summaryrefslogtreecommitdiff
path: root/cpu/ppc4xx/44x_spd_ddr2.c
blob: 83c991116f81a843f6eb4ea214ed06ab194221c6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
/*
 * cpu/ppc4xx/44x_spd_ddr2.c
 * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a
 * DDR2 controller (non Denali Core). Those are 440SP/SPe.
 *
 * (C) Copyright 2007
 * Stefan Roese, DENX Software Engineering, sr@denx.de.
 *
 * COPYRIGHT   AMCC   CORPORATION 2004
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 *
 */

/* define DEBUG for debugging output (obviously ;-)) */
#if 0
#define DEBUG
#endif

#include <common.h>
#include <command.h>
#include <ppc4xx.h>
#include <i2c.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>

#if defined(CONFIG_SPD_EEPROM) &&				\
	(defined(CONFIG_440SP) || defined(CONFIG_440SPE))

/*-----------------------------------------------------------------------------+
 * Defines
 *-----------------------------------------------------------------------------*/
#ifndef	TRUE
#define TRUE		1
#endif
#ifndef FALSE
#define FALSE		0
#endif

#define SDRAM_DDR1	1
#define SDRAM_DDR2	2
#define SDRAM_NONE	0

#define MAXDIMMS 	2
#define MAXRANKS 	4
#define MAXBXCF		4
#define MAX_SPD_BYTES	256   /* Max number of bytes on the DIMM's SPD EEPROM */

#define ONE_BILLION	1000000000

#define MULDIV64(m1, m2, d)	(u32)(((u64)(m1) * (u64)(m2)) / (u64)(d))

#define CMD_NOP		(7 << 19)
#define CMD_PRECHARGE	(2 << 19)
#define CMD_REFRESH	(1 << 19)
#define CMD_EMR		(0 << 19)
#define CMD_READ	(5 << 19)
#define CMD_WRITE	(4 << 19)

#define SELECT_MR	(0 << 16)
#define SELECT_EMR	(1 << 16)
#define SELECT_EMR2	(2 << 16)
#define SELECT_EMR3	(3 << 16)

/* MR */
#define DLL_RESET	0x00000100

#define WRITE_RECOV_2	(1 << 9)
#define WRITE_RECOV_3	(2 << 9)
#define WRITE_RECOV_4	(3 << 9)
#define WRITE_RECOV_5	(4 << 9)
#define WRITE_RECOV_6	(5 << 9)

#define BURST_LEN_4	0x00000002

/* EMR */
#define ODT_0_OHM	0x00000000
#define ODT_50_OHM	0x00000044
#define ODT_75_OHM	0x00000004
#define ODT_150_OHM	0x00000040

#define ODS_FULL	0x00000000
#define ODS_REDUCED	0x00000002

/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */
#define ODT_EB0R	(0x80000000 >> 8)
#define ODT_EB0W	(0x80000000 >> 7)
#define CALC_ODT_R(n)	(ODT_EB0R << (n << 1))
#define CALC_ODT_W(n)	(ODT_EB0W << (n << 1))
#define CALC_ODT_RW(n)	(CALC_ODT_R(n) | CALC_ODT_W(n))

/* Defines for the Read Cycle Delay test */
#define NUMMEMTESTS 8
#define NUMMEMWORDS 8

#define CONFIG_ECC_ERROR_RESET		/* test-only: see description below, at check_ecc() */

/*
 * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory
 * region. Right now the cache should still be disabled in U-Boot because of the
 * EMAC driver, that need it's buffer descriptor to be located in non cached
 * memory.
 *
 * If at some time this restriction doesn't apply anymore, just define
 * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup
 * everything correctly.
 */
#ifdef CFG_ENABLE_SDRAM_CACHE
#define MY_TLB_WORD2_I_ENABLE	0			/* enable caching on SDRAM */
#else
#define MY_TLB_WORD2_I_ENABLE	TLB_WORD2_I_ENABLE	/* disable caching on SDRAM */
#endif

/* Private Structure Definitions */

/* enum only to ease code for cas latency setting */
typedef enum ddr_cas_id {
	DDR_CAS_2      = 20,
	DDR_CAS_2_5    = 25,
	DDR_CAS_3      = 30,
	DDR_CAS_4      = 40,
	DDR_CAS_5      = 50
} ddr_cas_id_t;

/*-----------------------------------------------------------------------------+
 * Prototypes
 *-----------------------------------------------------------------------------*/
static unsigned long sdram_memsize(void);
void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value);
static void get_spd_info(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks);
static void check_mem_type(unsigned long *dimm_populated,
			   unsigned char *iic0_dimm_addr,
			   unsigned long num_dimm_banks);
static void check_frequency(unsigned long *dimm_populated,
			    unsigned char *iic0_dimm_addr,
			    unsigned long num_dimm_banks);
static void check_rank_number(unsigned long *dimm_populated,
			      unsigned char *iic0_dimm_addr,
			      unsigned long num_dimm_banks);
static void check_voltage_type(unsigned long *dimm_populated,
			       unsigned char *iic0_dimm_addr,
			       unsigned long num_dimm_banks);
static void program_memory_queue(unsigned long *dimm_populated,
				 unsigned char *iic0_dimm_addr,
				 unsigned long num_dimm_banks);
static void program_codt(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks);
static void program_mode(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks,
			 ddr_cas_id_t *selected_cas,
			 int *write_recovery);
static void program_tr(unsigned long *dimm_populated,
		       unsigned char *iic0_dimm_addr,
		       unsigned long num_dimm_banks);
static void program_rtr(unsigned long *dimm_populated,
			unsigned char *iic0_dimm_addr,
			unsigned long num_dimm_banks);
static void program_bxcf(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks);
static void program_copt1(unsigned long *dimm_populated,
			  unsigned char *iic0_dimm_addr,
			  unsigned long num_dimm_banks);
static void program_initplr(unsigned long *dimm_populated,
			    unsigned char *iic0_dimm_addr,
			    unsigned long num_dimm_banks,
			    ddr_cas_id_t selected_cas,
			    int write_recovery);
static unsigned long is_ecc_enabled(void);
#ifdef CONFIG_DDR_ECC
static void program_ecc(unsigned long *dimm_populated,
			unsigned char *iic0_dimm_addr,
			unsigned long num_dimm_banks,
			unsigned long tlb_word2_i_value);
static void program_ecc_addr(unsigned long start_address,
			     unsigned long num_bytes,
			     unsigned long tlb_word2_i_value);
#endif
static void program_DQS_calibration(unsigned long *dimm_populated,
				    unsigned char *iic0_dimm_addr,
				    unsigned long num_dimm_banks);
#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
static void	test(void);
#else
static void	DQS_calibration_process(void);
#endif
#if defined(DEBUG)
static void ppc440sp_sdram_register_dump(void);
#endif
int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
void dcbz_area(u32 start_address, u32 num_bytes);
void dflush(void);

static u32 mfdcr_any(u32 dcr)
{
	u32 val;

	switch (dcr) {
	case SDRAM_R0BAS + 0:
		val = mfdcr(SDRAM_R0BAS + 0);
		break;
	case SDRAM_R0BAS + 1:
		val = mfdcr(SDRAM_R0BAS + 1);
		break;
	case SDRAM_R0BAS + 2:
		val = mfdcr(SDRAM_R0BAS + 2);
		break;
	case SDRAM_R0BAS + 3:
		val = mfdcr(SDRAM_R0BAS + 3);
		break;
	default:
		printf("DCR %d not defined in case statement!!!\n", dcr);
		val = 0; /* just to satisfy the compiler */
	}

	return val;
}

static void mtdcr_any(u32 dcr, u32 val)
{
	switch (dcr) {
	case SDRAM_R0BAS + 0:
		mtdcr(SDRAM_R0BAS + 0, val);
		break;
	case SDRAM_R0BAS + 1:
		mtdcr(SDRAM_R0BAS + 1, val);
		break;
	case SDRAM_R0BAS + 2:
		mtdcr(SDRAM_R0BAS + 2, val);
		break;
	case SDRAM_R0BAS + 3:
		mtdcr(SDRAM_R0BAS + 3, val);
		break;
	default:
		printf("DCR %d not defined in case statement!!!\n", dcr);
	}
}

static unsigned char spd_read(uchar chip, uint addr)
{
	unsigned char data[2];

	if (i2c_probe(chip) == 0)
		if (i2c_read(chip, addr, 1, data, 1) == 0)
			return data[0];

	return 0;
}

/*-----------------------------------------------------------------------------+
 * sdram_memsize
 *-----------------------------------------------------------------------------*/
static unsigned long sdram_memsize(void)
{
	unsigned long mem_size;
	unsigned long mcopt2;
	unsigned long mcstat;
	unsigned long mb0cf;
	unsigned long sdsz;
	unsigned long i;

	mem_size = 0;

	mfsdram(SDRAM_MCOPT2, mcopt2);
	mfsdram(SDRAM_MCSTAT, mcstat);

