summaryrefslogtreecommitdiff
path: root/board/prodrive/alpr/nand.c
blob: bd9ba3560e9e8a58a3b14e84299ab1a551bcfe41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
 * (C) Copyright 2006
 * Heiko Schocher, DENX Software Engineering, hs@denx.de
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#include <common.h>
#include <asm/io.h>

#if (CONFIG_COMMANDS & CFG_CMD_NAND)

#include <nand.h>

#if 0
#define HS_printf(fmt,arg...) \
        printf("HS %s %s: " fmt,__FILE__, __FUNCTION__, ##arg)
#else
#define HS_printf(fmt,arg...) \
        do { } while (0)
#endif

#if 0
#define	CPLD_REG	uchar
#else
#define	CPLD_REG	u16
#endif

struct alpr_ndfc_regs {
	CPLD_REG cmd[4];
	CPLD_REG addr_wait;
	CPLD_REG term;
	CPLD_REG dummy;
	uchar    dum2[2];
	CPLD_REG data;
};

static u8 hwctl;
static struct alpr_ndfc_regs *alpr_ndfc;
static int	alpr_chip = 0;

#if 1
static int pdnb3_nand_dev_ready(struct mtd_info *mtd);

#if 1
static u_char alpr_read (void *padr) {
	return (u_char )*((u16 *)(padr));
}
#else
static u_char alpr_read (void *padr) {
	u16	hilf;
	u_char ret = 0;
	hilf = *((u16 *)(padr));
	ret = hilf;
printf("%p hilf: %x ret: %x\n", padr, hilf, ret);
	return ret;
}
#endif

static void alpr_write (u_char byte, void *padr) {
HS_printf("%p  Byte: %x\n", padr, byte);
	*(volatile u16 *)padr = (u16)(byte);
}

#elif 0
#define alpr_read(a) (*(volatile u16 *) (a))
#define alpr_write(a, b) ((*(volatile u16 *) (a)) = (b))
#else
#define alpr_read(a) readw(a)
#define alpr_write(a, b) writew(a, b)
#endif
/*
 * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
 * the NAND devices.  The NDFC has command, address and data registers that
 * when accessed will set up the NAND flash pins appropriately.  We'll use the
 * hwcontrol function to save the configuration in a global variable.
 * We can then use this information in the read and write functions to
 * determine which NDFC register to access.
 *
 * There are 2 NAND devices on the board, a Hynix HY27US08561A (32 MByte).
 */
static void pdnb3_nand_hwcontrol(struct mtd_info *mtd, int cmd)
{
HS_printf("cmd: %x\n", cmd);
	switch (cmd) {
	case NAND_CTL_SETCLE:
		hwctl |= 0x1;
		break;
	case NAND_CTL_CLRCLE:
		hwctl &= ~0x1;
		break;
	case NAND_CTL_SETALE:
		hwctl |= 0x2;
		break;
	case NAND_CTL_CLRALE:
		hwctl &= ~0x2;
		break;
	case NAND_CTL_SETNCE:
		break;
	case NAND_CTL_CLRNCE:
		alpr_write(0x00, &(alpr_ndfc->term));
		break;
	}
}

static void pdnb3_nand_write_byte(struct mtd_info *mtd, u_char byte)
{
HS_printf("hwctl: %x %x %x %x\n", hwctl, byte, &(alpr_ndfc->cmd[alpr_chip]), &(alpr_ndfc->addr_wait));
	if (hwctl & 0x1)
		alpr_write(byte, &(alpr_ndfc->cmd[alpr_chip]));
	else if (hwctl & 0x2) {
		alpr_write(byte, &(alpr_ndfc->addr_wait));
	} else
		alpr_write(byte, &(alpr_ndfc->data));
}

static u_char pdnb3_nand_read_byte(struct mtd_info *mtd)
{
	return alpr_read(&(alpr_ndfc->data));
}

static void pdnb3_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;

/*printf("%s chip:%d hwctl:%x size:%d\n", __FUNCTION__, alpr_chip, hwctl, len);*/
	for (i = 0; i < len; i++) {
		if (hwctl & 0x1)
			alpr_write(buf[i], &(alpr_ndfc->cmd[alpr_chip]));
		else if (hwctl & 0x2) {
			alpr_write(buf[i], &(alpr_ndfc->addr_wait));
		} else {
			alpr_write(buf[i], &(alpr_ndfc->data));
			/*printf("i: %d\n", i);*/
		}	
	}
}

static void pdnb3_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++) {
		buf[i] = alpr_read(&(alpr_ndfc->data));
	}
}

static int pdnb3_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
	int i;

	for (i = 0; i < len; i++)
		if (buf[i] != alpr_read(&(alpr_ndfc->data)))
			return i;

	return 0;
}

static int pdnb3_nand_dev_ready(struct mtd_info *mtd)
{
#if 1
	volatile u_char val;

/*printf("%s aufruf\n", __FUNCTION__);*/
	/*
	 * Blocking read to wait for NAND to be ready
	 */
	val = alpr_read(&(alpr_ndfc->addr_wait));

	/*
	 * Return always true
	 */
	return 1;
#else
	u8 hwctl_org = hwctl;
	unsigned long	timeo;
	u8	val;

	hwctl = 0x01;
	pdnb3_nand_write_byte (mtd, NAND_CMD_STATUS);
	hwctl = hwctl_org;

	reset_timer();
	while (1) {
		if (get_timer(0) > timeo) {
			printf("Timeout!");
			return 0;
			}

val = pdnb3_nand_read_byte(mtd);
/*printf("%s val: %x\n", __FUNCTION__, val);*/
			if (val & NAND_STATUS_READY)
				break;
	}
	return 1;
#endif

}

static void alpr_select_chip(struct mtd_info *mtd, int chip)
{
	alpr_chip = chip;
}

static int alpr_nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
{
	unsigned long	timeo;

	if (state == FL_ERASING)
		timeo = CFG_HZ * 400;
	else
		timeo = CFG_HZ * 20;

	if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
		this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
	else
		this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);

	reset_timer();

	while (1) {
		if (get_timer(0) > timeo) {
			printf("Timeout!");
			return 0;
			}

			if (this->read_byte(mtd) & NAND_STATUS_READY)
				break;
	}
	return this->read_byte(mtd);
}

void board_nand_init(struct nand_chip *nand)
{
	alpr_ndfc = (struct alpr_ndfc_regs *)CFG_NAND_BASE;

	nand->eccmode = NAND_ECC_SOFT;

	/* Set address of NAND IO lines (Using Linear Data Access Region) */
	nand->IO_ADDR_R = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
	nand->IO_ADDR_W = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
	/* Reference hardware control function */
	nand->hwcontrol  = pdnb3_nand_hwcontrol;
	/* Set command delay time */
	nand->hwcontrol  = pdnb3_nand_hwcontrol;
	nand->write_byte = pdnb3_nand_write_byte;
	nand->read_byte  = pdnb3_nand_read_byte;
	nand->write_buf  = pdnb3_nand_write_buf;
	nand->read_buf   = pdnb3_nand_read_buf;
	nand->verify_buf = pdnb3_nand_verify_buf;
	nand->dev_ready  = pdnb3_nand_dev_ready;
	nand->select_chip = alpr_select_chip;
	nand->waitfunc 	 = alpr_nand_wait;
}
#endif