SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK);

    /*
     * initialization
     */
    wcsbc = 0;
    t_rp_ns = 0;
    t_rcd_ns = 0;
    t_ras_ns = 0;
    cas_2_0_available = TRUE;
    cas_2_5_available = TRUE;
    cas_3_0_available = TRUE;
    tcyc_2_0_ns_x_10 = 0;
    tcyc_2_5_ns_x_10 = 0;
    tcyc_3_0_ns_x_10 = 0;

    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15);
            t_rp_ns  = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2;
            t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2;
            t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30);
            cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);

            for (cas_index = 0; cas_index < 3; cas_index++) {
                switch (cas_index) {
                case 0:
                    tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
                    break;
                case 1:
                    tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
                    break;
                default:
                    tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
                    break;
                }

                if ((tcyc_reg & 0x0F) >= 10) {
                    printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n",
                        dimm_num);
                    hang();
                }

                cycle_time_ns_x_10[cas_index] =
                    (((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F);
            }

            cas_index = 0;

            if ((cas_bit & 0x80) != 0) {
                cas_index += 3;
            }
            else if ((cas_bit & 0x40) != 0) {
                cas_index += 2;
            }
            else if ((cas_bit & 0x20) != 0) {
                cas_index += 1;
            }

            if (((cas_bit & 0x10) != 0) && (cas_index < 3)) {
                tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
                cas_index++;
            }
            else {
                if (cas_index != 0) {
                    cas_index++;
                }
                cas_3_0_available = FALSE;
            }

            if (((cas_bit & 0x08) != 0) || (cas_index < 3)) {
                tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index];
                cas_index++;
            }
            else {
                if (cas_index != 0) {
                    cas_index++;
                }
                cas_2_5_available = FALSE;
            }

            if (((cas_bit & 0x04) != 0) || (cas_index < 3)) {
                tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index];
                cas_index++;
            }
            else {
                if (cas_index != 0) {
                    cas_index++;
                }
                cas_2_0_available = FALSE;
            }

            break;
        }
    }

    /*
     * Program SD_WR and SD_WCSBC fields
     */
    tr0 |= SDRAM_TR0_SDWR_2_CLK;                /* Write Recovery: 2 CLK */
    switch (wcsbc) {
    case 0:
        tr0 |= SDRAM_TR0_SDWD_0_CLK;
        break;
    default:
        tr0 |= SDRAM_TR0_SDWD_1_CLK;
        break;
    }

    /*
     * Program SD_CASL field
     */
    if ((cas_2_0_available == TRUE) &&
        (bus_period_x_10 >= tcyc_2_0_ns_x_10)) {
        tr0 |= SDRAM_TR0_SDCL_2_0_CLK;
    }
    else if((cas_2_5_available == TRUE) &&
        (bus_period_x_10 >= tcyc_2_5_ns_x_10)) {
        tr0 |= SDRAM_TR0_SDCL_2_5_CLK;
    }
    else if((cas_3_0_available == TRUE) &&
        (bus_period_x_10 >= tcyc_3_0_ns_x_10)) {
        tr0 |= SDRAM_TR0_SDCL_3_0_CLK;
    }
    else {
        printf("ERROR: No supported CAS latency with the installed DIMMs.\n");
        printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
        printf("Make sure the PLB speed is within the supported range.\n");
        hang();
    }

    /*
     * Calculate Trp in clock cycles and round up if necessary
     * Program SD_PTA field
     */
    t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION;
    plb_check = ONE_BILLION * t_rp_clk / t_rp_ns;
    if (sys_info.freqPLB != plb_check) {
        t_rp_clk++;
    }
    switch ((unsigned long)t_rp_clk) {
    case 0:
    case 1:
    case 2:
        tr0 |= SDRAM_TR0_SDPA_2_CLK;
        break;
    case 3:
        tr0 |= SDRAM_TR0_SDPA_3_CLK;
        break;
    default:
        tr0 |= SDRAM_TR0_SDPA_4_CLK;
        break;
    }

    /*
     * Program SD_CTP field
     */
    t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION;
    plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns);
    if (sys_info.freqPLB != plb_check) {
        t_ras_rcd_clk++;
    }
    switch (t_ras_rcd_clk) {
    case 0:
    case 1:
    case 2:
      tr0 |= SDRAM_TR0_SDCP_2_CLK;
      break;
    case 3:
      tr0 |= SDRAM_TR0_SDCP_3_CLK;
      break;
    case 4:
      tr0 |= SDRAM_TR0_SDCP_4_CLK;
      break;
    default:
      tr0 |= SDRAM_TR0_SDCP_5_CLK;
      break;
    }