	/* DDR controller must be enabled and not in self-refresh. */
	/* Otherwise memsize is zero. */
	if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
	    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
	    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
		== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {
		for (i = 0; i < MAXBXCF; i++) {
			mfsdram(SDRAM_MB0CF + (i << 2), mb0cf);
			/* Banks enabled */
			if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {
				sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK;

				switch(sdsz) {
				case SDRAM_RXBAS_SDSZ_8:
					mem_size+=8;
					break;
				case SDRAM_RXBAS_SDSZ_16:
					mem_size+=16;
					break;
				case SDRAM_RXBAS_SDSZ_32:
					mem_size+=32;
					break;
				case SDRAM_RXBAS_SDSZ_64:
					mem_size+=64;
					break;
				case SDRAM_RXBAS_SDSZ_128:
					mem_size+=128;
					break;
				case SDRAM_RXBAS_SDSZ_256:
					mem_size+=256;
					break;
				case SDRAM_RXBAS_SDSZ_512:
					mem_size+=512;
					break;
				case SDRAM_RXBAS_SDSZ_1024:
					mem_size+=1024;
					break;
				case SDRAM_RXBAS_SDSZ_2048:
					mem_size+=2048;
					break;
				case SDRAM_RXBAS_SDSZ_4096:
					mem_size+=4096;
					break;
				default:
					mem_size=0;
					break;
				}
			}
		}
	}

	mem_size *= 1024 * 1024;
	return(mem_size);
}

/*-----------------------------------------------------------------------------+
 * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller.
 * Note: This routine runs from flash with a stack set up in the chip's
 * sram space.  It is important that the routine does not require .sbss, .bss or
 * .data sections.  It also cannot call routines that require these sections.
 *-----------------------------------------------------------------------------*/
/*-----------------------------------------------------------------------------
 * Function:	 initdram
 * Description:  Configures SDRAM memory banks for DDR operation.
 *		 Auto Memory Configuration option reads the DDR SDRAM EEPROMs
 *		 via the IIC bus and then configures the DDR SDRAM memory
 *		 banks appropriately. If Auto Memory Configuration is
 *		 not used, it is assumed that no DIMM is plugged
 *-----------------------------------------------------------------------------*/
long int initdram(int board_type)
{
	unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS;
	unsigned char spd0[MAX_SPD_BYTES];
	unsigned char spd1[MAX_SPD_BYTES];
	unsigned char *dimm_spd[MAXDIMMS];
	unsigned long dimm_populated[MAXDIMMS];
	unsigned long num_dimm_banks;		    /* on board dimm banks */
	unsigned long val;
	ddr_cas_id_t  selected_cas;
	int write_recovery;
	unsigned long dram_size = 0;

	num_dimm_banks = sizeof(iic0_dimm_addr);

	/*------------------------------------------------------------------
	 * Set up an array of SPD matrixes.
	 *-----------------------------------------------------------------*/
	dimm_spd[0] = spd0;
	dimm_spd[1] = spd1;

	/*------------------------------------------------------------------
	 * Reset the DDR-SDRAM controller.
	 *-----------------------------------------------------------------*/
	mtsdr(SDR0_SRST, (0x80000000 >> 10));
	mtsdr(SDR0_SRST, 0x00000000);

	/*
	 * Make sure I2C controller is initialized
	 * before continuing.
	 */

	/* switch to correct I2C bus */
	I2C_SET_BUS(CFG_SPD_BUS_NUM);
	i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE);

	/*------------------------------------------------------------------
	 * Clear out the serial presence detect buffers.
	 * Perform IIC reads from the dimm.  Fill in the spds.
	 * Check to see if the dimm slots are populated
	 *-----------------------------------------------------------------*/
	get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Check the memory type for the dimms plugged.
	 *-----------------------------------------------------------------*/
	check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Check the frequency supported for the dimms plugged.
	 *-----------------------------------------------------------------*/
	check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Check the total rank number.
	 *-----------------------------------------------------------------*/
	check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Check the voltage type for the dimms plugged.
	 *-----------------------------------------------------------------*/
	check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Program SDRAM controller options 2 register
	 * Except Enabling of the memory controller.
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT2, val);
	mtsdram(SDRAM_MCOPT2,
		(val &
		 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK |
		   SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK |
		   SDRAM_MCOPT2_ISIE_MASK))
		| (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE |
		   SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW |
		   SDRAM_MCOPT2_ISIE_ENABLE));

	/*------------------------------------------------------------------
	 * Program SDRAM controller options 1 register
	 * Note: Does not enable the memory controller.
	 *-----------------------------------------------------------------*/
	program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Set the SDRAM Controller On Die Termination Register
	 *-----------------------------------------------------------------*/
	program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Program SDRAM refresh register.
	 *-----------------------------------------------------------------*/
	program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Program SDRAM mode register.
	 *-----------------------------------------------------------------*/
	program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks,
		     &selected_cas, &write_recovery);

	/*------------------------------------------------------------------
	 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_WRDTR, val);
	mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) |
		(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV));

	/*------------------------------------------------------------------
	 * Set the SDRAM Clock Timing Register
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_CLKTR, val);
	mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG);

	/*------------------------------------------------------------------
	 * Program the BxCF registers.
	 *-----------------------------------------------------------------*/
	program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Program SDRAM timing registers.
	 *-----------------------------------------------------------------*/
	program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Set the Extended Mode register
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MEMODE, val);
	mtsdram(SDRAM_MEMODE,
		(val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK |
			 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) |
		(SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE
		 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE));

	/*------------------------------------------------------------------
	 * Program Initialization preload registers.
	 *-----------------------------------------------------------------*/
	program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks,
			selected_cas, write_recovery);

	/*------------------------------------------------------------------
	 * Delay to ensure 200usec have elapsed since reset.
	 *-----------------------------------------------------------------*/
	udelay(400);

	/*------------------------------------------------------------------
	 * Set the memory queue core base addr.
	 *-----------------------------------------------------------------*/
	program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks);

	/*------------------------------------------------------------------
	 * Program SDRAM controller options 2 register
	 * Enable the memory controller.
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT2, val);
	mtsdram(SDRAM_MCOPT2,
		(val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK |
			 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) |
		(SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE));

	/*------------------------------------------------------------------
	 * Wait for SDRAM_CFG0_DC_EN to complete.
	 *-----------------------------------------------------------------*/
	do {
		mfsdram(SDRAM_MCSTAT, val);
	} while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP);

	/* get installed memory size */
	dram_size = sdram_memsize();

	/* and program tlb entries for this size (dynamic) */
	program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE);

	/*------------------------------------------------------------------
	 * DQS calibration.
	 *-----------------------------------------------------------------*/
	program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks);

#ifdef CONFIG_DDR_ECC
	/*------------------------------------------------------------------
	 * If ecc is enabled, initialize the parity bits.
	 *-----------------------------------------------------------------*/
	program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE);
#endif

#ifdef DEBUG
	ppc440sp_sdram_register_dump();
#endif

	return dram_size;
}

static void get_spd_info(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long dimm_found;
	unsigned char num_of_bytes;
	unsigned char total_size;

	dimm_found = FALSE;
	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		num_of_bytes = 0;
		total_size = 0;

		num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0);
		debug("\nspd_read(0x%x) returned %d\n",
		      iic0_dimm_addr[dimm_num], num_of_bytes);
		total_size = spd_read(iic0_dimm_addr[dimm_num], 1);
		debug("spd_read(0x%x) returned %d\n",
		      iic0_dimm_addr[dimm_num], total_size);

		if ((num_of_bytes != 0) && (total_size != 0)) {
			dimm_populated[dimm_num] = TRUE;
			dimm_found = TRUE;
			debug("DIMM slot %lu: populated\n", dimm_num);
		} else {
			dimm_populated[dimm_num] = FALSE;
			debug("DIMM slot %lu: Not populated\n", dimm_num);
		}
	}

	if (dimm_found == FALSE) {
		printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n");
		hang();
	}
}

#ifdef CONFIG_ADD_RAM_INFO
void board_add_ram_info(int use_default)
{
	if (is_ecc_enabled())
		puts(" (ECC enabled)");
	else
		puts(" (ECC not enabled)");
}
#endif

/*------------------------------------------------------------------
 * For the memory DIMMs installed, this routine verifies that they
 * really are DDR specific DIMMs.
 *-----------------------------------------------------------------*/
static void check_mem_type(unsigned long *dimm_populated,
			   unsigned char *iic0_dimm_addr,
			   unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long dimm_type;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] == TRUE) {
			dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2);
			switch (dimm_type) {
			case 1:
				printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in "
				       "slot %d.\n", (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 2:
				printf("ERROR: EDO DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 3:
				printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 4:
				printf("ERROR: SDRAM DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 5:
				printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 6:
				printf("ERROR: SGRAM DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			case 7:
				debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num);
				dimm_populated[dimm_num] = SDRAM_DDR1;
				break;
			case 8:
				debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num);
				dimm_populated[dimm_num] = SDRAM_DDR2;
				break;
			default:
				printf("ERROR: Unknown DIMM detected in slot %d.\n",
				       (unsigned int)dimm_num);
				printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n");
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			}
		}
	}
	for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) {
		if ((dimm_populated[dimm_num-1] != SDRAM_NONE)
		    && (dimm_populated[dimm_num]   != SDRAM_NONE)
		    && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) {
			printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n");
			hang();
		}
	}
}

/*------------------------------------------------------------------
 * For the memory DIMMs installed, this routine verifies that
 * frequency previously calculated is supported.
 *-----------------------------------------------------------------*/
static void check_frequency(unsigned long *dimm_populated,
			    unsigned char *iic0_dimm_addr,
			    unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long tcyc_reg;
	unsigned long cycle_time;
	unsigned long calc_cycle_time;
	unsigned long sdram_freq;
	unsigned long sdr_ddrpll;
	PPC440_SYS_INFO board_cfg;

	/*------------------------------------------------------------------
	 * Get the board configuration info.
	 *-----------------------------------------------------------------*/
	get_sys_info(&board_cfg);

	mfsdr(SDR0_DDR0, sdr_ddrpll);
	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));

	/*
	 * calc_cycle_time is calculated from DDR frequency set by board/chip
	 * and is expressed in multiple of 10 picoseconds
	 * to match the way DIMM cycle time is calculated below.
	 */
	calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq);

