1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
|
/**
* @file powerspan.c Source file for PowerSpan II code.
*/
/*
* (C) Copyright 2005
* AMIRIX Systems Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <command.h>
#include <asm/processor.h>
#include "powerspan.h"
#define tolower(x) x
#include "ap1000.h"
#ifdef INCLUDE_PCI
/** Write one byte with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write1(unsigned long addr, unsigned char val) {
volatile unsigned char* p = (volatile unsigned char*)addr;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("write1: addr=%08x val=%02x\n", addr, val);
}
#endif
*p = val;
PSII_SYNC();
}
/** Read one byte with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned char read1(unsigned long addr) {
unsigned char val;
volatile unsigned char* p = (volatile unsigned char*)addr;
val = *p;
PSII_SYNC();
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("read1: addr=%08x val=%02x\n", addr, val);
}
#endif
return val;
}
/** Write one 2-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write2(unsigned long addr, unsigned short val) {
volatile unsigned short* p = (volatile unsigned short*)addr;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("write2: addr=%08x val=%04x -> *p=%04x\n", addr, val,
((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8));
}
#endif
*p = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC();
}
/** Read one 2-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned short read2(unsigned long addr) {
unsigned short val;
volatile unsigned short* p = (volatile unsigned short*)addr;
val = *p;
val = ((val & 0xFF00) >> 8) | ((val & 0x00FF) << 8);
PSII_SYNC();
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("read2: addr=%08x *p=%04x -> val=%04x\n", addr, *p, val);
}
#endif
return val;
}
/** Write one 4-byte word with byte swapping.
* @param addr [IN] the address to write to
* @param val [IN] the value to write
*/
void write4(unsigned long addr, unsigned long val) {
volatile unsigned long* p = (volatile unsigned long*)addr;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("write4: addr=%08x val=%08x -> *p=%08x\n", addr, val,
((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8));
}
#endif
*p = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC();
}
/** Read one 4-byte word with byte swapping.
* @param addr [IN] the address to read from
* @return the value at addr
*/
unsigned long read4(unsigned long addr) {
unsigned long val;
volatile unsigned long* p = (volatile unsigned long*)addr;
val = *p;
val = ((val & 0xFF000000) >> 24) | ((val & 0x000000FF) << 24) |
((val & 0x00FF0000) >> 8) | ((val & 0x0000FF00) << 8);
PSII_SYNC();
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("read4: addr=%08x *p=%08x -> val=%08x\n", addr, *p, val);
}
#endif
return val;
}
int PCIReadConfig(int bus, int dev, int fn, int reg, int width, unsigned long* val){
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4(REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4(REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width){
case 4:{
*(unsigned int*)val = read4(conDataReg);
break;
}
case 2:{
*(unsigned short*)val = read2(conDataReg);
break;
}
case 1:{
*(unsigned char*)val = read1(conDataReg);
break;
}
default:{
ret_val = ILLEGAL_REG_OFFSET;
break;
}
}
PSII_SYNC();
/* clear any pending master aborts */
status = read4(REG_P1_CSR);
if(status & CLEAR_MASTER_ABORT){
ret_val = NO_DEVICE_FOUND;
write4(REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int PCIWriteConfig(int bus, int dev, int fn, int reg, int width, unsigned long val){
unsigned int conAdrVal;
unsigned int conDataReg = REG_CONFIG_DATA;
unsigned int status;
int ret_val = 0;
/* DEST bit hardcoded to 1: local pci is PCI-2 */
/* TYPE bit is hardcoded to 1: all config cycles are local */
conAdrVal = (1 << 24)
| ((bus & 0xFF) << 16)
| ((dev & 0xFF) << 11)
| ((fn & 0x07) << 8)
| (reg & 0xFC);
/* clear any pending master aborts */
write4(REG_P1_CSR, CLEAR_MASTER_ABORT);
/* Load the conAdrVal value first, then read from pb_conf_data */
