/* * Freescale i.MX28 image generator * * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> * on behalf of DENX Software Engineering GmbH * * SPDX-License-Identifier: GPL-2.0+ */ #include <fcntl.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include "compiler.h" /* Taken from <linux/kernel.h> */ #define __round_mask(x, y) ((__typeof__(x))((y)-1)) #define round_down(x, y) ((x) & ~__round_mask(x, y)) /* * Default BCB layout. * * TWEAK this if you have blown any OCOTP fuses. */ #define STRIDE_PAGES 64 #define STRIDE_COUNT 4 /* * Layout for 256Mb big NAND with 2048b page size, 64b OOB size and * 128kb erase size. * * TWEAK this if you have different kind of NAND chip. */ static uint32_t nand_writesize = 2048; static uint32_t nand_oobsize = 64; static uint32_t nand_erasesize = 128 * 1024; /* * Sector on which the SigmaTel boot partition (0x53) starts. */ static uint32_t sd_sector = 2048; /* * Each of the U-Boot bootstreams is at maximum 1MB big. * * TWEAK this if, for some wild reason, you need to boot bigger image. */ #define MAX_BOOTSTREAM_SIZE (1 * 1024 * 1024) /* i.MX28 NAND controller-specific constants. DO NOT TWEAK! */ #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 #define MXS_NAND_METADATA_SIZE 10 #define MXS_NAND_BITS_PER_ECC_LEVEL 13 #define MXS_NAND_COMMAND_BUFFER_SIZE 32 struct mx28_nand_fcb { uint32_t checksum; uint32_t fingerprint; uint32_t version; struct { uint8_t data_setup; uint8_t data_hold; uint8_t address_setup; uint8_t dsample_time; uint8_t nand_timing_state; uint8_t rea; uint8_t rloh; uint8_t rhoh; } timing; uint32_t page_data_size; uint32_t total_page_size; uint32_t sectors_per_block; uint32_t number_of_nands; /* Ignored */ uint32_t total_internal_die; /* Ignored */ uint32_t cell_type; /* Ignored */ uint32_t ecc_block_n_ecc_type; uint32_t ecc_block_0_size; uint32_t ecc_block_n_size; uint32_t ecc_block_0_ecc_type; uint32_t metadata_bytes; uint32_t num_ecc_blocks_per_page; uint32_t ecc_block_n_ecc_level_sdk; /* Ignored */ uint32_t ecc_block_0_size_sdk; /* Ignored */ uint32_t ecc_block_n_size_sdk; /* Ignored */ uint32_t ecc_block_0_ecc_level_sdk; /* Ignored */ uint32_t num_ecc_blocks_per_page_sdk; /* Ignored */ uint32_t metadata_bytes_sdk; /* Ignored */ uint32_t erase_threshold; uint32_t boot_patch; uint32_t patch_sectors; uint32_t firmware1_starting_sector; uint32_t firmware2_starting_sector; uint32_t sectors_in_firmware1; uint32_t sectors_in_firmware2; uint32_t dbbt_search_area_start_address; uint32_t badblock_marker_byte; uint32_t badblock_marker_start_bit; uint32_t bb_marker_physical_offset; }; struct mx28_nand_dbbt { uint32_t checksum; uint32_t fingerprint; uint32_t version; uint32_t number_bb; uint32_t number_2k_pages_bb; }; struct mx28_nand_bbt { uint32_t nand; uint32_t number_bb; uint32_t badblock[510]; }; struct mx28_sd_drive_info { uint32_t chip_num; uint32_t drive_type; uint32_t tag; uint32_t first_sector_number; uint32_t sector_count; }; struct mx28_sd_config_block { uint32_t signature; uint32_t primary_boot_tag; uint32_t secondary_boot_tag; uint32_t num_copies; struct mx28_sd_drive_info drv_info[1]; }; static inline uint32_t mx28_nand_ecc_chunk_cnt(uint32_t page_data_size) { return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; } static inline uint32_t mx28_nand_ecc_size_in_bits(uint32_t