    /*
     * Program SD_LDF field
     */
    tr0 |= SDRAM_TR0_SDLD_2_CLK;

    /*
     * Program SD_RFTA field
     * FIXME tRFC hardcoded as 75 nanoseconds
     */
    t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75);
    residue = sys_info.freqPLB % (ONE_BILLION / 75);
    if (residue >= (ONE_BILLION / 150)) {
        t_rfc_clk++;
    }
    switch (t_rfc_clk) {
    case 0:
    case 1:
    case 2:
    case 3:
    case 4:
    case 5:
    case 6:
        tr0 |= SDRAM_TR0_SDRA_6_CLK;
        break;
    case 7:
        tr0 |= SDRAM_TR0_SDRA_7_CLK;
        break;
    case 8:
        tr0 |= SDRAM_TR0_SDRA_8_CLK;
        break;
    case 9:
        tr0 |= SDRAM_TR0_SDRA_9_CLK;
        break;
    case 10:
        tr0 |= SDRAM_TR0_SDRA_10_CLK;
        break;
    case 11:
        tr0 |= SDRAM_TR0_SDRA_11_CLK;
        break;
    case 12:
        tr0 |= SDRAM_TR0_SDRA_12_CLK;
        break;
    default:
        tr0 |= SDRAM_TR0_SDRA_13_CLK;
        break;
    }

    /*
     * Program SD_RCD field
     */
    t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION;
    plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns;
    if (sys_info.freqPLB != plb_check) {
        t_rcd_clk++;
    }
    switch (t_rcd_clk) {
    case 0:
    case 1:
    case 2:
        tr0 |= SDRAM_TR0_SDRD_2_CLK;
        break;
    case 3:
        tr0 |= SDRAM_TR0_SDRD_3_CLK;
        break;
    default:
        tr0 |= SDRAM_TR0_SDRD_4_CLK;
        break;
    }

#if 0
    printf("tr0: %x\n", tr0);
#endif
    mtsdram(mem_tr0, tr0);
}

void program_tr1 (void)
{
    unsigned long tr0;
    unsigned long tr1;
    unsigned long cfg0;
    unsigned long ecc_temp;
    unsigned long dlycal;
    unsigned long dly_val;
    unsigned long i, j, k;
    unsigned long bxcr_num;
    unsigned long max_pass_length;
    unsigned long current_pass_length;
    unsigned long current_fail_length;
    unsigned long current_start;
    unsigned long rdclt;
    unsigned long rdclt_offset;
    long max_start;
    long max_end;
    long rdclt_average;
    unsigned char window_found;
    unsigned char fail_found;
    unsigned char pass_found;
    unsigned long * membase;
    PPC440_SYS_INFO sys_info;

    /*
     * get the board info
     */
    get_sys_info(&sys_info);

    /*
     * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits
     */
    mfsdram(mem_tr1, tr1);
    tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK |
             SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK);

    mfsdram(mem_tr0, tr0);
    if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) &&
       (sys_info.freqPLB > 100000000)) {
        tr1 |= SDRAM_TR1_RDSS_TR2;
        tr1 |= SDRAM_TR1_RDSL_STAGE3;
        tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
    }
    else {
        tr1 |= SDRAM_TR1_RDSS_TR1;
        tr1 |= SDRAM_TR1_RDSL_STAGE2;
        tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
    }

    /*
     * save CFG0 ECC setting to a temporary variable and turn ECC off
     */
    mfsdram(mem_cfg0, cfg0);
    ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK;
    mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON);

    /*
     * get the delay line calibration register value
     */
    mfsdram(mem_dlycal, dlycal);
    dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;

    max_pass_length = 0;
    max_start = 0;
    max_end = 0;
    current_pass_length = 0;
    current_fail_length = 0;
    current_start = 0;
    rdclt_offset = 0;
    window_found = FALSE;
    fail_found = FALSE;
    pass_found = FALSE;
#ifdef DEBUG
    printf("Starting memory test ");
#endif
    for (k = 0; k < NUMHALFCYCLES; k++) {
        for (rdclt = 0; rdclt < dly_val; rdclt++)  {
            /*
             * Set the timing reg for the test.
             */
            mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt)));

            for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
                mtdcr(memcfga, mem_b0cr + (bxcr_num<<2));
                if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) {
                    /* Bank is enabled */
                    membase = (unsigned long*)
                        (mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK);