write4(REG_CONFIG_ADDRESS, conAdrVal);
PSII_SYNC();
/* Note: documentation does not match the pspan library code */
/* Note: *pData comes back as -1 if device is not present */
switch (width){
case 4:{
write4(conDataReg, val);
break;
}
case 2:{
write2(conDataReg, val);
break;
}
case 1:{
write1(conDataReg, val);
break;
}
default:{
ret_val = ILLEGAL_REG_OFFSET;
break;
}
}
PSII_SYNC();
/* clear any pending master aborts */
status = read4(REG_P1_CSR);
if(status & CLEAR_MASTER_ABORT){
ret_val = NO_DEVICE_FOUND;
write4(REG_P1_CSR, CLEAR_MASTER_ABORT);
}
return ret_val;
}
int pci_read_config_byte(int bus, int dev, int fn, int reg, unsigned char* val){
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig(bus, dev, fn, reg, 1, &read_val);
*val = read_val & 0xFF;
return ret_val;
}
int pci_write_config_byte(int bus, int dev, int fn, int reg, unsigned char val){
return PCIWriteConfig(bus, dev, fn, reg, 1, val);
}
int pci_read_config_word(int bus, int dev, int fn, int reg, unsigned short* val){
unsigned long read_val;
int ret_val;
ret_val = PCIReadConfig(bus, dev, fn, reg, 2, &read_val);
*val = read_val & 0xFFFF;
return ret_val;
}
int pci_write_config_word(int bus, int dev, int fn, int reg, unsigned short val){
return PCIWriteConfig(bus, dev, fn, reg, 2, val);
}
int pci_read_config_dword(int bus, int dev, int fn, int reg, unsigned long* val){
return PCIReadConfig(bus, dev, fn, reg, 4, val);
}
int pci_write_config_dword(int bus, int dev, int fn, int reg, unsigned long val){
return PCIWriteConfig(bus, dev, fn, reg, 4, val);
}
#endif /* INCLUDE_PCI */
int I2CAccess(unsigned char theI2CAddress, unsigned char theDevCode, unsigned char theChipSel, unsigned char* theValue, int RWFlag){
int ret_val = 0;
unsigned int reg_value;
reg_value = PowerSpanRead(REG_I2C_CSR);
if(reg_value & I2C_CSR_ACT){
printf("Error: I2C busy\n");
ret_val = I2C_BUSY;
}
else{
reg_value = ((theI2CAddress & 0xFF) << 24)
| ((theDevCode & 0x0F) << 12)
| ((theChipSel & 0x07) << 9)
| I2C_CSR_ERR;
if(RWFlag == I2C_WRITE){
reg_value |= I2C_CSR_RW | ((*theValue & 0xFF) << 16);
}
PowerSpanWrite(REG_I2C_CSR, reg_value);
udelay(1);
do{
reg_value = PowerSpanRead(REG_I2C_CSR);
if((reg_value & I2C_CSR_ACT) == 0){
if(reg_value & I2C_CSR_ERR){
ret_val = I2C_ERR;
}
else{
*theValue = (reg_value & I2C_CSR_DATA) >> 16;
}
}
} while(reg_value & I2C_CSR_ACT);
}
return ret_val;
}
int EEPROMRead(unsigned char theI2CAddress, unsigned char* theValue){
return I2CAccess(theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL, theValue, I2C_READ);
}
int EEPROMWrite(unsigned char theI2CAddress, unsigned char theValue){
return I2CAccess(theI2CAddress, I2C_EEPROM_DEV, I2C_EEPROM_CHIP_SEL, &theValue, I2C_WRITE);
}
int do_eeprom(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){
char cmd;
int ret_val = 0;
unsigned int address = 0;
unsigned char value = 1;
unsigned char read_value;
int ii;
int error = 0;
unsigned char* mem_ptr;
unsigned char default_eeprom[] = EEPROM_DEFAULT;
if(argc < 2){
goto usage;
}
cmd = argv[1][0];
if(argc > 2){
address = simple_strtoul(argv[2], NULL, 16);
if(argc > 3){
value = simple_strtoul(argv[3], NULL, 16) & 0xFF;
}
}
switch (cmd){
case 'r':{
if(address > 256){
printf("Illegal Address\n");
goto usage;
}
printf("@0x%x: ", address);
for(ii = 0;ii < value;ii++){
if(EEPROMRead(address + ii, &read_value) != 0){
printf("Read Error\n");
}
else{
printf("0x%02x ", read_value);
}
if(((ii + 1) % 16) == 0){
printf("\n");
}
}
printf("\n");
break;
}
case 'w':{
if(address > 256){
printf("Illegal Address\n");
goto usage;
}
if(argc < 4){
goto usage;
}
if(EEPROMWrite(address, value) != 0){
printf("Write Error\n");
}
break;
}
case 'g':{
if(argc != 3){
goto usage;
}
mem_ptr = (unsigned char*)address;
for(ii = 0;((ii < EEPROM_LENGTH) && (error == 0));ii++){
if(EEPROMRead(ii, &read_value) != 0){
printf("Read Error\n");
error = 1;
}
else{
*mem_ptr = read_value;
mem_ptr++;
}
}
break;
}
case 'p':{
if(argc != 3){
goto usage;
}
mem_ptr = (unsigned char*)address;
for(ii = 0;((ii < EEPROM_LENGTH) && (error == 0));ii++){
