summaryrefslogtreecommitdiff
path: root/cpu/mpc83xx/spd_sdram.c
blob: 040836c42e09df55d7f1a36eb0ae36b742db164c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
/*
 * (C) Copyright 2006 Freescale Semiconductor, Inc.
 *
 * (C) Copyright 2006
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
 *
 * Copyright (C) 2004-2006 Freescale Semiconductor, Inc.
 * (C) Copyright 2003 Motorola Inc.
 * Xianghua Xiao (X.Xiao@motorola.com)
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/processor.h>
#include <i2c.h>
#include <spd.h>
#include <asm/mmu.h>
#include <spd_sdram.h>

void board_add_ram_info(int use_default)
{
	volatile immap_t *immap = (immap_t *) CFG_IMMR;
	volatile ddr83xx_t *ddr = &immap->ddr;

	printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK)
			   >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1);

	if (ddr->sdram_cfg & SDRAM_CFG_32_BE)
		puts(", 32-bit");
	else
		puts(", 64-bit");

	if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN)
		puts(", ECC on)");
	else
		puts(", ECC off)");

#if defined(CFG_LB_SDRAM) && defined(CFG_LBC_SDRAM_SIZE)
	puts("\nSDRAM: ");
	print_size (CFG_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)");
#endif
}

#ifdef CONFIG_SPD_EEPROM

DECLARE_GLOBAL_DATA_PTR;

#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
extern void dma_init(void);
extern uint dma_check(void);
extern int dma_xfer(void *dest, uint count, void *src);
#endif

#ifndef	CFG_READ_SPD
#define CFG_READ_SPD	i2c_read
#endif

/*
 * Convert picoseconds into clock cycles (rounding up if needed).
 */
int
picos_to_clk(int picos)
{
	unsigned int ddr_bus_clk;
	int clks;

	ddr_bus_clk = gd->ddr_clk >> 1;
	clks = picos / (1000000000 / (ddr_bus_clk / 1000));
	if (picos % (1000000000 / (ddr_bus_clk / 1000)) != 0)
		clks++;

	return clks;
}

unsigned int banksize(unsigned char row_dens)
{
	return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24;
}

int read_spd(uint addr)
{
	return ((int) addr);
}

#undef SPD_DEBUG
#ifdef SPD_DEBUG
static void spd_debug(spd_eeprom_t *spd)
{
	printf ("\nDIMM type:       %-18.18s\n", spd->mpart);
	printf ("SPD size:        %d\n", spd->info_size);
	printf ("EEPROM size:     %d\n", 1 << spd->chip_size);
	printf ("Memory type:     %d\n", spd->mem_type);
	printf ("Row addr:        %d\n", spd->nrow_addr);
	printf ("Column addr:     %d\n", spd->ncol_addr);
	printf ("# of rows:       %d\n", spd->nrows);
	printf ("Row density:     %d\n", spd->row_dens);
	printf ("# of banks:      %d\n", spd->nbanks);
	printf ("Data width:      %d\n",
			256 * spd->dataw_msb + spd->dataw_lsb);
	printf ("Chip width:      %d\n", spd->primw);
	printf ("Refresh rate:    %02X\n", spd->refresh);
	printf ("CAS latencies:   %02X\n", spd->cas_lat);
	printf ("Write latencies: %02X\n", spd->write_lat);
	printf ("tRP:             %d\n", spd->trp);
	printf ("tRCD:            %d\n", spd->trcd);
	printf ("\n");
}
#endif /* SPD_DEBUG */

