1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
|
/*
* (C) Copyright 2004, Freescale, Inc
* TsiChung Liew, Tsi-Chung.Liew@freescale.com
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
/*
DESCRIPTION
Read Dram spd and base on its information to calculate the memory size,
characteristics to initialize the dram on MPC8220
*/
#include <common.h>
#include <mpc8220.h>
#include "i2cCore.h"
#include "dramSetup.h"
DECLARE_GLOBAL_DATA_PTR;
#define SPD_SIZE CFG_SDRAM_SPD_SIZE
#define DRAM_SPD (CFG_SDRAM_SPD_I2C_ADDR)<<1 /* on Board SPD eeprom */
#define TOTAL_BANK CFG_SDRAM_TOTAL_BANKS
int spd_status (volatile i2c8220_t * pi2c, u8 sta_bit, u8 truefalse)
{
int i;
for (i = 0; i < I2C_POLL_COUNT; i++) {
if ((pi2c->sr & sta_bit) == (truefalse ? sta_bit : 0))
return (OK);
}
return (ERROR);
}
int spd_clear (volatile i2c8220_t * pi2c)
{
pi2c->adr = 0;
pi2c->fdr = 0;
pi2c->cr = 0;
pi2c->sr = 0;
return (OK);
}
int spd_stop (volatile i2c8220_t * pi2c)
{
pi2c->cr &= ~I2C_CTL_STA; /* Generate stop signal */
if (spd_status (pi2c, I2C_STA_BB, 0) != OK)
return ERROR;
return (OK);
}
int spd_readbyte (volatile i2c8220_t * pi2c, u8 * readb, int *index)
{
pi2c->sr &= ~I2C_STA_IF; /* Clear Interrupt Bit */
*readb = pi2c->dr; /* Read a byte */
/*
Set I2C_CTRL_TXAK will cause Transfer pending and
set I2C_CTRL_STA will cause Interrupt pending
*/
if (*index != 2) {
if (spd_status (pi2c, I2C_STA_CF, 1) != OK) /* Transfer not complete? */
return ERROR;
}
if (*index != 1) {
if (spd_status (pi2c, I2C_STA_IF, 1) != OK)
return ERROR;
}
return (OK);
}
int readSpdData (u8 * spdData)
{
volatile i2c8220_t *pi2cReg;
volatile pcfg8220_t *pcfg;
u8 slvAdr = DRAM_SPD;
u8 Tmp;
int Length = SPD_SIZE;
int i = 0;
/* Enable Port Configuration for SDA and SDL signals */
pcfg = (volatile pcfg8220_t *) (MMAP_PCFG);
__asm__ ("sync");
pcfg->pcfg3 &= ~CFG_I2C_PORT3_CONFIG;
__asm__ ("sync");
/* Points the structure to I2c mbar memory offset */
pi2cReg = (volatile i2c8220_t *) (MMAP_I2C);
/* Clear FDR, ADR, SR and CR reg */
pi2cReg->adr = 0;
pi2cReg->fdr = 0;
pi2cReg->cr = 0;
pi2cReg->sr = 0;
/* Set for fix XLB Bus Frequency */
switch (gd->bus_clk) {
case 60000000:
pi2cReg->fdr = 0x15;
break;
case 70000000:
pi2cReg->fdr = 0x16;
break;
case 80000000:
pi2cReg->fdr = 0x3a;
break;
case 90000000:
pi2cReg->fdr = 0x17;
break;
case 100000000:
pi2cReg->fdr = 0x3b;
break;
case 110000000:
pi2cReg->fdr = 0x18;
break;
case 120000000:
pi2cReg->fdr = 0x19;
break;
case 130000000:
pi2cReg->fdr = 0x1a;
break;
}
pi2cReg->adr = CFG_I2C_SLAVE<<1;
pi2cReg->cr = I2C_CTL_EN; /* Set Enable */
/*
The I2C bus should be in Idle state. If the bus is busy,
clear the STA bit in control register
*/
if (spd_status (pi2cReg, I2C_STA_BB, 0) != OK) {
if ((pi2cReg->cr & I2C_CTL_STA) == I2C_CTL_STA)