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
			/*
			 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles:
			 * the higher order nibble (bits 4-7) designates the cycle time
			 * to a granularity of 1ns;
			 * the value presented by the lower order nibble (bits 0-3)
			 * has a granularity of .1ns and is added to the value designated
			 * by the higher nibble. In addition, four lines of the lower order
			 * nibble are assigned to support +.25,+.33, +.66 and +.75.
			 */
			 /* Convert from hex to decimal */
			if ((tcyc_reg & 0x0F) == 0x0D)
				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
			else if ((tcyc_reg & 0x0F) == 0x0C)
				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66;
			else if ((tcyc_reg & 0x0F) == 0x0B)
				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33;
			else if ((tcyc_reg & 0x0F) == 0x0A)
				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25;
			else
				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) +
					((tcyc_reg & 0x0F)*10);

			if  (cycle_time > (calc_cycle_time + 10)) {
				/*
				 * the provided sdram cycle_time is too small
				 * for the available DIMM cycle_time.
				 * The additionnal 100ps is here to accept a small incertainty.
				 */
				printf("ERROR: DRAM DIMM detected with cycle_time %d ps in "
				       "slot %d \n while calculated cycle time is %d ps.\n",
				       (unsigned int)(cycle_time*10),
				       (unsigned int)dimm_num,
				       (unsigned int)(calc_cycle_time*10));
				printf("Replace the DIMM, or change DDR frequency via "
				       "strapping bits.\n\n");
				hang();
			}
		}
	}
}

/*------------------------------------------------------------------
 * For the memory DIMMs installed, this routine verifies two
 * ranks/banks maximum are availables.
 *-----------------------------------------------------------------*/
static void check_rank_number(unsigned long *dimm_populated,
			      unsigned char *iic0_dimm_addr,
			      unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long dimm_rank;
	unsigned long total_rank = 0;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5);
			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
				dimm_rank = (dimm_rank & 0x0F) +1;
			else
				dimm_rank = dimm_rank & 0x0F;


			if (dimm_rank > MAXRANKS) {
				printf("ERROR: DRAM DIMM detected with %d ranks in "
				       "slot %d is not supported.\n", dimm_rank, dimm_num);
				printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
			} else
				total_rank += dimm_rank;
		}
		if (total_rank > MAXRANKS) {
			printf("ERROR: DRAM DIMM detected with a total of %d ranks "
			       "for all slots.\n", (unsigned int)total_rank);
			printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS);
			printf("Remove one of the DIMM modules.\n\n");
			hang();
		}
	}
}

/*------------------------------------------------------------------
 * only support 2.5V modules.
 * This routine verifies this.
 *-----------------------------------------------------------------*/
static void check_voltage_type(unsigned long *dimm_populated,
			       unsigned char *iic0_dimm_addr,
			       unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long voltage_type;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8);
			switch (voltage_type) {
			case 0x00:
				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
				printf("This DIMM is 5.0 Volt/TTL.\n");
				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
				       (unsigned int)dimm_num);
				hang();
				break;
			case 0x01:
				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
				printf("This DIMM is LVTTL.\n");
				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
				       (unsigned int)dimm_num);
				hang();
				break;
			case 0x02:
				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
				printf("This DIMM is 1.5 Volt.\n");
				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
				       (unsigned int)dimm_num);
				hang();
				break;
			case 0x03:
				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
				printf("This DIMM is 3.3 Volt/TTL.\n");
				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
				       (unsigned int)dimm_num);
				hang();
				break;
			case 0x04:
				/* 2.5 Voltage only for DDR1 */
				break;
			case 0x05:
				/* 1.8 Voltage only for DDR2 */
				break;
			default:
				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n");
				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n",
				       (unsigned int)dimm_num);
				hang();
				break;
			}
		}
	}
}

/*-----------------------------------------------------------------------------+
 * program_copt1.
 *-----------------------------------------------------------------------------*/
static void program_copt1(unsigned long *dimm_populated,
			  unsigned char *iic0_dimm_addr,
			  unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long mcopt1;
	unsigned long ecc_enabled;
	unsigned long ecc = 0;
	unsigned long data_width = 0;
	unsigned long dimm_32bit;
	unsigned long dimm_64bit;
	unsigned long registered = 0;
	unsigned long attribute = 0;
	unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
	unsigned long bankcount;
	unsigned long ddrtype;
	unsigned long val;

#ifdef CONFIG_DDR_ECC
	ecc_enabled = TRUE;
#else
	ecc_enabled = FALSE;
#endif
	dimm_32bit = FALSE;
	dimm_64bit = FALSE;
	buf0 = FALSE;
	buf1 = FALSE;

	/*------------------------------------------------------------------
	 * Set memory controller options reg 1, SDRAM_MCOPT1.
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT1, val);
	mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK |
			 SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK |
			 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK |
			 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK |
			 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK |
			 SDRAM_MCOPT1_DREF_MASK);

	mcopt1 |= SDRAM_MCOPT1_QDEP;
	mcopt1 |= SDRAM_MCOPT1_PMU_OPEN;
	mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED;
	mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED;
	mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED;
	mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			/* test ecc support */
			ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11);
			if (ecc != 0x02) /* ecc not supported */
				ecc_enabled = FALSE;

			/* test bank count */
			bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17);
			if (bankcount == 0x04) /* bank count = 4 */
				mcopt1 |= SDRAM_MCOPT1_4_BANKS;
			else /* bank count = 8 */
				mcopt1 |= SDRAM_MCOPT1_8_BANKS;

			/* test DDR type */
			ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2);
			/* test for buffered/unbuffered, registered, differential clocks */
			registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20);
			attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21);

			/* TODO: code to be changed for IOP1.6 to support 4 DIMMs */
			if (dimm_num == 0) {
				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
				if (registered == 1) { /* DDR2 always buffered */
					/* TODO: what about above  comments ? */
					mcopt1 |= SDRAM_MCOPT1_RDEN;
					buf0 = TRUE;
				} else {
					/* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */
					if ((attribute & 0x02) == 0x00) {
						/* buffered not supported */
						buf0 = FALSE;
					} else {
						mcopt1 |= SDRAM_MCOPT1_RDEN;
						buf0 = TRUE;
					}
				}
			}
			else if (dimm_num == 1) {
				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */
					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE;
				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */
					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE;
				if (registered == 1) {
					/* DDR2 always buffered */
					mcopt1 |= SDRAM_MCOPT1_RDEN;
					buf1 = TRUE;
				} else {
					if ((attribute & 0x02) == 0x00) {
						/* buffered not supported */
						buf1 = FALSE;
					} else {
						mcopt1 |= SDRAM_MCOPT1_RDEN;
						buf1 = TRUE;
					}
				}
			}

			/* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */
			data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) +
				(((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8);

			switch (data_width) {
			case 72:
			case 64:
				dimm_64bit = TRUE;
				break;
			case 40:
			case 32:
				dimm_32bit = TRUE;
				break;
			default:
				printf("WARNING: Detected a DIMM with a data width of %d bits.\n",
				       data_width);
				printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n");
				break;
			}
		}
	}

	/* verify matching properties */
	if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) {
		if (buf0 != buf1) {
			printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n");
			hang();
		}
	}

	if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) {
		printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n");
		hang();
	}
	else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) {
		mcopt1 |= SDRAM_MCOPT1_DMWD_64;
	} else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) {
		mcopt1 |= SDRAM_MCOPT1_DMWD_32;
	} else {
		printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n");
		hang();
	}

	if (ecc_enabled == TRUE)
		mcopt1 |= SDRAM_MCOPT1_MCHK_GEN;
	else
		mcopt1 |= SDRAM_MCOPT1_MCHK_NON;

	mtsdram(SDRAM_MCOPT1, mcopt1);
}

/*-----------------------------------------------------------------------------+
 * program_codt.
 *-----------------------------------------------------------------------------*/
static void program_codt(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks)
{
	unsigned long codt;
	unsigned long modt0 = 0;
	unsigned long modt1 = 0;
	unsigned long modt2 = 0;
	unsigned long modt3 = 0;
	unsigned char dimm_num;
	unsigned char dimm_rank;
	unsigned char total_rank = 0;
	unsigned char total_dimm = 0;
	unsigned char dimm_type = 0;
	unsigned char firstSlot = 0;

	/*------------------------------------------------------------------
	 * Set the SDRAM Controller On Die Termination Register
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_CODT, codt);
	codt |= (SDRAM_CODT_IO_NMODE
		 & (~SDRAM_CODT_DQS_SINGLE_END
		    & ~SDRAM_CODT_CKSE_SINGLE_END
		    & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END
		    & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END));