long int spd_sdram()
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ddr83xx_t *ddr = &immap->ddr;
	volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0];
	spd_eeprom_t spd;
	unsigned int n_ranks;
	unsigned int odt_rd_cfg, odt_wr_cfg;
	unsigned char twr_clk, twtr_clk;
	unsigned int sdram_type;
	unsigned int memsize;
	unsigned int law_size;
	unsigned char caslat, caslat_ctrl;
	unsigned int trfc, trfc_clk, trfc_low, trfc_high;
	unsigned int trcd_clk, trtp_clk;
	unsigned char cke_min_clk;
	unsigned char add_lat, wr_lat;
	unsigned char wr_data_delay;
	unsigned char four_act;
	unsigned char cpo;
	unsigned char burstlen;
	unsigned char odt_cfg, mode_odt_enable;
	unsigned int max_bus_clk;
	unsigned int max_data_rate, effective_data_rate;
	unsigned int ddrc_clk;
	unsigned int refresh_clk;
	unsigned int sdram_cfg;
	unsigned int ddrc_ecc_enable;
	unsigned int pvr = get_pvr();

	/* Read SPD parameters with I2C */
	CFG_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd));
#ifdef SPD_DEBUG
	spd_debug(&spd);
#endif
	/* Check the memory type */
	if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) {
		debug("DDR: Module mem type is %02X\n", spd.mem_type);
		return 0;
	}

	/* Check the number of physical bank */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		n_ranks = spd.nrows;
	} else {
		n_ranks = (spd.nrows & 0x7) + 1;
	}

	if (n_ranks > 2) {
		printf("DDR: The number of physical bank is %02X\n", n_ranks);
		return 0;
	}

	/* Check if the number of row of the module is in the range of DDRC */
	if (spd.nrow_addr < 12 || spd.nrow_addr > 15) {
		printf("DDR: Row number is out of range of DDRC, row=%02X\n",
							 spd.nrow_addr);
		return 0;
	}

	/* Check if the number of col of the module is in the range of DDRC */
	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) {
		printf("DDR: Col number is out of range of DDRC, col=%02X\n",
							 spd.ncol_addr);
		return 0;
	}

#ifdef CFG_DDRCDR_VALUE
	/*
	 * Adjust DDR II IO voltage biasing.  It just makes it work.
	 */
	if(spd.mem_type == SPD_MEMTYPE_DDR2) {
		immap->sysconf.ddrcdr = CFG_DDRCDR_VALUE;
	}
#endif

	/*
	 * ODT configuration recommendation from DDR Controller Chapter.
	 */
	odt_rd_cfg = 0;			/* Never assert ODT */
	odt_wr_cfg = 0;			/* Never assert ODT */
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		odt_wr_cfg = 1;		/* Assert ODT on writes to CSn */
	}

	/* Setup DDR chip select register */
#ifdef CFG_83XX_DDR_USES_CS0
	ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs_config[0] = ( 1 << 31
			    | (odt_rd_cfg << 20)
			    | (odt_wr_cfg << 16)
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds);
	debug("cs0_config = 0x%08x\n",ddr->cs_config[0]);

	if (n_ranks == 2) {
		ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs_config[1] = ( 1<<31
				    | (odt_rd_cfg << 20)
				    | (odt_wr_cfg << 16)
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds);
		debug("cs1_config = 0x%08x\n",ddr->cs_config[1]);
	}

#else
	ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1;
	ddr->cs_config[2] = ( 1 << 31
			    | (odt_rd_cfg << 20)
			    | (odt_wr_cfg << 16)
			    | (spd.nrow_addr - 12) << 8
			    | (spd.ncol_addr - 8) );
	debug("\n");
	debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds);
	debug("cs2_config = 0x%08x\n",ddr->cs_config[2]);

	if (n_ranks == 2) {
		ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8)
				  | ((banksize(spd.row_dens) >> 23) - 1) );
		ddr->cs_config[3] = ( 1<<31
				    | (odt_rd_cfg << 20)
				    | (odt_wr_cfg << 16)
				    | (spd.nrow_addr-12) << 8
				    | (spd.ncol_addr-8) );
		debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds);
		debug("cs3_config = 0x%08x\n",ddr->cs_config[3]);
	}
#endif

	/*
	 * Figure out memory size in Megabytes.
	 */
	memsize = n_ranks * banksize(spd.row_dens) / 0x100000;