pi2cReg->cr &= ~I2C_CTL_STA;
/* Check again if it is still busy, return error if found */
if (spd_status (pi2cReg, I2C_STA_BB, 1) == OK)
return ERROR;
}
pi2cReg->cr |= I2C_CTL_TX; /* Enable the I2c for TX, Ack */
pi2cReg->cr |= I2C_CTL_STA; /* Generate start signal */
if (spd_status (pi2cReg, I2C_STA_BB, 1) != OK)
return ERROR;
/* Write slave address */
pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
pi2cReg->dr = slvAdr; /* Write a byte */
if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
spd_stop (pi2cReg);
return ERROR;
}
if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
spd_stop (pi2cReg);
return ERROR;
}
/* Issue the offset to start */
pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
pi2cReg->dr = 0; /* Write a byte */
if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
spd_stop (pi2cReg);
return ERROR;
}
if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
spd_stop (pi2cReg);
return ERROR;
}
/* Set repeat start */
pi2cReg->cr |= I2C_CTL_RSTA; /* Repeat Start */
pi2cReg->sr &= ~I2C_STA_IF; /* Clear Interrupt */
pi2cReg->dr = slvAdr | 1; /* Write a byte */
if (spd_status (pi2cReg, I2C_STA_CF, 1) != OK) { /* Transfer not complete? */
spd_stop (pi2cReg);
return ERROR;
}
if (spd_status (pi2cReg, I2C_STA_IF, 1) != OK) {
spd_stop (pi2cReg);
return ERROR;
}
if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
return ERROR;
pi2cReg->cr &= ~I2C_CTL_TX; /* Set receive mode */
if (((pi2cReg->sr & 0x07) == 0x07) || (pi2cReg->sr & 0x01))
return ERROR;
/* Dummy Read */
if (spd_readbyte (pi2cReg, &Tmp, &i) != OK) {
spd_stop (pi2cReg);
return ERROR;
}
i = 0;
while (Length) {
if (Length == 2)
pi2cReg->cr |= I2C_CTL_TXAK;
if (Length == 1)
pi2cReg->cr &= ~I2C_CTL_STA;
if (spd_readbyte (pi2cReg, spdData, &Length) != OK) {
return spd_stop (pi2cReg);
}
i++;
Length--;
spdData++;
}
/* Stop the service */
spd_stop (pi2cReg);
return OK;
}
int getBankInfo (int bank, draminfo_t * pBank)
{
int status;
int checksum;
int count;
u8 spdData[SPD_SIZE];
if (bank > 2 || pBank == 0) {
/* illegal values */
return (-42);
}
status = readSpdData (&spdData[0]);
if (status < 0)
return (-1);
/* check the checksum */
for (count = 0, checksum = 0; count < LOC_CHECKSUM; count++)
checksum += spdData[count];
checksum = checksum - ((checksum / 256) * 256);
if (checksum != spdData[LOC_CHECKSUM])
return (-2);
/* Get the memory type */
if (!
((spdData[LOC_TYPE] == TYPE_DDR)
|| (spdData[LOC_TYPE] == TYPE_SDR)))
/* not one of the types we support */
return (-3);
pBank->type = spdData[LOC_TYPE];
/* Set logical banks */
pBank->banks = spdData[LOC_LOGICAL_BANKS];
/* Check that we have enough physical banks to cover the bank we are
* figuring out. Odd-numbered banks correspond to the second bank
* on the device.