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5);
			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) {
				dimm_rank = (dimm_rank & 0x0F) + 1;
				dimm_type = SDRAM_DDR2;
			} else {
				dimm_rank = dimm_rank & 0x0F;
				dimm_type = SDRAM_DDR1;
			}

			total_rank += dimm_rank;
			total_dimm++;
			if ((dimm_num == 0) && (total_dimm == 1))
				firstSlot = TRUE;
			else
				firstSlot = FALSE;
		}
	}
	if (dimm_type == SDRAM_DDR2) {
		codt |= SDRAM_CODT_DQS_1_8_V_DDR2;
		if ((total_dimm == 1) && (firstSlot == TRUE)) {
			if (total_rank == 1) {
				codt |= CALC_ODT_R(0);
				modt0 = CALC_ODT_W(0);
				modt1 = 0x00000000;
				modt2 = 0x00000000;
				modt3 = 0x00000000;
			}
			if (total_rank == 2) {
				codt |= CALC_ODT_R(0) | CALC_ODT_R(1);
				modt0 = CALC_ODT_W(0);
				modt1 = CALC_ODT_W(0);
				modt2 = 0x00000000;
				modt3 = 0x00000000;
			}
		} else if ((total_dimm == 1) && (firstSlot != TRUE)) {
			if (total_rank == 1) {
				codt |= CALC_ODT_R(2);
				modt0 = 0x00000000;
				modt1 = 0x00000000;
				modt2 = CALC_ODT_W(2);
				modt3 = 0x00000000;
			}
			if (total_rank == 2) {
				codt |= CALC_ODT_R(2) | CALC_ODT_R(3);
				modt0 = 0x00000000;
				modt1 = 0x00000000;
				modt2 = CALC_ODT_W(2);
				modt3 = CALC_ODT_W(2);
			}
		}
		if (total_dimm == 2) {
			if (total_rank == 2) {
				codt |= CALC_ODT_R(0) | CALC_ODT_R(2);
				modt0 = CALC_ODT_RW(2);
				modt1 = 0x00000000;
				modt2 = CALC_ODT_RW(0);
				modt3 = 0x00000000;
			}
			if (total_rank == 4) {
				codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3);
				modt0 = CALC_ODT_RW(2);
				modt1 = 0x00000000;
				modt2 = CALC_ODT_RW(0);
				modt3 = 0x00000000;
			}
		}
  	} else {
		codt |= SDRAM_CODT_DQS_2_5_V_DDR1;
		modt0 = 0x00000000;
		modt1 = 0x00000000;
		modt2 = 0x00000000;
		modt3 = 0x00000000;

		if (total_dimm == 1) {
			if (total_rank == 1)
				codt |= 0x00800000;
			if (total_rank == 2)
				codt |= 0x02800000;
		}
		if (total_dimm == 2) {
			if (total_rank == 2)
				codt |= 0x08800000;
			if (total_rank == 4)
				codt |= 0x2a800000;
		}
	}

	debug("nb of dimm %d\n", total_dimm);
	debug("nb of rank %d\n", total_rank);
	if (total_dimm == 1)
		debug("dimm in slot %d\n", firstSlot);

	mtsdram(SDRAM_CODT, codt);
	mtsdram(SDRAM_MODT0, modt0);
	mtsdram(SDRAM_MODT1, modt1);
	mtsdram(SDRAM_MODT2, modt2);
	mtsdram(SDRAM_MODT3, modt3);
}

/*-----------------------------------------------------------------------------+
 * program_initplr.
 *-----------------------------------------------------------------------------*/
static void program_initplr(unsigned long *dimm_populated,
			    unsigned char *iic0_dimm_addr,
			    unsigned long num_dimm_banks,
			    ddr_cas_id_t selected_cas,
			    int write_recovery)
{
	u32 cas = 0;
	u32 odt = 0;
	u32 ods = 0;
	u32 mr;
	u32 wr;
	u32 emr;
	u32 emr2;
	u32 emr3;
	int dimm_num;
	int total_dimm = 0;

	/******************************************************
	 ** Assumption: if more than one DIMM, all DIMMs are the same
	 **		as already checked in check_memory_type
	 ******************************************************/

	if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) {
		mtsdram(SDRAM_INITPLR0, 0x81B80000);
		mtsdram(SDRAM_INITPLR1, 0x81900400);
		mtsdram(SDRAM_INITPLR2, 0x81810000);
		mtsdram(SDRAM_INITPLR3, 0xff800162);
		mtsdram(SDRAM_INITPLR4, 0x81900400);
		mtsdram(SDRAM_INITPLR5, 0x86080000);
		mtsdram(SDRAM_INITPLR6, 0x86080000);
		mtsdram(SDRAM_INITPLR7, 0x81000062);
	} else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) {
		switch (selected_cas) {
		case DDR_CAS_3:
			cas = 3 << 4;
			break;
		case DDR_CAS_4:
			cas = 4 << 4;
			break;
		case DDR_CAS_5:
			cas = 5 << 4;
			break;
		default:
			printf("ERROR: ucode error on selected_cas value %d", selected_cas);
			hang();
			break;
		}

#if 0
		/*
		 * ToDo - Still a problem with the write recovery:
		 * On the Corsair CM2X512-5400C4 module, setting write recovery
		 * in the INITPLR reg to the value calculated in program_mode()
		 * results in not correctly working DDR2 memory (crash after
		 * relocation).
		 *
		 * So for now, set the write recovery to 3. This seems to work
		 * on the Corair module too.
		 *
		 * 2007-03-01, sr
		 */
		switch (write_recovery) {
		case 3:
			wr = WRITE_RECOV_3;
			break;
		case 4:
			wr = WRITE_RECOV_4;
			break;
		case 5:
			wr = WRITE_RECOV_5;
			break;
		case 6:
			wr = WRITE_RECOV_6;
			break;
		default:
			printf("ERROR: write recovery not support (%d)", write_recovery);
			hang();
			break;
		}
#else
		wr = WRITE_RECOV_3; /* test-only, see description above */
#endif

		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++)
			if (dimm_populated[dimm_num] != SDRAM_NONE)
				total_dimm++;
		if (total_dimm == 1) {
			odt = ODT_150_OHM;
			ods = ODS_FULL;
		} else if (total_dimm == 2) {
			odt = ODT_75_OHM;
			ods = ODS_REDUCED;
		} else {
			printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm);
			hang();
		}

		mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas;
		emr = CMD_EMR | SELECT_EMR | odt | ods;
		emr2 = CMD_EMR | SELECT_EMR2;
		emr3 = CMD_EMR | SELECT_EMR3;
		mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);		/* NOP */
		udelay(1000);
		mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);	/* precharge 8 DDR clock cycle */
		mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);		/* EMR2 */
		mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);		/* EMR3 */
		mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);		/* EMR DLL ENABLE */
		mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);	/* MR w/ DLL reset */
		udelay(1000);
		mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);	/* precharge 8 DDR clock cycle */
		mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */
		mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */
		mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */
		mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */
		mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);		/* MR w/o DLL reset */
		mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);		/* EMR OCD Default */
		mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);		/* EMR OCD Exit */
	} else {
		printf("ERROR: ucode error as unknown DDR type in program_initplr");
		hang();
	}
}

/*------------------------------------------------------------------
 * This routine programs the SDRAM_MMODE register.
 * the selected_cas is an output parameter, that will be passed
 * by caller to call the above program_initplr( )
 *-----------------------------------------------------------------*/
static void program_mode(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks,
			 ddr_cas_id_t *selected_cas,
			 int *write_recovery)
{
	unsigned long dimm_num;
	unsigned long sdram_ddr1;
	unsigned long t_wr_ns;
	unsigned long t_wr_clk;
	unsigned long cas_bit;
	unsigned long cas_index;
	unsigned long sdram_freq;
	unsigned long ddr_check;
	unsigned long mmode;
	unsigned long tcyc_reg;
	unsigned long cycle_2_0_clk;
	unsigned long cycle_2_5_clk;
	unsigned long cycle_3_0_clk;
	unsigned long cycle_4_0_clk;
	unsigned long cycle_5_0_clk;
	unsigned long max_2_0_tcyc_ns_x_100;
	unsigned long max_2_5_tcyc_ns_x_100;
	unsigned long max_3_0_tcyc_ns_x_100;
	unsigned long max_4_0_tcyc_ns_x_100;
	unsigned long max_5_0_tcyc_ns_x_100;
	unsigned long cycle_time_ns_x_100[3];
	PPC440_SYS_INFO board_cfg;
	unsigned char cas_2_0_available;
	unsigned char cas_2_5_available;
	unsigned char cas_3_0_available;
	unsigned char cas_4_0_available;
	unsigned char cas_5_0_available;
	unsigned long sdr_ddrpll;

	/*------------------------------------------------------------------
	 * Get the board configuration info.
	 *-----------------------------------------------------------------*/
	get_sys_info(&board_cfg);

	mfsdr(SDR0_DDR0, sdr_ddrpll);
	sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1);

	/*------------------------------------------------------------------
	 * Handle the timing.  We need to find the worst case timing of all
	 * the dimm modules installed.
	 *-----------------------------------------------------------------*/
	t_wr_ns = 0;
	cas_2_0_available = TRUE;
	cas_2_5_available = TRUE;
	cas_3_0_available = TRUE;
	cas_4_0_available = TRUE;
	cas_5_0_available = TRUE;
	max_2_0_tcyc_ns_x_100 = 10;
	max_2_5_tcyc_ns_x_100 = 10;
	max_3_0_tcyc_ns_x_100 = 10;
	max_4_0_tcyc_ns_x_100 = 10;
	max_5_0_tcyc_ns_x_100 = 10;
	sdram_ddr1 = TRUE;

	/* loop through all the DIMM slots on the board */
	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		/* If a dimm is installed in a particular slot ... */
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			if (dimm_populated[dimm_num] == SDRAM_DDR1)
				sdram_ddr1 = TRUE;
			else
				sdram_ddr1 = FALSE;

			/* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */
			cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18);

			/* For a particular DIMM, grab the three CAS values it supports */
			for (cas_index = 0; cas_index < 3; cas_index++) {
				switch (cas_index) {
				case 0:
					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9);
					break;
				case 1:
					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23);
					break;
				default:
					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25);
					break;
				}

				if ((tcyc_reg & 0x0F) >= 10) {
					if ((tcyc_reg & 0x0F) == 0x0D) {
						/* Convert from hex to decimal */
						cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) + 75;
					} else {
						printf("ERROR: SPD reported Tcyc is incorrect for DIMM "
						       "in slot %d\n", (unsigned int)dimm_num);
						hang();
					}
				} else {
					/* Convert from hex to decimal */
					cycle_time_ns_x_100[cas_index] = (((tcyc_reg & 0xF0) >> 4) * 100) +
						((tcyc_reg & 0x0F)*10);
				}
			}

			/* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */
			/* supported for a particular DIMM. */
			cas_index = 0;

			if (sdram_ddr1) {
				/*
				 * DDR devices use the following bitmask for CAS latency:
				 *  Bit   7    6    5    4    3    2    1    0
				 *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0
				 */
				if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_4_0_available = FALSE;
				}