	/*
	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.
	 */
	law_size = 19 + __ilog2(memsize);

	/*
	 * Set up LAWBAR for all of DDR.
	 */
	ecm->bar = ((CFG_DDR_SDRAM_BASE>>12) & 0xfffff);
	ecm->ar  = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size));
	debug("DDR:bar=0x%08x\n", ecm->bar);
	debug("DDR:ar=0x%08x\n", ecm->ar);

	/*
	 * Find the largest CAS by locating the highest 1 bit
	 * in the spd.cas_lat field.  Translate it to a DDR
	 * controller field value:
	 *
	 *	CAS Lat	DDR I	DDR II	Ctrl
	 *	Clocks	SPD Bit	SPD Bit	Value
	 *	-------	-------	-------	-----
	 *	1.0	0		0001
	 *	1.5	1		0010
	 *	2.0	2	2	0011
	 *	2.5	3		0100
	 *	3.0	4	3	0101
	 *	3.5	5		0110
	 *	4.0	6	4	0111
	 *	4.5			1000
	 *	5.0		5	1001
	 */
	caslat = __ilog2(spd.cas_lat);
	if ((spd.mem_type == SPD_MEMTYPE_DDR)
	    && (caslat > 6)) {
		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat);
		return 0;
	} else if (spd.mem_type == SPD_MEMTYPE_DDR2
		   && (caslat < 2 || caslat > 5)) {
		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n",
		       spd.cas_lat);
		return 0;
	}
	debug("DDR: caslat SPD bit is %d\n", caslat);

	max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10
			+ (spd.clk_cycle & 0x0f));
	max_data_rate = max_bus_clk * 2;

	debug("DDR:Module maximum data rate is: %dMhz\n", max_data_rate);

	ddrc_clk = gd->ddr_clk / 1000000;
	effective_data_rate = 0;

	if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */
		if (ddrc_clk <= 460 && ddrc_clk > 350) {
			/* DDR controller clk at 350~460 */
			effective_data_rate = 400; /* 5ns */
			caslat = caslat;
		} else if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			effective_data_rate = 333; /* 6ns */
			if (spd.clk_cycle2 == 0x60)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			if (spd.clk_cycle3 == 0x75)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0x75)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle3 == 0xa0)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0xa0)
				caslat = caslat - 1;
			else
				caslat = caslat;
		}
	} else if (max_data_rate >= 323) { /* it is DDR 333 */
		if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			effective_data_rate = 333; /* 6ns */
			caslat = caslat;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			if (spd.clk_cycle2 == 0x75)
				caslat = caslat - 1;
			else
				caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle3 == 0xa0)
				caslat = caslat - 2;
			else if (spd.clk_cycle2 == 0xa0)
				caslat = caslat - 1;
			else
				caslat = caslat;
		}
	} else if (max_data_rate >= 256) { /* it is DDR 266 */
		if (ddrc_clk <= 350 && ddrc_clk > 280) {
			/* DDR controller clk at 280~350 */
			printf("DDR: DDR controller freq is more than "
				"max data rate of the module\n");
			return 0;
		} else if (ddrc_clk <= 280 && ddrc_clk > 230) {
			/* DDR controller clk at 230~280 */
			effective_data_rate = 266; /* 7.5ns */
			caslat = caslat;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			if (spd.clk_cycle2 == 0xa0)
				caslat = caslat - 1;
		}
	} else if (max_data_rate >= 190) { /* it is DDR 200 */
		if (ddrc_clk <= 350 && ddrc_clk > 230) {
			/* DDR controller clk at 230~350 */
			printf("DDR: DDR controller freq is more than "
				"max data rate of the module\n");
			return 0;
		} else if (ddrc_clk <= 230 && ddrc_clk > 90) {
			/* DDR controller clk at 90~230 */
			effective_data_rate = 200; /* 10ns */
			caslat = caslat;
		}
	}

	debug("DDR:Effective data rate is: %dMhz\n", effective_data_rate);
	debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat);