*/
if (bank & 1) {
/* Second bank of a "device" */
if (spdData[LOC_PHYS_BANKS] < 2)
/* this bank doesn't exist on the "device" */
return (-4);
if (spdData[LOC_ROWS] & 0xf0)
/* Two asymmetric banks */
pBank->rows = spdData[LOC_ROWS] >> 4;
else
pBank->rows = spdData[LOC_ROWS];
if (spdData[LOC_COLS] & 0xf0)
/* Two asymmetric banks */
pBank->cols = spdData[LOC_COLS] >> 4;
else
pBank->cols = spdData[LOC_COLS];
} else {
/* First bank of a "device" */
pBank->rows = spdData[LOC_ROWS];
pBank->cols = spdData[LOC_COLS];
}
pBank->width = spdData[LOC_WIDTH_HIGH] << 8 | spdData[LOC_WIDTH_LOW];
pBank->bursts = spdData[LOC_BURSTS];
pBank->CAS = spdData[LOC_CAS];
pBank->CS = spdData[LOC_CS];
pBank->WE = spdData[LOC_WE];
pBank->Trp = spdData[LOC_Trp];
pBank->Trcd = spdData[LOC_Trcd];
pBank->buffered = spdData[LOC_Buffered] & 1;
pBank->refresh = spdData[LOC_REFRESH];
return (0);
}
/* checkMuxSetting -- given a row/column device geometry, return a mask
* of the valid DRAM controller addr_mux settings for
* that geometry.
*
* Arguments: u8 rows: number of row addresses in this device
* u8 columns: number of column addresses in this device
*
* Returns: a mask of the allowed addr_mux settings for this
* geometry. Each bit in the mask represents a
* possible addr_mux settings (for example, the
* (1<<2) bit in the mask represents the 0b10 setting)/
*
*/
u8 checkMuxSetting (u8 rows, u8 columns)
{
muxdesc_t *pIdx, *pMux;
u8 mask;
int lrows, lcolumns;
u32 mux[4] = { 0x00080c04, 0x01080d03, 0x02080e02, 0xffffffff };
/* Setup MuxDescriptor in SRAM space */
/* MUXDESC AddressRuns [] = {
{ 0, 8, 12, 4 }, / setting, columns, rows, extra columns /
{ 1, 8, 13, 3 }, / setting, columns, rows, extra columns /
{ 2, 8, 14, 2 }, / setting, columns, rows, extra columns /
{ 0xff } / list terminator /
}; */
pIdx = (muxdesc_t *) & mux[0];
/* Check rows x columns against each possible address mux setting */
for (pMux = pIdx, mask = 0;; pMux++) {
lrows = rows;
lcolumns = columns;
if (pMux->MuxValue == 0xff)
break; /* end of list */
/* For a given mux setting, since we want all the memory in a
* device to be contiguous, we want the device "use up" the
* address lines such that there are no extra column or row
* address lines on the device.
*/
lcolumns -= pMux->Columns;
if (lcolumns < 0)
/* Not enough columns to get to the rows */
continue;
lrows -= pMux->Rows;
if (lrows > 0)
/* we have extra rows left -- can't do that! */
continue;
/* At this point, we either have to have used up all the
* rows or we have to have no columns left.
*/
if (lcolumns != 0 && lrows != 0)
/* rows AND columns are left. Bad! */
continue;
lcolumns -= pMux->MoreColumns;
if (lcolumns <= 0)
mask |= (1 << pMux->MuxValue);
}
return (mask);
}
u32 dramSetup (void)
{
draminfo_t DramInfo[TOTAL_BANK];
draminfo_t *pDramInfo;
u32 size, temp, cfg_value, mode_value, refresh;
u8 *ptr;
u8 bursts, Trp, Trcd, type, buffered;
u8 muxmask, rows, columns;
int count, banknum;
u32 *prefresh, *pIdx;
u32 refrate[8] = { 15625, 3900, 7800, 31300,
62500, 125000, 0xffffffff, 0xffffffff
};
volatile sysconf8220_t *sysconf;
volatile memctl8220_t *memctl;
sysconf = (volatile sysconf8220_t *) MMAP_MBAR;
memctl = (volatile memctl8220_t *) MMAP_MEMCTL;
/* Set everything in the descriptions to zero */
ptr = (u8 *) & DramInfo[0];
for (count = 0; count < sizeof (DramInfo); count++)
*ptr++ = 0;
for (banknum = 0; banknum < TOTAL_BANK; banknum++)
sysconf->cscfg[banknum];
/* Descriptions of row/column address muxing for various
* addr_mux settings.