				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_3_0_available = FALSE;
				}

				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_2_5_available = FALSE;
				}

				if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_2_0_available = FALSE;
				}
			} else {
				/*
				 * DDR2 devices use the following bitmask for CAS latency:
				 *  Bit   7    6    5    4    3    2    1    0
				 *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD
				 */
				if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_5_0_available = FALSE;
				}

				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_4_0_available = FALSE;
				}

				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && (cycle_time_ns_x_100[cas_index] != 0)) {
					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, cycle_time_ns_x_100[cas_index]);
					cas_index++;
				} else {
					if (cas_index != 0)
						cas_index++;
					cas_3_0_available = FALSE;
				}
			}
		}
	}

	/*------------------------------------------------------------------
	 * Set the SDRAM mode, SDRAM_MMODE
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MMODE, mmode);
	mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK);

	/* add 10 here because of rounding problems */
	cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10;
	cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10;
	cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10;
	cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10;
	cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10;

	if (sdram_ddr1 == TRUE) { /* DDR1 */
		if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK;
			*selected_cas = DDR_CAS_2;
		} else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK;
			*selected_cas = DDR_CAS_2_5;
		} else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK;
			*selected_cas = DDR_CAS_3;
		} else {
			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
			printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n");
			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n");
			hang();
		}
	} else { /* DDR2 */
		if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK;
			*selected_cas = DDR_CAS_3;
		} else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK;
			*selected_cas = DDR_CAS_4;
		} else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) {
			mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK;
			*selected_cas = DDR_CAS_5;
		} else {
			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n");
			printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n");
			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n");
			printf("cas3=%d cas4=%d cas5=%d\n",
			       cas_3_0_available, cas_4_0_available, cas_5_0_available);
			printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n",
			       sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk);
			hang();
		}
	}

	if (sdram_ddr1 == TRUE)
		mmode |= SDRAM_MMODE_WR_DDR1;
	else {

		/* loop through all the DIMM slots on the board */
		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
			/* If a dimm is installed in a particular slot ... */
			if (dimm_populated[dimm_num] != SDRAM_NONE)
				t_wr_ns = max(t_wr_ns,
					      spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
		}

		/*
		 * convert from nanoseconds to ddr clocks
		 * round up if necessary
		 */
		t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION);
		ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns);
		if (sdram_freq != ddr_check)
			t_wr_clk++;

		switch (t_wr_clk) {
		case 0:
		case 1:
		case 2:
		case 3:
			mmode |= SDRAM_MMODE_WR_DDR2_3_CYC;
			break;
		case 4:
			mmode |= SDRAM_MMODE_WR_DDR2_4_CYC;
			break;
		case 5:
			mmode |= SDRAM_MMODE_WR_DDR2_5_CYC;
			break;
		default:
			mmode |= SDRAM_MMODE_WR_DDR2_6_CYC;
			break;
		}
		*write_recovery = t_wr_clk;
	}

	debug("CAS latency = %d\n", *selected_cas);
	debug("Write recovery = %d\n", *write_recovery);

	mtsdram(SDRAM_MMODE, mmode);
}

/*-----------------------------------------------------------------------------+
 * program_rtr.
 *-----------------------------------------------------------------------------*/
static void program_rtr(unsigned long *dimm_populated,
			unsigned char *iic0_dimm_addr,
			unsigned long num_dimm_banks)
{
	PPC440_SYS_INFO board_cfg;
	unsigned long max_refresh_rate;
	unsigned long dimm_num;
	unsigned long refresh_rate_type;
	unsigned long refresh_rate;
	unsigned long rint;
	unsigned long sdram_freq;
	unsigned long sdr_ddrpll;
	unsigned long val;

	/*------------------------------------------------------------------
	 * Get the board configuration info.
	 *-----------------------------------------------------------------*/
	get_sys_info(&board_cfg);

	/*------------------------------------------------------------------
	 * Set the SDRAM Refresh Timing Register, SDRAM_RTR
	 *-----------------------------------------------------------------*/
	mfsdr(SDR0_DDR0, sdr_ddrpll);
	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));

	max_refresh_rate = 0;
	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {

			refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12);
			refresh_rate_type &= 0x7F;
			switch (refresh_rate_type) {
			case 0:
				refresh_rate =  15625;
				break;
			case 1:
				refresh_rate =   3906;
				break;
			case 2:
				refresh_rate =   7812;
				break;
			case 3:
				refresh_rate =  31250;
				break;
			case 4:
				refresh_rate =  62500;
				break;
			case 5:
				refresh_rate = 125000;
				break;
			default:
				refresh_rate = 0;
				printf("ERROR: DIMM %d unsupported refresh rate/type.\n",
				       (unsigned int)dimm_num);
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
				break;
			}

			max_refresh_rate = max(max_refresh_rate, refresh_rate);
		}
	}

	rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION);
	mfsdram(SDRAM_RTR, val);
	mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) |
		(SDRAM_RTR_RINT_ENCODE(rint)));
}

/*------------------------------------------------------------------
 * This routine programs the SDRAM_TRx registers.
 *-----------------------------------------------------------------*/
static void program_tr(unsigned long *dimm_populated,
		       unsigned char *iic0_dimm_addr,
		       unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long sdram_ddr1;
	unsigned long t_rp_ns;
	unsigned long t_rcd_ns;
	unsigned long t_rrd_ns;
	unsigned long t_ras_ns;
	unsigned long t_rc_ns;
	unsigned long t_rfc_ns;
	unsigned long t_wpc_ns;
	unsigned long t_wtr_ns;
	unsigned long t_rpc_ns;
	unsigned long t_rp_clk;
	unsigned long t_rcd_clk;
	unsigned long t_rrd_clk;
	unsigned long t_ras_clk;
	unsigned long t_rc_clk;
	unsigned long t_rfc_clk;
	unsigned long t_wpc_clk;
	unsigned long t_wtr_clk;
	unsigned long t_rpc_clk;
	unsigned long sdtr1, sdtr2, sdtr3;
	unsigned long ddr_check;
	unsigned long sdram_freq;
	unsigned long sdr_ddrpll;

	PPC440_SYS_INFO board_cfg;

	/*------------------------------------------------------------------
	 * Get the board configuration info.
	 *-----------------------------------------------------------------*/
	get_sys_info(&board_cfg);

	mfsdr(SDR0_DDR0, sdr_ddrpll);
	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll));

	/*------------------------------------------------------------------
	 * Handle the timing.  We need to find the worst case timing of all
	 * the dimm modules installed.
	 *-----------------------------------------------------------------*/
	t_rp_ns = 0;
	t_rrd_ns = 0;
	t_rcd_ns = 0;
	t_ras_ns = 0;
	t_rc_ns = 0;
	t_rfc_ns = 0;
	t_wpc_ns = 0;
	t_wtr_ns = 0;
	t_rpc_ns = 0;
	sdram_ddr1 = TRUE;

	/* loop through all the DIMM slots on the board */
	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		/* If a dimm is installed in a particular slot ... */
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			if (dimm_populated[dimm_num] == SDRAM_DDR2)
				sdram_ddr1 = TRUE;
			else
				sdram_ddr1 = FALSE;

			t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2);
			t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2);
			t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2);
			t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30));
			t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41));
			t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42));
		}
	}

	/*------------------------------------------------------------------
	 * Set the SDRAM Timing Reg 1, SDRAM_TR1
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_SDTR1, sdtr1);
	sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK |
		   SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK);

	/* default values */
	sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK;
	sdtr1 |= SDRAM_SDTR1_RTW_2_CLK;

	/* normal operations */
	sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK;
	sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK;

	mtsdram(SDRAM_SDTR1, sdtr1);

	/*------------------------------------------------------------------
	 * Set the SDRAM Timing Reg 2, SDRAM_TR2
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_SDTR2, sdtr2);
	sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK |
		   SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK |
		   SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  |
		   SDRAM_SDTR2_RRD_MASK);

	/*
	 * convert t_rcd from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns);
	if (sdram_freq != ddr_check)
		t_rcd_clk++;

	switch (t_rcd_clk) {
	case 0:
	case 1:
		sdtr2 |= SDRAM_SDTR2_RCD_1_CLK;
		break;
	case 2:
		sdtr2 |= SDRAM_SDTR2_RCD_2_CLK;
		break;
	case 3:
		sdtr2 |= SDRAM_SDTR2_RCD_3_CLK;
		break;
	case 4:
		sdtr2 |= SDRAM_SDTR2_RCD_4_CLK;
		break;
	default:
		sdtr2 |= SDRAM_SDTR2_RCD_5_CLK;
		break;
	}

	if (sdram_ddr1 == TRUE) { /* DDR1 */
		if (sdram_freq < 200000000) {
			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
		} else {
			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
		}
	} else { /* DDR2 */
		/* loop through all the DIMM slots on the board */
		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
			/* If a dimm is installed in a particular slot ... */
			if (dimm_populated[dimm_num] != SDRAM_NONE) {
				t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2);
				t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2);
				t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2);
			}
		}

		/*
		 * convert from nanoseconds to ddr clocks
		 * round up if necessary
		 */
		t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION);
		ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns);
		if (sdram_freq != ddr_check)
			t_wpc_clk++;

		switch (t_wpc_clk) {
		case 0:
		case 1:
		case 2:
			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK;
			break;
		case 3:
			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK;
			break;
		case 4:
			sdtr2 |= SDRAM_SDTR2_WPC_4_CLK;
			break;
		case 5:
			sdtr2 |= SDRAM_SDTR2_WPC_5_CLK;
			break;
		default:
			sdtr2 |= SDRAM_SDTR2_WPC_6_CLK;
			break;
		}