	/*
	 * Errata DDR6 work around: input enable 2 cycles earlier.
	 * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2.
	 */
	if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){
		if (caslat == 2)
			ddr->debug_reg = 0x201c0000; /* CL=2 */
		else if (caslat == 3)
			ddr->debug_reg = 0x202c0000; /* CL=2.5 */
		else if (caslat == 4)
			ddr->debug_reg = 0x202c0000; /* CL=3.0 */

		__asm__ __volatile__ ("sync");

		debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg);
	}

	/*
	 * Convert caslat clocks to DDR controller value.
	 * Force caslat_ctrl to be DDR Controller field-sized.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		caslat_ctrl = (caslat + 1) & 0x07;
	} else {
		caslat_ctrl =  (2 * caslat - 1) & 0x0f;
	}

	debug("DDR: effective data rate is %d MHz\n", effective_data_rate);
	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n",
	      caslat, caslat_ctrl);

	/*
	 * Timing Config 0.
	 * Avoid writing for DDR I.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		unsigned char taxpd_clk = 8;		/* By the book. */
		unsigned char tmrd_clk = 2;		/* By the book. */
		unsigned char act_pd_exit = 2;		/* Empirical? */
		unsigned char pre_pd_exit = 6;		/* Empirical? */

		ddr->timing_cfg_0 = (0
			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */
			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */
			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */
			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */
			);
		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0);
	}

	/*
	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD,
	 * use conservative value.
	 * For DDR II, they are bytes 36 and 37, in quarter nanos.
	 */

	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		twr_clk = 3;	/* Clocks */
		twtr_clk = 1;	/* Clocks */
	} else {
		twr_clk = picos_to_clk(spd.twr * 250);
		twtr_clk = picos_to_clk(spd.twtr * 250);
	}

	/*
	 * Calculate Trfc, in picos.
	 * DDR I:  Byte 42 straight up in ns.
	 * DDR II: Byte 40 and 42 swizzled some, in ns.
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		trfc = spd.trfc * 1000;		/* up to ps */
	} else {
		unsigned int byte40_table_ps[8] = {
			0,
			250,
			330,
			500,
			660,
			750,
			0,
			0
		};

		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000
			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7];
	}
	trfc_clk = picos_to_clk(trfc);

	/*
	 * Trcd, Byte 29, from quarter nanos to ps and clocks.
	 */
	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7;

	/*
	 * Convert trfc_clk to DDR controller fields.  DDR I should
	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the
	 * 83xx controller has an extended REFREC field of three bits.
	 * The controller automatically adds 8 clocks to this value,
	 * so preadjust it down 8 first before splitting it up.
	 */
	trfc_low = (trfc_clk - 8) & 0xf;
	trfc_high = ((trfc_clk - 8) >> 4) & 0x3;

	ddr->timing_cfg_1 =
	    (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |	/* PRETOACT */
	     ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */
	     (trcd_clk << 20 ) |  				/* ACTTORW */
	     (caslat_ctrl << 16 ) |				/* CASLAT */
	     (trfc_low << 12 ) |				/* REFEC */
	     ((twr_clk & 0x07) << 8) |				/* WRRREC */
	     ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) |	/* ACTTOACT */
	     ((twtr_clk & 0x07) << 0)				/* WRTORD */
	    );

	/*
	 * Additive Latency
	 * For DDR I, 0.
	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW,
	 * which comes from Trcd, and also note that:
	 *	add_lat + caslat must be >= 4
	 */
	add_lat = 0;
	if (spd.mem_type == SPD_MEMTYPE_DDR2
	    && (odt_wr_cfg || odt_rd_cfg)
	    && (caslat < 4)) {
		add_lat = trcd_clk - 1;
		if ((add_lat + caslat) < 4) {
			add_lat = 0;
		}
	}