if(EEPROMWrite(ii, *mem_ptr) != 0){
printf("Write Error\n");
error = 1;
}
mem_ptr++;
}
break;
}
case 'd':{
if(argc != 2){
goto usage;
}
for(ii = 0;((ii < EEPROM_LENGTH) && (error == 0));ii++){
if(EEPROMWrite(ii, default_eeprom[ii]) != 0){
printf("Write Error\n");
error = 1;
}
}
break;
}
default:{
goto usage;
}
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}
U_BOOT_CMD(
eeprom, 4, 0, do_eeprom,
"eeprom - read/write/copy to/from the PowerSpan II eeprom\n",
"eeprom r OFF [NUM]\n"
" - read NUM words starting at OFF\n"
"eeprom w OFF VAL\n"
" - write word VAL at offset OFF\n"
"eeprom g ADD\n"
" - store contents of eeprom at address ADD\n"
"eeprom p ADD\n"
" - put data stored at address ADD into the eeprom\n"
"eeprom d\n"
" - return eeprom to default contents\n"
);
unsigned int PowerSpanRead(unsigned int theOffset){
volatile unsigned int* ptr = (volatile unsigned int*)(PSPAN_BASEADDR + theOffset);
unsigned int ret_val;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("PowerSpanRead: offset=%08x ", theOffset);
}
#endif
ret_val = *ptr;
PSII_SYNC();
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("value=%08x\n", ret_val);
}
#endif
return ret_val;
}
void PowerSpanWrite(unsigned int theOffset, unsigned int theValue){
volatile unsigned int* ptr = (volatile unsigned int*)(PSPAN_BASEADDR + theOffset);
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("PowerSpanWrite: offset=%08x val=%02x\n", theOffset, theValue);
}
#endif
*ptr = theValue;
PSII_SYNC();
}
/**
* Sets the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be set in the register.
*/
void PowerSpanSetBits(unsigned int theOffset, unsigned int theMask){
volatile unsigned int* ptr = (volatile unsigned int*)(PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("PowerSpanSetBits: offset=%08x mask=%02x\n", theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC();
register_value |= theMask;
*ptr = register_value;
PSII_SYNC();
}
/**
* Clears the indicated bits in the indicated register.
* @param theOffset [IN] the register to access.
* @param theMask [IN] bits set in theMask will be cleared in the register.
*/
void PowerSpanClearBits(unsigned int theOffset, unsigned int theMask){
volatile unsigned int* ptr = (volatile unsigned int*)(PSPAN_BASEADDR + theOffset);
unsigned int register_value;
#ifdef VERBOSITY
if(gVerbosityLevel > 1){
printf("PowerSpanClearBits: offset=%08x mask=%02x\n", theOffset, theMask);
}
#endif
register_value = *ptr;
PSII_SYNC();
register_value &= ~theMask;
*ptr = register_value;
PSII_SYNC();
}
/**
* Configures a slave image on the local bus, based on the parameters and some hardcoded system values.
* Slave Images are images that cause the PowerSpan II to be a master on the PCI bus. Thus, they
* are outgoing from the standpoint of the local bus.
* @param theImageIndex [IN] the PowerSpan II image to set (assumed to be 0-7).
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: PB_SIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetSlaveImage(int theImageIndex, unsigned int theBlockSize, int theMemIOFlag, int theEndianness, unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr){
unsigned int reg_offset = theImageIndex * PB_SLAVE_IMAGE_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits((REGS_PB_SLAVE_CSR + reg_offset), PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value = PB_SLAVE_CSR_TA_EN | theEndianness | (theBlockSize << 24);
if(theMemIOFlag == PB_SLAVE_USE_MEM_IO){
reg_value |= PB_SLAVE_CSR_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
MD_EN = 0
MODE = 0
PRKEEP = 0
RD_AMT = 0
*/
PowerSpanWrite((REGS_PB_SLAVE_CSR + reg_offset), reg_value);
/* these values are not checked by software */
PowerSpanWrite((REGS_PB_SLAVE_BADDR + reg_offset), theLocalBaseAddr);
PowerSpanWrite((REGS_PB_SLAVE_TADDR + reg_offset), thePCIBaseAddr);
/* Enable the Slave Image */
PowerSpanSetBits((REGS_PB_SLAVE_CSR + reg_offset), PB_SLAVE_CSR_IMG_EN);
return 0;
}
/**
* Configures a target image on the local bus, based on the parameters and some hardcoded system values.