		/*
		 * convert from nanoseconds to ddr clocks
		 * round up if necessary
		 */
		t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION);
		ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns);
		if (sdram_freq != ddr_check)
			t_wtr_clk++;

		switch (t_wtr_clk) {
		case 0:
		case 1:
			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK;
			break;
		case 2:
			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK;
			break;
		case 3:
			sdtr2 |= SDRAM_SDTR2_WTR_3_CLK;
			break;
		default:
			sdtr2 |= SDRAM_SDTR2_WTR_4_CLK;
			break;
		}

		/*
		 * convert from nanoseconds to ddr clocks
		 * round up if necessary
		 */
		t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION);
		ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns);
		if (sdram_freq != ddr_check)
			t_rpc_clk++;

		switch (t_rpc_clk) {
		case 0:
		case 1:
		case 2:
			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK;
			break;
		case 3:
			sdtr2 |= SDRAM_SDTR2_RPC_3_CLK;
			break;
		default:
			sdtr2 |= SDRAM_SDTR2_RPC_4_CLK;
			break;
		}
	}

	/* default value */
	sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK;

	/*
	 * convert t_rrd from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns);
	if (sdram_freq != ddr_check)
		t_rrd_clk++;

	if (t_rrd_clk == 3)
		sdtr2 |= SDRAM_SDTR2_RRD_3_CLK;
	else
		sdtr2 |= SDRAM_SDTR2_RRD_2_CLK;

	/*
	 * convert t_rp from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns);
	if (sdram_freq != ddr_check)
		t_rp_clk++;

	switch (t_rp_clk) {
	case 0:
	case 1:
	case 2:
	case 3:
		sdtr2 |= SDRAM_SDTR2_RP_3_CLK;
		break;
	case 4:
		sdtr2 |= SDRAM_SDTR2_RP_4_CLK;
		break;
	case 5:
		sdtr2 |= SDRAM_SDTR2_RP_5_CLK;
		break;
	case 6:
		sdtr2 |= SDRAM_SDTR2_RP_6_CLK;
		break;
	default:
		sdtr2 |= SDRAM_SDTR2_RP_7_CLK;
		break;
	}

	mtsdram(SDRAM_SDTR2, sdtr2);

	/*------------------------------------------------------------------
	 * Set the SDRAM Timing Reg 3, SDRAM_TR3
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_SDTR3, sdtr3);
	sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK |
		   SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK);

	/*
	 * convert t_ras from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns);
	if (sdram_freq != ddr_check)
		t_ras_clk++;

	sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk);

	/*
	 * convert t_rc from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns);
	if (sdram_freq != ddr_check)
		t_rc_clk++;

	sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk);

	/* default xcs value */
	sdtr3 |= SDRAM_SDTR3_XCS;

	/*
	 * convert t_rfc from nanoseconds to ddr clocks
	 * round up if necessary
	 */
	t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION);
	ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns);
	if (sdram_freq != ddr_check)
		t_rfc_clk++;

	sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk);

	mtsdram(SDRAM_SDTR3, sdtr3);
}

/*-----------------------------------------------------------------------------+
 * program_bxcf.
 *-----------------------------------------------------------------------------*/
static void program_bxcf(unsigned long *dimm_populated,
			 unsigned char *iic0_dimm_addr,
			 unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long num_col_addr;
	unsigned long num_ranks;
	unsigned long num_banks;
	unsigned long mode;
	unsigned long ind_rank;
	unsigned long ind;
	unsigned long ind_bank;
	unsigned long bank_0_populated;

	/*------------------------------------------------------------------
	 * Set the BxCF regs.  First, wipe out the bank config registers.
	 *-----------------------------------------------------------------*/
	mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF);
	mtdcr(SDRAMC_CFGDATA, 0x00000000);
	mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF);
	mtdcr(SDRAMC_CFGDATA, 0x00000000);
	mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF);
	mtdcr(SDRAMC_CFGDATA, 0x00000000);
	mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF);
	mtdcr(SDRAMC_CFGDATA, 0x00000000);

	mode = SDRAM_BXCF_M_BE_ENABLE;

	bank_0_populated = 0;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4);
			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
				num_ranks = (num_ranks & 0x0F) +1;
			else
				num_ranks = num_ranks & 0x0F;

			num_banks = spd_read(iic0_dimm_addr[dimm_num], 17);

			for (ind_bank = 0; ind_bank < 2; ind_bank++) {
				if (num_banks == 4)
					ind = 0;
				else
					ind = 5;
				switch (num_col_addr) {
				case 0x08:
					mode |= (SDRAM_BXCF_M_AM_0 + ind);
					break;
				case 0x09:
					mode |= (SDRAM_BXCF_M_AM_1 + ind);
					break;
				case 0x0A:
					mode |= (SDRAM_BXCF_M_AM_2 + ind);
					break;
				case 0x0B:
					mode |= (SDRAM_BXCF_M_AM_3 + ind);
					break;
				case 0x0C:
					mode |= (SDRAM_BXCF_M_AM_4 + ind);
					break;
				default:
					printf("DDR-SDRAM: DIMM %d BxCF configuration.\n",
					       (unsigned int)dimm_num);
					printf("ERROR: Unsupported value for number of "
					       "column addresses: %d.\n", (unsigned int)num_col_addr);
					printf("Replace the DIMM module with a supported DIMM.\n\n");
					hang();
				}
			}

			if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1))
				bank_0_populated = 1;

			for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) {
				mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2));
				mtdcr(SDRAMC_CFGDATA, mode);
			}
		}
	}
}

/*------------------------------------------------------------------
 * program memory queue.
 *-----------------------------------------------------------------*/
static void program_memory_queue(unsigned long *dimm_populated,
				 unsigned char *iic0_dimm_addr,
				 unsigned long num_dimm_banks)
{
	unsigned long dimm_num;
	unsigned long rank_base_addr;
	unsigned long rank_reg;
	unsigned long rank_size_bytes;
	unsigned long rank_size_id;
	unsigned long num_ranks;
	unsigned long baseadd_size;
	unsigned long i;
	unsigned long bank_0_populated = 0;

	/*------------------------------------------------------------------
	 * Reset the rank_base_address.
	 *-----------------------------------------------------------------*/
	rank_reg   = SDRAM_R0BAS;

	rank_base_addr = 0x00000000;

	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) {
		if (dimm_populated[dimm_num] != SDRAM_NONE) {
			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5);
			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08)
				num_ranks = (num_ranks & 0x0F) + 1;
			else
				num_ranks = num_ranks & 0x0F;

			rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31);

			/*------------------------------------------------------------------
			 * Set the sizes
			 *-----------------------------------------------------------------*/
			baseadd_size = 0;
			rank_size_bytes = 4 * 1024 * 1024 * rank_size_id;
			switch (rank_size_id) {
			case 0x02:
				baseadd_size |= SDRAM_RXBAS_SDSZ_8;
				break;
			case 0x04:
				baseadd_size |= SDRAM_RXBAS_SDSZ_16;
				break;
			case 0x08:
				baseadd_size |= SDRAM_RXBAS_SDSZ_32;
				break;
			case 0x10:
				baseadd_size |= SDRAM_RXBAS_SDSZ_64;
				break;
			case 0x20:
				baseadd_size |= SDRAM_RXBAS_SDSZ_128;
				break;
			case 0x40:
				baseadd_size |= SDRAM_RXBAS_SDSZ_256;
				break;
			case 0x80:
				baseadd_size |= SDRAM_RXBAS_SDSZ_512;
				break;
			default:
				printf("DDR-SDRAM: DIMM %d memory queue configuration.\n",
				       (unsigned int)dimm_num);
				printf("ERROR: Unsupported value for the banksize: %d.\n",
				       (unsigned int)rank_size_id);
				printf("Replace the DIMM module with a supported DIMM.\n\n");
				hang();
			}

			if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1))
				bank_0_populated = 1;

			for (i = 0; i < num_ranks; i++)	{
				mtdcr_any(rank_reg+i+dimm_num+bank_0_populated,
					  (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) |
					   baseadd_size));
				rank_base_addr += rank_size_bytes;
			}
		}
	}
}

/*-----------------------------------------------------------------------------+
 * is_ecc_enabled.
 *-----------------------------------------------------------------------------*/
static unsigned long is_ecc_enabled(void)
{
	unsigned long dimm_num;
	unsigned long ecc;
	unsigned long val;

	ecc = 0;
	/* loop through all the DIMM slots on the board */
	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
		mfsdram(SDRAM_MCOPT1, val);
		ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val));
	}

	return ecc;
}

#ifdef CONFIG_DDR_ECC
/*-----------------------------------------------------------------------------+
 * program_ecc.
 *-----------------------------------------------------------------------------*/
static void program_ecc(unsigned long *dimm_populated,
			unsigned char *iic0_dimm_addr,
			unsigned long num_dimm_banks,
			unsigned long tlb_word2_i_value)
{
	unsigned long mcopt1;
	unsigned long mcopt2;
	unsigned long mcstat;
	unsigned long dimm_num;
	unsigned long ecc;

	ecc = 0;
	/* loop through all the DIMM slots on the board */
	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
		/* If a dimm is installed in a particular slot ... */
		if (dimm_populated[dimm_num] != SDRAM_NONE)
			ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11));
	}
	if (ecc == 0)
		return;

	mfsdram(SDRAM_MCOPT1, mcopt1);
	mfsdram(SDRAM_MCOPT2, mcopt2);