	/*
	 * Write Data Delay
	 * Historically 0x2 == 4/8 clock delay.
	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266.
	 */
	wr_data_delay = 2;

	/*
	 * Write Latency
	 * Read to Precharge
	 * Minimum CKE Pulse Width.
	 * Four Activate Window
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		/*
		 * This is a lie.  It should really be 1, but if it is
		 * set to 1, bits overlap into the old controller's
		 * otherwise unused ACSM field.  If we leave it 0, then
		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea.
		 */
		wr_lat = 0;

		trtp_clk = 2;		/* By the book. */
		cke_min_clk = 1;	/* By the book. */
		four_act = 1;		/* By the book. */

	} else {
		wr_lat = caslat - 1;

		/* Convert SPD value from quarter nanos to picos. */
		trtp_clk = picos_to_clk(spd.trtp * 250);

		cke_min_clk = 3;	/* By the book. */
		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */
	}

	/*
	 * Empirically set ~MCAS-to-preamble override for DDR 2.
	 * Your milage will vary.
	 */
	cpo = 0;
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		if (effective_data_rate == 266 || effective_data_rate == 333) {
			cpo = 0x7;		/* READ_LAT + 5/4 */
		} else if (effective_data_rate == 400) {
			cpo = 0x9;		/* READ_LAT + 7/4 */
		} else {
			/* Automatic calibration */
			cpo = 0x1f;
		}
	}

	ddr->timing_cfg_2 = (0
		| ((add_lat & 0x7) << 28)		/* ADD_LAT */
		| ((cpo & 0x1f) << 23)			/* CPO */
		| ((wr_lat & 0x7) << 19)		/* WR_LAT */
		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */
		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */
		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */
		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */
		);

	debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1);
	debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2);

	/* Check DIMM data bus width */
	if (spd.dataw_lsb == 0x20) {
		if (spd.mem_type == SPD_MEMTYPE_DDR)
			burstlen = 0x03; /* 32 bit data bus, burst len is 8 */
		else
			burstlen = 0x02; /* 32 bit data bus, burst len is 4 */
		debug("\n   DDR DIMM: data bus width is 32 bit");
	} else {
		burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */
		debug("\n   DDR DIMM: data bus width is 64 bit");
	}

	/* Is this an ECC DDR chip? */
	if (spd.config == 0x02)
		debug(" with ECC\n");
	else
		debug(" without ECC\n");

	/* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus,
	   Burst type is sequential
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR) {
		switch (caslat) {
		case 1:
			ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */
			break;
		case 2:
			ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */
			break;
		case 3:
			ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */
			break;
		case 4:
			ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */
			break;
		default:
			printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n");
			return 0;
		}
	} else {
		mode_odt_enable = 0x0;                  /* Default disabled */
		if (odt_wr_cfg || odt_rd_cfg) {
			/*
			 * Bits 6 and 2 in Extended MRS(1)
			 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules.
			 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module.
			 */
			mode_odt_enable = 0x40;         /* 150 Ohm */
		}

		ddr->sdram_mode =
			(0
			 | (1 << (16 + 10))             /* DQS Differential disable */
			 | (add_lat << (16 + 3))        /* Additive Latency in EMRS1 */
			 | (mode_odt_enable << 16)      /* ODT Enable in EMRS1 */
			 | ((twr_clk - 1) << 9)         /* Write Recovery Autopre */
			 | (caslat << 4)                /* caslat */
			 | (burstlen << 0)              /* Burst length */
			);
	}
	debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode);

	/*
	 * Clear EMRS2 and EMRS3.
	 */
	ddr->sdram_mode2 = 0;
	debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2);

	switch (spd.refresh) {
		case 0x00:
		case 0x80:
			refresh_clk = picos_to_clk(15625000);
			break;
		case 0x01:
		case 0x81:
			refresh_clk = picos_to_clk(3900000);
			break;
		case 0x02:
		case 0x82:
			refresh_clk = picos_to_clk(7800000);
			break;
		case 0x03:
		case 0x83:
			refresh_clk = picos_to_clk(31300000);
			break;
		case 0x04:
		case 0x84:
			refresh_clk = picos_to_clk(62500000);
			break;
		case 0x05:
		case 0x85:
			refresh_clk = picos_to_clk(125000000);
			break;
		default:
			refresh_clk = 0x512;
			break;
	}

