1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
|
/*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <command.h>
#include <i2c.h>
#include <asm/io.h>
#ifdef CONFIG_LS1043A
#include <asm/arch/immap_lsch2.h>
#else
#include <asm/immap_85xx.h>
#endif
#include "vid.h"
DECLARE_GLOBAL_DATA_PTR;
int __weak i2c_multiplexer_select_vid_channel(u8 channel)
{
return 0;
}
/*
* Compensate for a board specific voltage drop between regulator and SoC
* return a value in mV
*/
int __weak board_vdd_drop_compensation(void)
{
return 0;
}
/*
* Get the i2c address configuration for the IR regulator chip
*
* There are some variance in the RDB HW regarding the I2C address configuration
* for the IR regulator chip, which is likely a problem of external resistor
* accuracy. So we just check each address in a hopefully non-intrusive mode
* and use the first one that seems to work
*
* The IR chip can show up under the following addresses:
* 0x08 (Verified on T1040RDB-PA,T4240RDB-PB,X-T4240RDB-16GPA)
* 0x09 (Verified on T1040RDB-PA)
* 0x38 (Verified on T2080QDS, T2081QDS, T4240RDB)
*/
static int find_ir_chip_on_i2c(void)
{
int i2caddress;
int ret;
u8 byte;
int i;
const int ir_i2c_addr[] = {0x38, 0x08, 0x09};
/* Check all the address */
for (i = 0; i < (sizeof(ir_i2c_addr)/sizeof(ir_i2c_addr[0])); i++) {
i2caddress = ir_i2c_addr[i];
ret = i2c_read(i2caddress,
IR36021_MFR_ID_OFFSET, 1, (void *)&byte,
sizeof(byte));
if ((ret >= 0) && (byte == IR36021_MFR_ID))
return i2caddress;
}
return -1;
}
/* Maximum loop count waiting for new voltage to take effect */
#define MAX_LOOP_WAIT_NEW_VOL 100
/* Maximum loop count waiting for the voltage to be stable */
#define MAX_LOOP_WAIT_VOL_STABLE 100
/*
* read_voltage from sensor on I2C bus
* We use average of 4 readings, waiting for WAIT_FOR_ADC before
* another reading
*/
#define NUM_READINGS 4 /* prefer to be power of 2 for efficiency */
/* If an INA220 chip is available, we can use it to read back the voltage
* as it may have a higher accuracy than the IR chip for the same purpose
*/
#ifdef CONFIG_VOL_MONITOR_INA220
#define WAIT_FOR_ADC 532 /* wait for 532 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#else
#define WAIT_FOR_ADC 138 /* wait for 138 microseconds for ADC */
#define ADC_MIN_ACCURACY 4
#endif
#ifdef CONFIG_VOL_MONITOR_INA220
static int read_voltage_from_INA220(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf[2];
for (i = 0; i < NUM_READINGS; i++) {
ret = i2c_read(I2C_VOL_MONITOR_ADDR,
I2C_VOL_MONITOR_BUS_V_OFFSET, 1,
(void *)&buf, 2);
if (ret) {
printf("VID: failed to read core voltage\n");
return ret;
}
vol_mon = (buf[0] << 8) | buf[1];
if (vol_mon & I2C_VOL_MONITOR_BUS_V_OVF) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%04x\n", vol_mon);
/* LSB = 4mv */
voltage_read += (vol_mon >> I2C_VOL_MONITOR_BUS_V_SHIFT) * 4;
udelay(WAIT_FOR_ADC);
}
/* calculate the average */
voltage_read /= NUM_READINGS;
return voltage_read;
}
#endif
/* read voltage from IR */
#ifdef CONFIG_VOL_MONITOR_IR36021_READ
static int read_voltage_from_IR(int i2caddress)
{
int i, ret, voltage_read = 0;
u16 vol_mon;
u8 buf;
for (i = 0; i < NUM_READINGS; i++) {
ret = i2c_read(i2caddress,
IR36021_LOOP1_VOUT_OFFSET,
1, (void *)&buf, 1);
if (ret) {
printf("VID: failed to read vcpu\n");
return ret;
}
vol_mon = buf;
if (!vol_mon) {
printf("VID: Core voltage sensor error\n");
return -1;
}
debug("VID: bus voltage reads 0x%02x\n", vol_mon);
/* Resolution is 1/128V. We scale up here to get 1/128mV
* and divide at the end
*/
voltage_read += vol_mon * 1000;
udelay(WAIT_FOR_ADC);
}
/* Scale down to the real mV as IR resolution is 1/128V, rounding up */
voltage_read = DIV_ROUND_UP(voltage_read, 128);
/* calculate the average */
voltage_read /= NUM_READINGS;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
voltage_read -= board_vdd_drop_compensation();
return voltage_read;
}
#endif
static int read_voltage(int i2caddress)
{
int voltage_read;
#ifdef CONFIG_VOL_MONITOR_INA220
voltage_read = read_voltage_from_INA220(i2caddress);
#elif defined CONFIG_VOL_MONITOR_IR36021_READ
voltage_read = read_voltage_from_IR(i2caddress);
#else
return -1;
#endif
return voltage_read;
}
/*
* We need to calculate how long before the voltage stops to drop
* or increase. It returns with the loop count. Each loop takes
* several readings (WAIT_FOR_ADC)
*/
static int wait_for_new_voltage(int vdd, int i2caddress)
{
int timeout, vdd_current;
vdd_current = read_voltage(i2caddress);
/* wait until voltage starts to reach the target. Voltage slew
* rates by typical regulators will always lead to stable readings
* within each fairly long ADC interval in comparison to the
* intended voltage delta change until the target voltage is
* reached. The fairly small voltage delta change to any target
* VID voltage also means that this function will always complete
* within few iterations. If the timeout was ever reached, it would
* point to a serious failure in the regulator system.