	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
		/* DDR controller must be enabled and not in self-refresh. */
		mfsdram(SDRAM_MCSTAT, mcstat);
		if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE)
		    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT)
		    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK))
			== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) {

			program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value);
		}
	}

	return;
}

#ifdef CONFIG_ECC_ERROR_RESET
/*
 * Check for ECC errors and reset board upon any error here
 *
 * On the Katmai 440SPe eval board, from time to time, the first
 * lword write access after DDR2 initializazion with ECC checking
 * enabled, leads to an ECC error. I couldn't find a configuration
 * without this happening. On my board with the current setup it
 * happens about 1 from 10 times.
 *
 * The ECC modules used for testing are:
 * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's)
 *
 * This has to get fixed for the Katmai and tested for the other
 * board (440SP/440SPe) that will eventually use this code in the
 * future.
 *
 * 2007-03-01, sr
 */
static void check_ecc(void)
{
	u32 val;

	mfsdram(SDRAM_ECCCR, val);
	if (val != 0) {
		printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n",
		       val, mfdcr(0x4c), mfdcr(0x4e));
		printf("ECC error occured, resetting board...\n");
		do_reset(NULL, 0, 0, NULL);
	}
}
#endif

static void wait_ddr_idle(void)
{
	u32 val;

	do {
		mfsdram(SDRAM_MCSTAT, val);
	} while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT);
}

/*-----------------------------------------------------------------------------+
 * program_ecc_addr.
 *-----------------------------------------------------------------------------*/
static void program_ecc_addr(unsigned long start_address,
			     unsigned long num_bytes,
			     unsigned long tlb_word2_i_value)
{
	unsigned long current_address;
	unsigned long end_address;
	unsigned long address_increment;
	unsigned long mcopt1;
	char str[] = "ECC generation...";
	int i;

	current_address = start_address;
	mfsdram(SDRAM_MCOPT1, mcopt1);
	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) {
		mtsdram(SDRAM_MCOPT1,
			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN);
		sync();
		eieio();
		wait_ddr_idle();

		puts(str);
		if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) {
			/* ECC bit set method for non-cached memory */
			if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32)
				address_increment = 4;
			else
				address_increment = 8;
			end_address = current_address + num_bytes;

			while (current_address < end_address) {
				*((unsigned long *)current_address) = 0x00000000;
				current_address += address_increment;
			}
		} else {
			/* ECC bit set method for cached memory */
			dcbz_area(start_address, num_bytes);
			dflush();
		}
		for (i=0; i<strlen(str); i++)
			putc('\b');

		sync();
		eieio();
		wait_ddr_idle();

		/* clear ECC error repoting registers */
		mtsdram(SDRAM_ECCCR, 0xffffffff);
		mtdcr(0x4c, 0xffffffff);

		mtsdram(SDRAM_MCOPT1,
			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP);
		sync();
		eieio();
		wait_ddr_idle();

#ifdef CONFIG_ECC_ERROR_RESET
		/*
		 * One write to 0 is enough to trigger this ECC error
		 * (see description above)
		 */
		out_be32(0, 0x12345678);
		check_ecc();
#endif
	}
}
#endif

/*-----------------------------------------------------------------------------+
 * program_DQS_calibration.
 *-----------------------------------------------------------------------------*/
static void program_DQS_calibration(unsigned long *dimm_populated,
				    unsigned char *iic0_dimm_addr,
				    unsigned long num_dimm_banks)
{
	unsigned long val;

#ifdef HARD_CODED_DQS /* calibration test with hardvalues */
	mtsdram(SDRAM_RQDC, 0x80000037);
	mtsdram(SDRAM_RDCC, 0x40000000);
	mtsdram(SDRAM_RFDC, 0x000001DF);

	test();
#else
	/*------------------------------------------------------------------
	 * Program RDCC register
	 * Read sample cycle auto-update enable
	 *-----------------------------------------------------------------*/

	/*
	 * Modified for the Katmai platform:  with some DIMMs, the DDR2
	 * controller automatically selects the T2 read cycle, but this
	 * proves unreliable.  Go ahead and force the DDR2 controller
	 * to use the T4 sample and disable the automatic update of the
	 * RDSS field.
	 */
	mfsdram(SDRAM_RDCC, val);
	mtsdram(SDRAM_RDCC,
		(val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK))
		| (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE));

	/*------------------------------------------------------------------
	 * Program RQDC register
	 * Internal DQS delay mechanism enable
	 *-----------------------------------------------------------------*/
	mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38)));

	/*------------------------------------------------------------------
	 * Program RFDC register
	 * Set Feedback Fractional Oversample
	 * Auto-detect read sample cycle enable
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_RFDC, val);
	mtsdram(SDRAM_RFDC,
		(val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK |
			 SDRAM_RFDC_RFFD_MASK))
		| (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) |
		   SDRAM_RFDC_RFFD_ENCODE(0)));

	DQS_calibration_process();
#endif
}

static u32 short_mem_test(void)
{
	u32 *membase;
	u32 bxcr_num;
	u32 bxcf;
	int i;
	int j;
	u32 test[NUMMEMTESTS][NUMMEMWORDS] = {
		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };

	for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) {
		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf);

		/* Banks enabled */
		if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {

			/* Bank is enabled */
			membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num)));

			/*------------------------------------------------------------------
			 * Run the short memory test.
			 *-----------------------------------------------------------------*/
			for (i = 0; i < NUMMEMTESTS; i++) {
				for (j = 0; j < NUMMEMWORDS; j++) {
					membase[j] = test[i][j];
					ppcDcbf((u32)&(membase[j]));
				}
				sync();
				for (j = 0; j < NUMMEMWORDS; j++) {
					if (membase[j] != test[i][j]) {
						ppcDcbf((u32)&(membase[j]));
						break;
					}
					ppcDcbf((u32)&(membase[j]));
				}
				sync();
				if (j < NUMMEMWORDS)
					break;
			}
			if (i < NUMMEMTESTS)
				break;
		}	/* if bank enabled */
	}		/* for bxcf_num */

	return bxcr_num;
}

#ifndef HARD_CODED_DQS
/*-----------------------------------------------------------------------------+
 * DQS_calibration_process.
 *-----------------------------------------------------------------------------*/
static void DQS_calibration_process(void)
{
	unsigned long ecc_temp;
	unsigned long rfdc_reg;
	unsigned long rffd;
	unsigned long rqdc_reg;
	unsigned long rqfd;
	unsigned long bxcr_num;
	unsigned long val;
	long rqfd_average;
	long rffd_average;
	long max_start;
	long min_end;
	unsigned long begin_rqfd[MAXRANKS];
	unsigned long begin_rffd[MAXRANKS];
	unsigned long end_rqfd[MAXRANKS];
	unsigned long end_rffd[MAXRANKS];
	char window_found;
	unsigned long dlycal;
	unsigned long dly_val;
	unsigned long max_pass_length;
	unsigned long current_pass_length;
	unsigned long current_fail_length;
	unsigned long current_start;
	long max_end;
	unsigned char fail_found;
	unsigned char pass_found;

	/*------------------------------------------------------------------
	 * Test to determine the best read clock delay tuning bits.
	 *
	 * Before the DDR controller can be used, the read clock delay needs to be
	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
	 * This value cannot be hardcoded into the program because it changes
	 * depending on the board's setup and environment.
	 * To do this, all delay values are tested to see if they
	 * work or not.  By doing this, you get groups of fails with groups of
	 * passing values.  The idea is to find the start and end of a passing
	 * window and take the center of it to use as the read clock delay.
	 *
	 * A failure has to be seen first so that when we hit a pass, we know
	 * that it is truely the start of the window.  If we get passing values
	 * to start off with, we don't know if we are at the start of the window.
	 *
	 * The code assumes that a failure will always be found.
	 * If a failure is not found, there is no easy way to get the middle
	 * of the passing window.  I guess we can pretty much pick any value
	 * but some values will be better than others.  Since the lowest speed
	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
	 * from experimentation it is safe to say you will always have a failure.
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT1, ecc_temp);
	ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
	mfsdram(SDRAM_MCOPT1, val);
	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
		SDRAM_MCOPT1_MCHK_NON);

	max_start = 0;
	min_end = 0;
	begin_rqfd[0] = 0;
	begin_rffd[0] = 0;
	begin_rqfd[1] = 0;
	begin_rffd[1] = 0;
	end_rqfd[0] = 0;
	end_rffd[0] = 0;
	end_rqfd[1] = 0;
	end_rffd[1] = 0;
	window_found = FALSE;

	max_pass_length = 0;
	max_start = 0;
	max_end = 0;
	current_pass_length = 0;
	current_fail_length = 0;
	current_start = 0;
	window_found = FALSE;
	fail_found = FALSE;
	pass_found = FALSE;

	/* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */
	/* rqdc_reg = mfsdram(SDRAM_RQDC) & ~(SDRAM_RQDC_RQFD_MASK); */

	/*
	 * get the delay line calibration register value
	 */
	mfsdram(SDRAM_DLCR, dlycal);
	dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2;

	for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) {
		mfsdram(SDRAM_RFDC, rfdc_reg);
		rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK);

		/*------------------------------------------------------------------
		 * Set the timing reg for the test.
		 *-----------------------------------------------------------------*/
		mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd));

		/* do the small memory test */
		bxcr_num = short_mem_test();

		/*------------------------------------------------------------------
		 * See if the rffd value passed.
		 *-----------------------------------------------------------------*/
		if (bxcr_num == MAXBXCF) {
			if (fail_found == TRUE) {
				pass_found = TRUE;
				if (current_pass_length == 0)
					current_start = rffd;

				current_fail_length = 0;
				current_pass_length++;

				if (current_pass_length > max_pass_length) {
					max_pass_length = current_pass_length;
					max_start = current_start;
					max_end = rffd;
				}
			}
		} else {
			current_pass_length = 0;
			current_fail_length++;

			if (current_fail_length >= (dly_val >> 2)) {
				if (fail_found == FALSE) {
					fail_found = TRUE;
				} else if (pass_found == TRUE) {
					window_found = TRUE;
					break;
				}
			}
		}
	}		/* for rffd */