	/*
	 * Set BSTOPRE to 0x100 for page mode
	 * If auto-charge is used, set BSTOPRE = 0
	 */
	ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100;
	debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval);

	/*
	 * SDRAM Cfg 2
	 */
	odt_cfg = 0;
	if (odt_rd_cfg | odt_wr_cfg) {
		odt_cfg = 0x2;		/* ODT to IOs during reads */
	}
	if (spd.mem_type == SPD_MEMTYPE_DDR2) {
		ddr->sdram_cfg2 = (0
			    | (0 << 26)	/* True DQS */
			    | (odt_cfg << 21)	/* ODT only read */
			    | (1 << 12)	/* 1 refresh at a time */
			    );

		debug("DDR: sdram_cfg2  = 0x%08x\n", ddr->sdram_cfg2);
	}

#ifdef CFG_DDR_SDRAM_CLK_CNTL	/* Optional platform specific value */
	ddr->sdram_clk_cntl = CFG_DDR_SDRAM_CLK_CNTL;
#endif
	debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl);

	asm("sync;isync");

	udelay(600);

	/*
	 * Figure out the settings for the sdram_cfg register. Build up
	 * the value in 'sdram_cfg' before writing since the write into
	 * the register will actually enable the memory controller, and all
	 * settings must be done before enabling.
	 *
	 * sdram_cfg[0]   = 1 (ddr sdram logic enable)
	 * sdram_cfg[1]   = 1 (self-refresh-enable)
	 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM)
	 *			010 DDR 1 SDRAM
	 *			011 DDR 2 SDRAM
	 * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode)
	 * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts)
	 */
	if (spd.mem_type == SPD_MEMTYPE_DDR)
		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;
	else
		sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1;

	sdram_cfg = (0
		     | SDRAM_CFG_MEM_EN		/* DDR enable */
		     | SDRAM_CFG_SREN		/* Self refresh */
		     | sdram_type		/* SDRAM type */
		     );

	/* sdram_cfg[3] = RD_EN - registered DIMM enable */
	if (spd.mod_attr & 0x02)
		sdram_cfg |= SDRAM_CFG_RD_EN;

	/* The DIMM is 32bit width */
	if (spd.dataw_lsb == 0x20) {
		if (spd.mem_type == SPD_MEMTYPE_DDR)
			sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE;
		if (spd.mem_type == SPD_MEMTYPE_DDR2)
			sdram_cfg |= SDRAM_CFG_32_BE;
	}

	ddrc_ecc_enable = 0;

#if defined(CONFIG_DDR_ECC)
	/* Enable ECC with sdram_cfg[2] */
	if (spd.config == 0x02) {
		sdram_cfg |= 0x20000000;
		ddrc_ecc_enable = 1;
		/* disable error detection */
		ddr->err_disable = ~ECC_ERROR_ENABLE;
		/* set single bit error threshold to maximum value,
		 * reset counter to zero */
		ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) |
				(0 << ECC_ERROR_MAN_SBEC_SHIFT);
	}

	debug("DDR:err_disable=0x%08x\n", ddr->err_disable);
	debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe);
#endif
	debug("   DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF");

#if defined(CONFIG_DDR_2T_TIMING)
	/*
	 * Enable 2T timing by setting sdram_cfg[16].
	 */
	sdram_cfg |= SDRAM_CFG_2T_EN;
#endif
	/* Enable controller, and GO! */
	ddr->sdram_cfg = sdram_cfg;
	asm("sync;isync");
	udelay(500);

	debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg);
	return memsize; /*in MBytes*/
}
#endif /* CONFIG_SPD_EEPROM */