*/
for (timeout = 0;
abs(vdd - vdd_current) > (IR_VDD_STEP_UP + IR_VDD_STEP_DOWN) &&
timeout < MAX_LOOP_WAIT_NEW_VOL; timeout++) {
vdd_current = read_voltage(i2caddress);
}
if (timeout >= MAX_LOOP_WAIT_NEW_VOL) {
printf("VID: Voltage adjustment timeout\n");
return -1;
}
return timeout;
}
/*
* this function keeps reading the voltage until it is stable or until the
* timeout expires
*/
static int wait_for_voltage_stable(int i2caddress)
{
int timeout, vdd_current, vdd;
vdd = read_voltage(i2caddress);
udelay(NUM_READINGS * WAIT_FOR_ADC);
/* wait until voltage is stable */
vdd_current = read_voltage(i2caddress);
/* The maximum timeout is
* MAX_LOOP_WAIT_VOL_STABLE * NUM_READINGS * WAIT_FOR_ADC
*/
for (timeout = MAX_LOOP_WAIT_VOL_STABLE;
abs(vdd - vdd_current) > ADC_MIN_ACCURACY &&
timeout > 0; timeout--) {
vdd = vdd_current;
udelay(NUM_READINGS * WAIT_FOR_ADC);
vdd_current = read_voltage(i2caddress);
}
if (timeout == 0)
return -1;
return vdd_current;
}
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
/* Set the voltage to the IR chip */
static int set_voltage_to_IR(int i2caddress, int vdd)
{
int wait, vdd_last;
int ret;
u8 vid;
/* Compensate for a board specific voltage drop between regulator and
* SoC before converting into an IR VID value
*/
vdd += board_vdd_drop_compensation();
#ifdef CONFIG_LS1043A
vid = DIV_ROUND_UP(vdd - 265, 5);
#else
vid = DIV_ROUND_UP(vdd - 245, 5);
#endif
ret = i2c_write(i2caddress, IR36021_LOOP1_MANUAL_ID_OFFSET,
1, (void *)&vid, sizeof(vid));
if (ret) {
printf("VID: failed to write VID\n");
return -1;
}
wait = wait_for_new_voltage(vdd, i2caddress);
if (wait < 0)
return -1;
debug("VID: Waited %d us\n", wait * NUM_READINGS * WAIT_FOR_ADC);
vdd_last = wait_for_voltage_stable(i2caddress);
if (vdd_last < 0)
return -1;
debug("VID: Current voltage is %d mV\n", vdd_last);
return vdd_last;
}
#endif
static int set_voltage(int i2caddress, int vdd)
{
int vdd_last = -1;
#ifdef CONFIG_VOL_MONITOR_IR36021_SET
vdd_last = set_voltage_to_IR(i2caddress, vdd);
#else
#error Specific voltage monitor must be defined
#endif
return vdd_last;
}
int adjust_vdd(ulong vdd_override)
{
int re_enable = disable_interrupts();
#ifdef CONFIG_LS1043A
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
#else
ccsr_gur_t __iomem *gur =
(void __iomem *)(CONFIG_SYS_MPC85xx_GUTS_ADDR);
#endif
u32 fusesr;
u8 vid, buf;
int vdd_target, vdd_current, vdd_last;
int ret, i2caddress;
unsigned long vdd_string_override;
char *vdd_string;
static const uint16_t vdd[32] = {
0, /* unused */
9875, /* 0.9875V */
9750,
9625,
9500,
9375,
9250,
9125,
9000,
8875,
8750,
8625,
8500,
8375,
8250,
8125,
10000, /* 1.0000V */
10125,
10250,
10375,
10500,
10625,
10750,
10875,
11000,
0, /* reserved */
};
struct vdd_drive {
u8 vid;
unsigned voltage;
};
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID: I2C failed to switch channel\n");
ret = -1;
goto exit;
}
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
ret = -1;
goto exit;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
/* check IR chip work on Intel mode*/
ret = i2c_read(i2caddress,
IR36021_INTEL_MODE_OOFSET,
1, (void *)&buf, 1);
if (ret) {
printf("VID: failed to read IR chip mode.\n");
ret = -1;
goto exit;
}
if ((buf & IR36021_MODE_MASK) != IR36021_INTEL_MODE) {
printf("VID: IR Chip is not used in Intel mode.\n");
ret = -1;
goto exit;
}
/* get the voltage ID from fuse status register */
fusesr = in_be32(&gur->dcfg_fusesr);
/*
* VID is used according to the table below
* ---------------------------------------
* | DA_V |
* |-------------------------------------|
* | 5b00000 | 5b00001-5b11110 | 5b11111 |
* ---------------+---------+-----------------+---------|
* | D | 5b00000 | NO VID | VID = DA_V | NO VID |