                    /*
                     * Run the short memory test
                     */
                    for (i = 0; i < NUMMEMTESTS; i++) {
                        for (j = 0; j < NUMMEMWORDS; j++) {
                            membase[j] = test[i][j];
                            ppcDcbf((unsigned long)&(membase[j]));
                        }

                        for (j = 0; j < NUMMEMWORDS; j++) {
                            if (membase[j] != test[i][j]) {
                                ppcDcbf((unsigned long)&(membase[j]));
                                break;
                            }
                            ppcDcbf((unsigned long)&(membase[j]));
                        }

                        if (j < NUMMEMWORDS) {
                            break;
                        }
                    }

                    /*
                     * see if the rdclt value passed
                     */
                    if (i < NUMMEMTESTS) {
                        break;
                    }
                }
            }

            if (bxcr_num == MAXBXCR) {
                if (fail_found == TRUE) {
                    pass_found = TRUE;
                    if (current_pass_length == 0) {
                        current_start = rdclt_offset + rdclt;
                    }

                    current_fail_length = 0;
                    current_pass_length++;

                    if (current_pass_length > max_pass_length) {
                        max_pass_length = current_pass_length;
                        max_start = current_start;
                        max_end = rdclt_offset + rdclt;
                    }
                }
            }
            else {
                current_pass_length = 0;
                current_fail_length++;

                if (current_fail_length >= (dly_val>>2)) {
                    if (fail_found == FALSE) {
                        fail_found = TRUE;
                    }
                    else if (pass_found == TRUE) {
                        window_found = TRUE;
                        break;
                    }
                }
            }
        }
#ifdef DEBUG
        printf(".");
#endif
        if (window_found == TRUE) {
            break;
        }

        tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
        rdclt_offset += dly_val;
    }
#ifdef DEBUG
    printf("\n");
#endif

    /*
     * make sure we find the window
     */
    if (window_found == FALSE) {
       printf("ERROR: Cannot determine a common read delay.\n");
       hang();
    }

    /*
     * restore the orignal ECC setting
     */
    mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp);

    /*
     * set the SDRAM TR1 RDCD value
     */
    tr1 &= ~SDRAM_TR1_RDCD_MASK;
    if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) {
        tr1 |= SDRAM_TR1_RDCD_RCD_1_2;
    }
    else {
        tr1 |= SDRAM_TR1_RDCD_RCD_0_0;
    }

    /*
     * set the SDRAM TR1 RDCLT value
     */
    tr1 &= ~SDRAM_TR1_RDCT_MASK;
    while (max_end >= (dly_val<<1)) {
        max_end -= (dly_val<<1);
        max_start -= (dly_val<<1);
    }

    rdclt_average = ((max_start + max_end) >> 1);
    if (rdclt_average >= 0x60)
        while(1);

    if (rdclt_average < 0) {
        rdclt_average = 0;
    }

    if (rdclt_average >= dly_val) {
        rdclt_average -= dly_val;
        tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK;
    }
    tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average);

#if 0
    printf("tr1: %x\n", tr1);
#endif
    /*
     * program SDRAM Timing Register 1 TR1
     */
    mtsdram(mem_tr1, tr1);
}

unsigned long program_bxcr(unsigned long* dimm_populated,
                           unsigned char* iic0_dimm_addr,
                           unsigned long  num_dimm_banks)
{
    unsigned long dimm_num;
    unsigned long bxcr_num;
    unsigned long bank_base_addr;
    unsigned long bank_size_bytes;
    unsigned long cr;
    unsigned long i;
    unsigned long temp;
    unsigned char num_row_addr;
    unsigned char num_col_addr;
    unsigned char num_banks;
    unsigned char bank_size_id;


    /*
     * Set the BxCR regs.  First, wipe out the bank config registers.
     */
    for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) {
        mtdcr(memcfga, mem_b0cr + (bxcr_num << 2));
        mtdcr(memcfgd, 0x00000000);
    }

    /*
     * reset the bank_base address
     */
    bank_base_addr = CFG_SDRAM_BASE;

    for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
        if (dimm_populated[dimm_num] == TRUE) {
            num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3);
            num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
            num_banks    = spd_read(iic0_dimm_addr[dimm_num], 5);
            bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);