#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRC)
/*
 * Use timebase counter, get_timer() is not availabe
 * at this point of initialization yet.
 */
static __inline__ unsigned long get_tbms (void)
{
	unsigned long tbl;
	unsigned long tbu1, tbu2;
	unsigned long ms;
	unsigned long long tmp;

	ulong tbclk = get_tbclk();

	/* get the timebase ticks */
	do {
		asm volatile ("mftbu %0":"=r" (tbu1):);
		asm volatile ("mftb %0":"=r" (tbl):);
		asm volatile ("mftbu %0":"=r" (tbu2):);
	} while (tbu1 != tbu2);

	/* convert ticks to ms */
	tmp = (unsigned long long)(tbu1);
	tmp = (tmp << 32);
	tmp += (unsigned long long)(tbl);
	ms = tmp/(tbclk/1000);

	return ms;
}

/*
 * Initialize all of memory for ECC, then enable errors.
 */
/* #define CONFIG_DDR_ECC_INIT_VIA_DMA */
void ddr_enable_ecc(unsigned int dram_size)
{
	volatile immap_t *immap = (immap_t *)CFG_IMMR;
	volatile ddr83xx_t *ddr= &immap->ddr;
	unsigned long t_start, t_end;
	register u64 *p;
	register uint size;
	unsigned int pattern[2];
#if defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
	uint i;
#endif
	icache_enable();
	t_start = get_tbms();
	pattern[0] = 0xdeadbeef;
	pattern[1] = 0xdeadbeef;

#if !defined(CONFIG_DDR_ECC_INIT_VIA_DMA)
	debug("ddr init: CPU FP write method\n");
	size = dram_size;
	for (p = 0; p < (u64*)(size); p++) {
		ppcDWstore((u32*)p, pattern);
	}
	__asm__ __volatile__ ("sync");
#else
	debug("ddr init: DMA method\n");
	size = 0x2000;
	for (p = 0; p < (u64*)(size); p++) {
		ppcDWstore((u32*)p, pattern);
	}
	__asm__ __volatile__ ("sync");

	/* Initialise DMA for direct transfer */
	dma_init();
	/* Start DMA to transfer */
	dma_xfer((uint *)0x2000, 0x2000, (uint *)0); /* 8K */
	dma_xfer((uint *)0x4000, 0x4000, (uint *)0); /* 16K */
	dma_xfer((uint *)0x8000, 0x8000, (uint *)0); /* 32K */
	dma_xfer((uint *)0x10000, 0x10000, (uint *)0); /* 64K */
	dma_xfer((uint *)0x20000, 0x20000, (uint *)0); /* 128K */
	dma_xfer((uint *)0x40000, 0x40000, (uint *)0); /* 256K */
	dma_xfer((uint *)0x80000, 0x80000, (uint *)0); /* 512K */
	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */
	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */
	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */

	for (i = 1; i < dram_size / 0x800000; i++) {
		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0);
	}
#endif

	t_end = get_tbms();
	icache_disable();

	debug("\nREADY!!\n");
	debug("ddr init duration: %ld ms\n", t_end - t_start);

	/* Clear All ECC Errors */
	if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME)
		ddr->err_detect |= ECC_ERROR_DETECT_MME;
	if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE)
		ddr->err_detect |= ECC_ERROR_DETECT_MBE;
	if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE)
		ddr->err_detect |= ECC_ERROR_DETECT_SBE;
	if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE)
		ddr->err_detect |= ECC_ERROR_DETECT_MSE;

	/* Disable ECC-Interrupts */
	ddr->err_int_en &= ECC_ERR_INT_DISABLE;

	/* Enable errors for ECC */
	ddr->err_disable &= ECC_ERROR_ENABLE;

	__asm__ __volatile__ ("sync");
	__asm__ __volatile__ ("isync");
}
#endif	/* CONFIG_DDR_ECC */