	/*------------------------------------------------------------------
	 * Set the average RFFD value
	 *-----------------------------------------------------------------*/
	rffd_average = ((max_start + max_end) >> 1);

	if (rffd_average < 0)
		rffd_average = 0;

	if (rffd_average > SDRAM_RFDC_RFFD_MAX)
		rffd_average = SDRAM_RFDC_RFFD_MAX;
	/* now fix RFDC[RFFD] found and find RQDC[RQFD] */
	mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average));

	max_pass_length = 0;
	max_start = 0;
	max_end = 0;
	current_pass_length = 0;
	current_fail_length = 0;
	current_start = 0;
	window_found = FALSE;
	fail_found = FALSE;
	pass_found = FALSE;

	for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) {
		mfsdram(SDRAM_RQDC, rqdc_reg);
		rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK);

		/*------------------------------------------------------------------
		 * Set the timing reg for the test.
		 *-----------------------------------------------------------------*/
		mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd));

		/* do the small memory test */
		bxcr_num = short_mem_test();

		/*------------------------------------------------------------------
		 * See if the rffd value passed.
		 *-----------------------------------------------------------------*/
		if (bxcr_num == MAXBXCF) {
			if (fail_found == TRUE) {
				pass_found = TRUE;
				if (current_pass_length == 0)
					current_start = rqfd;

				current_fail_length = 0;
				current_pass_length++;

				if (current_pass_length > max_pass_length) {
					max_pass_length = current_pass_length;
					max_start = current_start;
					max_end = rqfd;
				}
			}
		} else {
			current_pass_length = 0;
			current_fail_length++;

			if (fail_found == FALSE) {
				fail_found = TRUE;
			} else if (pass_found == TRUE) {
				window_found = TRUE;
				break;
			}
		}
	}

	/*------------------------------------------------------------------
	 * Make sure we found the valid read passing window.  Halt if not
	 *-----------------------------------------------------------------*/
	if (window_found == FALSE) {
		printf("ERROR: Cannot determine a common read delay for the "
		       "DIMM(s) installed.\n");
		debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__);
		hang();
	}

	rqfd_average = ((max_start + max_end) >> 1);

	if (rqfd_average < 0)
		rqfd_average = 0;

	if (rqfd_average > SDRAM_RQDC_RQFD_MAX)
		rqfd_average = SDRAM_RQDC_RQFD_MAX;

	/*------------------------------------------------------------------
	 * Restore the ECC variable to what it originally was
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT1, val);
	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | ecc_temp);

	mtsdram(SDRAM_RQDC,
		(rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) |
		SDRAM_RQDC_RQFD_ENCODE(rqfd_average));

	mfsdram(SDRAM_DLCR, val);
	debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val);
	mfsdram(SDRAM_RQDC, val);
	debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
	mfsdram(SDRAM_RFDC, val);
	debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val);
}
#else /* calibration test with hardvalues */
/*-----------------------------------------------------------------------------+
 * DQS_calibration_process.
 *-----------------------------------------------------------------------------*/
static void test(void)
{
	unsigned long dimm_num;
	unsigned long ecc_temp;
	unsigned long i, j;
	unsigned long *membase;
	unsigned long bxcf[MAXRANKS];
	unsigned long val;
	char window_found;
	char begin_found[MAXDIMMS];
	char end_found[MAXDIMMS];
	char search_end[MAXDIMMS];
	unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = {
		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF,
		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF},
		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000,
		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000},
		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555,
		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555},
		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA,
		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA},
		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A,
		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A},
		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5,
		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5},
		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA,
		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA},
		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55,
		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} };

	/*------------------------------------------------------------------
	 * Test to determine the best read clock delay tuning bits.
	 *
	 * Before the DDR controller can be used, the read clock delay needs to be
	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD].
	 * This value cannot be hardcoded into the program because it changes
	 * depending on the board's setup and environment.
	 * To do this, all delay values are tested to see if they
	 * work or not.  By doing this, you get groups of fails with groups of
	 * passing values.  The idea is to find the start and end of a passing
	 * window and take the center of it to use as the read clock delay.
	 *
	 * A failure has to be seen first so that when we hit a pass, we know
	 * that it is truely the start of the window.  If we get passing values
	 * to start off with, we don't know if we are at the start of the window.
	 *
	 * The code assumes that a failure will always be found.
	 * If a failure is not found, there is no easy way to get the middle
	 * of the passing window.  I guess we can pretty much pick any value
	 * but some values will be better than others.  Since the lowest speed
	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed),
	 * from experimentation it is safe to say you will always have a failure.
	 *-----------------------------------------------------------------*/
	mfsdram(SDRAM_MCOPT1, ecc_temp);
	ecc_temp &= SDRAM_MCOPT1_MCHK_MASK;
	mfsdram(SDRAM_MCOPT1, val);
	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) |
		SDRAM_MCOPT1_MCHK_NON);

	window_found = FALSE;
	begin_found[0] = FALSE;
	end_found[0] = FALSE;
	search_end[0] = FALSE;
	begin_found[1] = FALSE;
	end_found[1] = FALSE;
	search_end[1] = FALSE;

	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) {
		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]);

		/* Banks enabled */
		if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) {

			/* Bank is enabled */
			membase =
				(unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num)));

			/*------------------------------------------------------------------
			 * Run the short memory test.
			 *-----------------------------------------------------------------*/
			for (i = 0; i < NUMMEMTESTS; i++) {
				for (j = 0; j < NUMMEMWORDS; j++) {
					membase[j] = test[i][j];
					ppcDcbf((u32)&(membase[j]));
				}
				sync();
				for (j = 0; j < NUMMEMWORDS; j++) {
					if (membase[j] != test[i][j]) {
						ppcDcbf((u32)&(membase[j]));
						break;
					}
					ppcDcbf((u32)&(membase[j]));
				}
				sync();
				if (j < NUMMEMWORDS)
					break;
			}

			/*------------------------------------------------------------------
			 * See if the rffd value passed.
			 *-----------------------------------------------------------------*/
			if (i < NUMMEMTESTS) {
				if ((end_found[dimm_num] == FALSE) &&
				    (search_end[dimm_num] == TRUE)) {
					end_found[dimm_num] = TRUE;
				}
				if ((end_found[0] == TRUE) &&
				    (end_found[1] == TRUE))
					break;
			} else {
				if (begin_found[dimm_num] == FALSE) {
					begin_found[dimm_num] = TRUE;
					search_end[dimm_num] = TRUE;
				}
			}
		} else {
			begin_found[dimm_num] = TRUE;
			end_found[dimm_num] = TRUE;
		}
	}

	if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE))
		window_found = TRUE;

	/*------------------------------------------------------------------
	 * Make sure we found the valid read passing window.  Halt if not
	 *-----------------------------------------------------------------*/
	if (window_found == FALSE) {
		printf("ERROR: Cannot determine a common read delay for the "
		       "DIMM(s) installed.\n");
		hang();
	}

	/*------------------------------------------------------------------
	 * Restore the ECC variable to what it originally was
	 *-----------------------------------------------------------------*/
	mtsdram(SDRAM_MCOPT1,
		(ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK)
		| ecc_temp);
}
#endif

#if defined(DEBUG)
static void ppc440sp_sdram_register_dump(void)
{
	unsigned int sdram_reg;
	unsigned int sdram_data;
	unsigned int dcr_data;

	printf("\n  Register Dump:\n");
	sdram_reg = SDRAM_MCSTAT;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MCOPT1;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MCOPT2;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MODT0;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MODT1;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MODT1     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MODT2;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MODT3;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MODT3     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_CODT;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_CODT      = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_VVPR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_VVPR      = 0x%08X", sdram_data);
	sdram_reg = SDRAM_OPARS;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data);
	/*
	 * OPAR2 is only used as a trigger register.
	 * No data is contained in this register, and reading or writing
	 * to is can cause bad things to happen (hangs).  Just skip it
	 * and report NA
	 * sdram_reg = SDRAM_OPAR2;
	 * mfsdram(sdram_reg, sdram_data);
	 * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data);
	 */
	printf("        SDRAM_OPART     = N/A       ");
	sdram_reg = SDRAM_RTR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_RTR       = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MB0CF;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MB0CF     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MB1CF;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MB2CF;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MB2CF     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MB3CF;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR0;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR1;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR2;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR3;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR4;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR5;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR6;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR7;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR8;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR9;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR10;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR11;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR12;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR13;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_INITPLR14;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data);
	sdram_reg = SDRAM_INITPLR15;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_RQDC;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_RQDC      = 0x%08X", sdram_data);
	sdram_reg = SDRAM_RFDC;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_RDCC;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_RDCC      = 0x%08X", sdram_data);
	sdram_reg = SDRAM_DLCR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_CLKTR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_CLKTR     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_WRDTR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_SDTR1;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_SDTR1     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_SDTR2;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_SDTR3;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_SDTR3     = 0x%08X", sdram_data);
	sdram_reg = SDRAM_MMODE;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data);
	sdram_reg = SDRAM_MEMODE;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_MEMODE    = 0x%08X", sdram_data);
	sdram_reg = SDRAM_ECCCR;
	mfsdram(sdram_reg, sdram_data);
	printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data);

	dcr_data = mfdcr(SDRAM_R0BAS);
	printf("        MQ0_B0BAS       = 0x%08X", dcr_data);
	dcr_data = mfdcr(SDRAM_R1BAS);
	printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data);
	dcr_data = mfdcr(SDRAM_R2BAS);
	printf("        MQ2_B0BAS       = 0x%08X", dcr_data);
	dcr_data = mfdcr(SDRAM_R3BAS);
	printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data);
}
#endif
#endif /* CONFIG_SPD_EEPROM */