* Target Images are used when the PowerSpan II is acting as a target for an access. Thus, they
* are incoming from the standpoint of the local bus.
* In order to behave better on the host PCI bus, if thePCIBaseAddr is NULL (0x00000000), then the PCI
* base address will not be updated; makes sense given that the hosts own memory should be mapped to
* PCI address 0x00000000.
* @param theImageIndex [IN] the PowerSpan II image to set.
* @param theBlockSize [IN] the block size of the image (as used by PowerSpan II: Px_TIx_CTL[BS]).
* @param theMemIOFlag [IN] if PX_TGT_USE_MEM_IO, this image will have the MEM_IO bit set.
* @param theEndianness [IN] the endian bits for the image (already shifted, use defines).
* @param theLocalBaseAddr [IN] the Local address for the image (assumed to be valid with provided block size).
* @param thePCIBaseAddr [IN] the PCI address for the image (assumed to be valid with provided block size).
*/
int SetTargetImage(int theImageIndex, unsigned int theBlockSize, int theMemIOFlag, int theEndianness, unsigned int theLocalBaseAddr, unsigned int thePCIBaseAddr){
unsigned int csr_reg_offset = theImageIndex * P1_TGT_IMAGE_OFF;
unsigned int pci_reg_offset = theImageIndex * P1_BST_OFF;
unsigned int reg_value = 0;
/* Make sure that the Slave Image is disabled */
PowerSpanClearBits((REGS_P1_TGT_CSR + csr_reg_offset), PB_SLAVE_CSR_IMG_EN);
/* Setup the mask required for requested PB Slave Image configuration */
reg_value = PX_TGT_CSR_TA_EN | PX_TGT_CSR_BAR_EN | (theBlockSize << 24) | PX_TGT_CSR_RTT_READ | PX_TGT_CSR_WTT_WFLUSH | theEndianness;
if(theMemIOFlag == PX_TGT_USE_MEM_IO){
reg_value |= PX_TGT_MEM_IO;
}
/* hardcoding the following:
TA_EN = 1
BAR_EN = 1
MD_EN = 0
MODE = 0
DEST = 0
RTT = 01010
GBL = 0
CI = 0
WTT = 00010
PRKEEP = 0
MRA = 0
RD_AMT = 0
*/
PowerSpanWrite((REGS_P1_TGT_CSR + csr_reg_offset), reg_value);
PowerSpanWrite((REGS_P1_TGT_TADDR + csr_reg_offset), theLocalBaseAddr);
if(thePCIBaseAddr != (unsigned int)NULL){
PowerSpanWrite((REGS_P1_BST + pci_reg_offset), thePCIBaseAddr);
}
/* Enable the Slave Image */
PowerSpanSetBits((REGS_P1_TGT_CSR + csr_reg_offset), PB_SLAVE_CSR_IMG_EN);
return 0;
}
int do_bridge(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]){
char cmd;
int ret_val = 1;
unsigned int image_index;
unsigned int block_size;
unsigned int mem_io;
unsigned int local_addr;
unsigned int pci_addr;
int endianness;
if(argc != 8){
goto usage;
}
cmd = argv[1][0];
image_index = simple_strtoul(argv[2], NULL, 16);
block_size = simple_strtoul(argv[3], NULL, 16);
mem_io = simple_strtoul(argv[4], NULL, 16);
endianness = argv[5][0];
local_addr = simple_strtoul(argv[6], NULL, 16);
pci_addr = simple_strtoul(argv[7], NULL, 16);
switch (cmd){
case 'i':{
if(tolower(endianness) == 'b'){
endianness = PX_TGT_CSR_BIG_END;
}
else if(tolower(endianness) == 'l'){
endianness = PX_TGT_CSR_TRUE_LEND;
}
else{
goto usage;
}
SetTargetImage(image_index, block_size, mem_io, endianness, local_addr, pci_addr);
break;
}
case 'o':{
if(tolower(endianness) == 'b'){
endianness = PB_SLAVE_CSR_BIG_END;
}
else if(tolower(endianness) == 'l'){
endianness = PB_SLAVE_CSR_TRUE_LEND;
}
else{
goto usage;
}
SetSlaveImage(image_index, block_size, mem_io, endianness, local_addr, pci_addr);
break;
}
default:{
goto usage;
}
}
goto done;
usage:
printf ("Usage:\n%s\n", cmdtp->help);
done:
return ret_val;
}
|