* | A |----------+---------+-----------------+---------|
* | _ | 5b00001 |VID = | VID = |VID = |
* | V | ~ | DA_V_ALT| DA_V_ALT | DA_A_VLT|
* | _ | 5b11110 | | | |
* | A |----------+---------+-----------------+---------|
* | L | 5b11111 | No VID | VID = DA_V | NO VID |
* | T | | | | |
* ------------------------------------------------------
*/
#ifdef CONFIG_LS1043A
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK;
if ((vid == 0) || (vid == FSL_CHASSIS2_DCFG_FUSESR_ALTVID_MASK)) {
vid = (fusesr >> FSL_CHASSIS2_DCFG_FUSESR_VID_SHIFT) &
FSL_CHASSIS2_DCFG_FUSESR_VID_MASK;
}
#else
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_ALTVID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_ALTVID_MASK;
if ((vid == 0) || (vid == FSL_CORENET_DCFG_FUSESR_ALTVID_MASK)) {
vid = (fusesr >> FSL_CORENET_DCFG_FUSESR_VID_SHIFT) &
FSL_CORENET_DCFG_FUSESR_VID_MASK;
}
#endif
vdd_target = vdd[vid];
/* check override variable for overriding VDD */
vdd_string = getenv(CONFIG_VID_FLS_ENV);
if (vdd_override == 0 && vdd_string &&
!strict_strtoul(vdd_string, 10, &vdd_string_override))
vdd_override = vdd_string_override;
if (vdd_override >= VDD_MV_MIN && vdd_override <= VDD_MV_MAX) {
vdd_target = vdd_override * 10; /* convert to 1/10 mV */
debug("VDD override is %lu\n", vdd_override);
} else if (vdd_override != 0) {
printf("Invalid value.\n");
}
if (vdd_target == 0) {
debug("VID: VID not used\n");
ret = 0;
goto exit;
} else {
/* divide and round up by 10 to get a value in mV */
vdd_target = DIV_ROUND_UP(vdd_target, 10);
debug("VID: vid = %d mV\n", vdd_target);
}
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
ret = -1;
goto exit;
}
vdd_current = vdd_last;
debug("VID: Core voltage is currently at %d mV\n", vdd_last);
/*
* Adjust voltage to at or one step above target.
* As measurements are less precise than setting the values
* we may run through dummy steps that cancel each other
* when stepping up and then down.
*/
while (vdd_last > 0 &&
vdd_last < vdd_target) {
vdd_current += IR_VDD_STEP_UP;
vdd_last = set_voltage(i2caddress, vdd_current);
}
while (vdd_last > 0 &&
vdd_last > vdd_target + (IR_VDD_STEP_DOWN - 1)) {
vdd_current -= IR_VDD_STEP_DOWN;
vdd_last = set_voltage(i2caddress, vdd_current);
}
if (vdd_last > 0)
printf("VID: Core voltage after adjustment is at %d mV\n",
vdd_last);
else
ret = -1;
exit:
if (re_enable)
enable_interrupts();
return ret;
}
static int print_vdd(void)
{
int vdd_last, ret, i2caddress;
ret = i2c_multiplexer_select_vid_channel(I2C_MUX_CH_VOL_MONITOR);
if (ret) {
debug("VID : I2c failed to switch channel\n");
return -1;
}
ret = find_ir_chip_on_i2c();
if (ret < 0) {
printf("VID: Could not find voltage regulator on I2C.\n");
return -1;
} else {
i2caddress = ret;
debug("VID: IR Chip found on I2C address 0x%02x\n", i2caddress);
}
/*
* Read voltage monitor to check real voltage.
*/
vdd_last = read_voltage(i2caddress);
if (vdd_last < 0) {
printf("VID: Couldn't read sensor abort VID adjustment\n");
return -1;
}
printf("VID: Core voltage is at %d mV\n", vdd_last);
return 0;
}
static int do_vdd_override(cmd_tbl_t *cmdtp,
int flag, int argc,
char * const argv[])
{
ulong override;
if (argc < 2)
return CMD_RET_USAGE;
if (!strict_strtoul(argv[1], 10, &override))
adjust_vdd(override); /* the value is checked by callee */
else
return CMD_RET_USAGE;
return 0;
}
static int do_vdd_read(cmd_tbl_t *cmdtp,
int flag, int argc,
char * const argv[])
{
if (argc < 1)
return CMD_RET_USAGE;
print_vdd();
return 0;
}
U_BOOT_CMD(
vdd_override, 2, 0, do_vdd_override,
"override VDD",
" - override with the voltage specified in mV, eg. 1050"
);
U_BOOT_CMD(
vdd_read, 1, 0, do_vdd_read,
"read VDD",
" - Read the voltage specified in mV"
)
|