*/
pIdx = prefresh = (u32 *) & refrate[0];
/* Get all the info for all three logical banks */
bursts = 0xff;
Trp = 0;
Trcd = 0;
type = 0;
buffered = 0xff;
refresh = 0xffffffff;
muxmask = 0xff;
/* Two bank, CS0 and CS1 */
for (banknum = 0, pDramInfo = &DramInfo[0];
banknum < TOTAL_BANK; banknum++, pDramInfo++) {
pDramInfo->ordinal = banknum; /* initial sorting */
if (getBankInfo (banknum, pDramInfo) < 0)
continue;
/* get cumulative parameters of all three banks */
if (type && pDramInfo->type != type)
return 0;
type = pDramInfo->type;
rows = pDramInfo->rows;
columns = pDramInfo->cols;
/* This chip only supports 13 DRAM memory lines, but some devices
* have 14 rows. To deal with this, ignore the 14th address line
* by limiting the number of rows (and columns) to 13. This will
* mean that for 14-row devices we will only be able to use
* half of the memory, but it's better than nothing.
*/
if (rows > 13)
rows = 13;
if (columns > 13)
columns = 13;
pDramInfo->size =
((1 << (rows + columns)) * pDramInfo->width);
pDramInfo->size *= pDramInfo->banks;
pDramInfo->size >>= 3;
/* figure out which addr_mux configurations will support this device */
muxmask &= checkMuxSetting (rows, columns);
if (muxmask == 0)
return 0;
buffered = pDramInfo->buffered;
bursts &= pDramInfo->bursts; /* union of all bursts */
if (pDramInfo->Trp > Trp) /* worst case (longest) Trp */
Trp = pDramInfo->Trp;
if (pDramInfo->Trcd > Trcd) /* worst case (longest) Trcd */
Trcd = pDramInfo->Trcd;
prefresh = pIdx;
/* worst case (shortest) Refresh period */
if (refresh > prefresh[pDramInfo->refresh & 7])
refresh = prefresh[pDramInfo->refresh & 7];
} /* for loop */
/* We only allow a burst length of 8! */
if (!(bursts & 8))
bursts = 8;
/* Sort the devices. In order to get each chip select region
* aligned properly, put the biggest device at the lowest address.
* A simple bubble sort will do the trick.
*/
for (banknum = 0, pDramInfo = &DramInfo[0];
banknum < TOTAL_BANK; banknum++, pDramInfo++) {
int i;
for (i = 0; i < TOTAL_BANK; i++) {
if (pDramInfo->size < DramInfo[i].size &&
pDramInfo->ordinal < DramInfo[i].ordinal) {
/* If the current bank is smaller, but if the ordinal is also
* smaller, swap the ordinals
*/
u8 temp8;
temp8 = DramInfo[i].ordinal;
DramInfo[i].ordinal = pDramInfo->ordinal;
pDramInfo->ordinal = temp8;
}
}
}
/* Now figure out the base address for each bank. While
* we're at it, figure out how much memory there is.
*
*/
size = 0;
for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
int i;
for (i = 0; i < TOTAL_BANK; i++) {
if (DramInfo[i].ordinal == banknum
&& DramInfo[i].size != 0) {
DramInfo[i].base = size;
size += DramInfo[i].size;
}
}
}
/* Set up the Drive Strength register */
sysconf->sdramds = CFG_SDRAM_DRIVE_STRENGTH;
/* ********************** Cfg 1 ************************* */
/* Set the single read to read/write/precharge delay */
cfg_value = CFG1_SRD2RWP ((type == TYPE_DDR) ? 7 : 0xb);
/* Set the single write to read/write/precharge delay.