            /*
             * Set the SDRAM0_BxCR regs
             */
            cr = 0;
            bank_size_bytes = 4 * 1024 * 1024 * bank_size_id;
            switch (bank_size_id) {
            case 0x02:
                cr |= SDRAM_BXCR_SDSZ_8;
                break;
            case 0x04:
                cr |= SDRAM_BXCR_SDSZ_16;
                break;
            case 0x08:
                cr |= SDRAM_BXCR_SDSZ_32;
                break;
            case 0x10:
                cr |= SDRAM_BXCR_SDSZ_64;
                break;
            case 0x20:
                cr |= SDRAM_BXCR_SDSZ_128;
                break;
            case 0x40:
                cr |= SDRAM_BXCR_SDSZ_256;
                break;
            case 0x80:
                cr |= SDRAM_BXCR_SDSZ_512;
                break;
            default:
                printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
                    dimm_num);
                printf("ERROR: Unsupported value for the banksize: %d.\n",
                   bank_size_id);
                printf("Replace the DIMM module with a supported DIMM.\n\n");
                hang();
            }

            switch (num_col_addr) {
            case 0x08:
                cr |= SDRAM_BXCR_SDAM_1;
                break;
            case 0x09:
                cr |= SDRAM_BXCR_SDAM_2;
                break;
            case 0x0A:
                cr |= SDRAM_BXCR_SDAM_3;
                break;
            case 0x0B:
                cr |= SDRAM_BXCR_SDAM_4;
                break;
            default:
                printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n",
                   dimm_num);
                printf("ERROR: Unsupported value for number of "
                   "column addresses: %d.\n", num_col_addr);
                printf("Replace the DIMM module with a supported DIMM.\n\n");
                hang();
            }

            /*
             * enable the bank
             */
            cr |= SDRAM_BXCR_SDBE;

            /*------------------------------------------------------------------
            | This next section is hardware dependent and must be programmed
            | to match the hardware.
            +-----------------------------------------------------------------*/
            if (dimm_num == 0) {
                for (i = 0; i < num_banks; i++) {
                    mtdcr(memcfga, mem_b0cr + (i << 2));
                    temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
                                              SDRAM_BXCR_SDSZ_MASK |
                                              SDRAM_BXCR_SDAM_MASK |
                                              SDRAM_BXCR_SDBE);
                    cr |= temp;
                    cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
                    mtdcr(memcfgd, cr);
                    bank_base_addr += bank_size_bytes;
                }
            }
            else {
                for (i = 0; i < num_banks; i++) {
                    mtdcr(memcfga, mem_b2cr + (i << 2));
                    temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK |
                                              SDRAM_BXCR_SDSZ_MASK |
                                              SDRAM_BXCR_SDAM_MASK |
                                              SDRAM_BXCR_SDBE);
                    cr |= temp;
                    cr |= bank_base_addr & SDRAM_BXCR_SDBA_MASK;
                    mtdcr(memcfgd, cr);
                    bank_base_addr += bank_size_bytes;
                }
            }
        }
    }

    return(bank_base_addr);
}

void program_ecc (unsigned long  num_bytes)
{
    unsigned long bank_base_addr;
    unsigned long current_address;
    unsigned long end_address;
    unsigned long address_increment;
    unsigned long cfg0;

    /*
     * get Memory Controller Options 0 data
     */
    mfsdram(mem_cfg0, cfg0);

    /*
     * reset the bank_base address
     */
    bank_base_addr = CFG_SDRAM_BASE;

    if ((cfg0 & SDRAM_CFG0_MCHK_MASK) != SDRAM_CFG0_MCHK_NON) {
        mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
            SDRAM_CFG0_MCHK_GEN);

        if ((cfg0 & SDRAM_CFG0_DMWD_MASK) == SDRAM_CFG0_DMWD_32) {
            address_increment = 4;
        }
        else {
            address_increment = 8;
        }

        current_address = (unsigned long)(bank_base_addr);
        end_address = (unsigned long)(bank_base_addr) + num_bytes;

        while (current_address < end_address) {
            *((unsigned long*)current_address) = 0x00000000;
            current_address += address_increment;
        }

        mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) |
            SDRAM_CFG0_MCHK_CHK);
    }
}

#endif /* CONFIG_440 */

#endif /* CONFIG_SPD_EEPROM */