* This may or may not be correct. The controller spec
* says "tWR", but "tWR" does not appear in the SPD. It
* always seems to be 15nsec for the class of device we're
* using, which turns out to be 2 clock cycles at 133MHz,
* so that's what we're going to use.
*
* HOWEVER, because of a bug in the controller, for DDR
* we need to set this to be the same as the value
* calculated for bwt2rwp.
*/
cfg_value |= CFG1_SWT2RWP ((type == TYPE_DDR) ? 7 : 2);
/* Set the Read CAS latency. We're going to use a CL of
* 2.5 for DDR and 2 SDR.
*/
cfg_value |= CFG1_RLATENCY ((type == TYPE_DDR) ? 7 : 2);
/* Set the Active to Read/Write delay. This depends
* on Trcd which is reported as nanoseconds times 4.
* We want to calculate Trcd (in nanoseconds) times XLB clock (in Hz)
* which gives us a dimensionless quantity. Play games with
* the divisions so we don't run out of dynamic ranges.
*/
/* account for megaherz and the times 4 */
temp = (Trcd * (gd->bus_clk / 1000000)) / 4;
/* account for nanoseconds and round up, with a minimum value of 2 */
temp = ((temp + 999) / 1000) - 1;
if (temp < 2)
temp = 2;
cfg_value |= CFG1_ACT2WR (temp);
/* Set the precharge to active delay. This depends
* on Trp which is reported as nanoseconds times 4.
* We want to calculate Trp (in nanoseconds) times XLB clock (in Hz)
* which gives us a dimensionless quantity. Play games with
* the divisions so we don't run out of dynamic ranges.
*/
/* account for megaherz and the times 4 */
temp = (Trp * (gd->bus_clk / 1000000)) / 4;
/* account for nanoseconds and round up, then subtract 1, with a
* minumum value of 1 and a maximum value of 7.
*/
temp = (((temp + 999) / 1000) - 1) & 7;
if (temp < 1)
temp = 1;
cfg_value |= CFG1_PRE2ACT (temp);
/* Set refresh to active delay. This depends
* on Trfc which is not reported in the SPD.
* We'll use a nominal value of 75nsec which is
* what the controller spec uses.
*/
temp = (75 * (gd->bus_clk / 1000000));
/* account for nanoseconds and round up, then subtract 1 */
cfg_value |= CFG1_REF2ACT (((temp + 999) / 1000) - 1);
/* Set the write latency, using the values given in the controller spec */
cfg_value |= CFG1_WLATENCY ((type == TYPE_DDR) ? 3 : 0);
memctl->cfg1 = cfg_value; /* cfg 1 */
asm volatile ("sync");
/* ********************** Cfg 2 ************************* */
/* Set the burst read to read/precharge delay */
cfg_value = CFG2_BRD2RP ((type == TYPE_DDR) ? 5 : 8);
/* Set the burst write to read/precharge delay. Semi-magic numbers
* based on the controller spec recommendations, assuming tWR is
* two clock cycles.
*/
cfg_value |= CFG2_BWT2RWP ((type == TYPE_DDR) ? 7 : 10);
/* Set the Burst read to write delay. Semi-magic numbers
* based on the DRAM controller documentation.
*/
cfg_value |= CFG2_BRD2WT ((type == TYPE_DDR) ? 7 : 0xb);
/* Set the burst length -- must be 8!! Well, 7, actually, becuase
* it's burst lenght minus 1.
*/
cfg_value |= CFG2_BURSTLEN (7);
memctl->cfg2 = cfg_value; /* cfg 2 */
asm volatile ("sync");
/* ********************** mode ************************* */
/* Set enable bit, CKE high/low bits, and the DDR/SDR mode bit,
* disable automatic refresh.
*/
cfg_value = CTL_MODE_ENABLE | CTL_CKE_HIGH |
((type == TYPE_DDR) ? CTL_DDR_MODE : 0);
/* Set the address mux based on whichever setting(s) is/are common
* to all the devices we have. If there is more than one, choose
* one arbitrarily.
*/
if (muxmask & 0x4)
cfg_value |= CTL_ADDRMUX (2);
else if (muxmask & 0x2)
cfg_value |= CTL_ADDRMUX (1);
else
cfg_value |= CTL_ADDRMUX (0);
/* Set the refresh interval. */
temp = ((refresh * (gd->bus_clk / 1000000)) / (1000 * 64)) - 1;
cfg_value |= CTL_REFRESH_INTERVAL (temp);
/* Set buffered/non-buffered memory */
if (buffered)
cfg_value |= CTL_BUFFERED;
memctl->ctrl = cfg_value; /* ctrl */
asm volatile ("sync");
if (type == TYPE_DDR) {
/* issue precharge all */
temp = cfg_value | CTL_PRECHARGE_CMD;
memctl->ctrl = temp; /* ctrl */
asm volatile ("sync");
}
/* Set up mode value for CAS latency */
#if (CFG_SDRAM_CAS_LATENCY==5) /* CL=2.5 */
mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2p5) | MODE_CMD);
#else
mode_value = (MODE_MODE | MODE_BURSTLEN (MODE_BURSTLEN_8) |
MODE_BT_SEQUENTIAL | MODE_CL (MODE_CL_2) | MODE_CMD);
#endif
asm volatile ("sync");
/* Write Extended Mode - enable DLL */
if (type == TYPE_DDR) {
temp = MODE_EXTENDED | MODE_X_DLL_ENABLE |
MODE_X_DS_NORMAL | MODE_CMD;
memctl->mode = (temp >> 16); /* mode */
asm volatile ("sync");
/* Write Mode - reset DLL, set CAS latency */
temp = mode_value | MODE_OPMODE (MODE_OPMODE_RESETDLL);
memctl->mode = (temp >> 16); /* mode */
asm volatile ("sync");
}
/* Program the chip selects. */
for (banknum = 0; banknum < TOTAL_BANK; banknum++) {
if (DramInfo[banknum].size != 0) {
u32 mask;
int i;
for (i = 0, mask = 1; i < 32; mask <<= 1, i++) {
if (DramInfo[banknum].size & mask)
break;
}
temp = (DramInfo[banknum].base & 0xfff00000) | (i -
1);
sysconf->cscfg[banknum] = temp;
asm volatile ("sync");
}
}
/* Wait for DLL lock */
udelay (200);
temp = cfg_value | CTL_PRECHARGE_CMD; /* issue precharge all */
memctl->ctrl = temp; /* ctrl */
asm volatile ("sync");
temp = cfg_value | CTL_REFRESH_CMD; /* issue precharge all */
memctl->ctrl = temp; /* ctrl */
asm volatile ("sync");
memctl->ctrl = temp; /* ctrl */
asm volatile ("sync");
/* Write Mode - DLL normal */
temp = mode_value | MODE_OPMODE (MODE_OPMODE_NORMAL);
memctl->mode = (temp >> 16); /* mode */
asm volatile ("sync");
/* Enable refresh, enable DQS's (if DDR), and lock the control register */
cfg_value &= ~CTL_MODE_ENABLE; /* lock register */
cfg_value |= CTL_REFRESH_ENABLE; /* enable refresh */
if (type == TYPE_DDR)
cfg_value |= CTL_DQSOEN (0xf); /* enable DQS's for DDR */
memctl->ctrl = cfg_value; /* ctrl */
asm volatile ("sync");
return size;
}
|