ecc_strength) { return ecc_strength * MXS_NAND_BITS_PER_ECC_LEVEL; } static inline uint32_t mx28_nand_get_ecc_strength(uint32_t page_data_size, uint32_t page_oob_size) { int ecc_strength; /* * Determine the ECC layout with the formula: * ECC bits per chunk = (total page spare data bits) / * (bits per ECC level) / (chunks per page) * where: * total page spare data bits = * (page oob size - meta data size) * (bits per byte) */ ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8) / (MXS_NAND_BITS_PER_ECC_LEVEL * mx28_nand_ecc_chunk_cnt(page_data_size)); return round_down(ecc_strength, 2); } static inline uint32_t mx28_nand_get_mark_offset(uint32_t page_data_size, uint32_t ecc_strength) { uint32_t chunk_data_size_in_bits; uint32_t chunk_ecc_size_in_bits; uint32_t chunk_total_size_in_bits; uint32_t block_mark_chunk_number; uint32_t block_mark_chunk_bit_offset; uint32_t block_mark_bit_offset; chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; chunk_ecc_size_in_bits = mx28_nand_ecc_size_in_bits(ecc_strength); chunk_total_size_in_bits = chunk_data_size_in_bits + chunk_ecc_size_in_bits; /* Compute the bit offset of the block mark within the physical page. */ block_mark_bit_offset = page_data_size * 8; /* Subtract the metadata bits. */ block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; /* * Compute the chunk number (starting at zero) in which the block mark * appears. */ block_mark_chunk_number = block_mark_bit_offset / chunk_total_size_in_bits; /* * Compute the bit offset of the block mark within its chunk, and * validate it. */ block_mark_chunk_bit_offset = block_mark_bit_offset - (block_mark_chunk_number * chunk_total_size_in_bits); if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) return 1; /* * Now that we know the chunk number in which the block mark appears, * we can subtract all the ECC bits that appear before it. */ block_mark_bit_offset -= block_mark_chunk_number * chunk_ecc_size_in_bits; return block_mark_bit_offset; } static inline uint32_t mx28_nand_mark_byte_offset(void) { uint32_t ecc_strength; ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) >> 3; } static inline uint32_t mx28_nand_mark_bit_offset(void) { uint32_t ecc_strength; ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) & 0x7; } static uint32_t mx28_nand_block_csum(uint8_t *block, uint32_t size) { uint32_t csum = 0; int i; for (i = 0; i < size; i++) csum += block[i]; return csum ^ 0xffffffff; } static struct mx28_nand_fcb *mx28_nand_get_fcb(uint32_t size) { struct mx28_nand_fcb *fcb; uint32_t bcb_size_bytes; uint32_t stride_size_bytes; uint32_t bootstream_size_pages; uint32_t fw1_start_page; uint32_t fw2_start_page; fcb = malloc(nand_writesize); if (!fcb) { printf("MX28 NAND: Unable to allocate FCB\n"); return NULL; } memset(fcb, 0, nand_writesize); fcb->fingerprint = 0x20424346; fcb->version = 0x01000000; /* * FIXME: These here are default values as found in kobs-ng. We should * probably retrieve the data from NAND or something. */ fcb->timing.data_setup = 80; fcb->timing.data_hold = 60; fcb->timing.address_setup = 25; fcb->timing.dsample_time = 6; fcb->page_data_size = nand_writesize; fcb->total_page_size = nand_writesize + nand_oobsize; fcb->sectors_per_block = nand_erasesize / nand_writesize; fcb->num_ecc_blocks_per_page = (nand_writesize / 512) - 1; fcb->ecc_block_0_size = 512; fcb->ecc_block_n_size = 512; fcb->metadata_bytes = 10; if (nand_writesize == 2048) { fcb->ecc_block_n_ecc_type = 4; fcb->ecc_block_0_ecc_type = 4; } else if (nand_writesize == 4096) { if (nand_oobsize == 128) { fcb->ecc_block_n_ecc_type = 4; fcb->ecc_block_0_ecc_type = 4; } else if (nand_oobsize == 218) { fcb->ecc_block_n_ecc_type = 8; fcb->ecc_block_0_ecc_type = 8; } else if (nand_oobsize == 224) { fcb->ecc_block_n_ecc_type = 8; fcb->ecc_block_0_ecc_type = 8; } } if (fcb->ecc_block_n_ecc_type == 0) { printf("MX28 NAND: Unsupported NAND geometry\n"); goto err; } fcb->boot_patch = 0; fcb->patch_sectors = 0; fcb->badblock_marker_byte = mx28_nand_mark_byte_offset(); fcb->badblock_marker_start_bit = mx28_nand_mark_bit_offset(); fcb->bb_marker_physical_offset = nand_writesize; stride_size_bytes = STRIDE_PAGES * nand_writesize; bcb_size_bytes = stride_size_bytes * STRIDE_COUNT; bootstream_size_pages = (size + (nand_writesize - 1)) / nand_writesize; fw1_start_page = 2 * bcb_size_bytes / nand_writesize; fw2_start_page = (2 * bcb_size_bytes + MAX_BOOTSTREAM_SIZE) / nand_writesize; fcb->firmware1_starting_sector = fw1_start_page; fcb->firmware2_starting_sector = fw2_start_page; fcb->sectors_in_firmware1 = bootstream_size_pages; fcb->sectors_in_firmware2 = bootstream_size_pages; fcb->dbbt_search_area_start_address = STRIDE_PAGES * STRIDE_COUNT; return fcb; err: free(fcb); return NULL; } static struct mx28_nand_dbbt *mx28_nand_get_dbbt(void) { struct mx28_nand_dbbt *dbbt; dbbt = malloc(nand_writesize); if (!dbbt) { printf("MX28 NAND: Unable to allocate DBBT\n"); return NULL; } memset(dbbt, 0, nand_writesize); dbbt->fingerprint = 0x54424244; dbbt->version = 0x1; return dbbt; } static inline uint8_t mx28_nand_parity_13_8(const uint8_t b) { uint32_t parity = 0, tmp; tmp = ((b >> 6) ^ (b >> 5) ^ (b >> 3) ^ (b >> 2)) & 1; parity |= tmp << 0; tmp = ((b >> 7) ^ (b >> 5) ^ (b >> 4) ^ (b >> 2) ^ (b >> 1)) & 1; parity |= tmp << 1; tmp = ((b >> 7) ^ (b >> 6) ^ (b >> 5) ^ (b >> 1) ^ (b >> 0)) & 1; parity |= tmp << 2; tmp = ((b >> 7) ^ (b >> 4) ^ (b >> 3) ^ (b >> 0)) & 1; parity |= tmp << 3; tmp = ((b >> 6) ^ (b >> 4) ^ (b >> 3) ^ (b >> 2) ^ (b >> 1) ^ (b >> 0)) & 1; parity |= tmp << 4; return parity; } static uint8_t *mx28_nand_fcb_block(struct mx28_nand_fcb *fcb) { uint8_t *block; uint8_t *ecc; int i; block = malloc(nand_writesize + nand_oobsize); if (!block) { printf("MX28 NAND: Unable to allocate FCB block\n"); return NULL; } memset(block, 0, nand_writesize + nand_oobsize); /* Update the FCB checksum */ fcb->checksum = mx28_nand_block_csum(((uint8_t *)fcb) + 4, 508); /* Figure 12-11. in iMX28RM, rev. 1, says FCB is at offset 12 */ memcpy(block + 12, fcb, sizeof(struct mx28_nand_fcb)); /* ECC is at offset 12 + 512 */ ecc = block + 12 + 512; /* Compute the ECC parity */ for (i = 0; i < sizeof(struct mx28_nand_fcb); i++) ecc[i] = mx28_nand_parity_13_8(block[i + 12]); return block; } static int mx28_nand_write_fcb(struct mx28_nand_fcb *fcb, uint8_t *buf) { uint32_t offset; uint8_t *fcbblock; int ret = 0; int i; fcbblock = mx28_nand_fcb_block(fcb); if (!fcbblock) return -1; for (i = 0; i < STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { offset = i * nand_writesize; memcpy(buf + offset, fcbblock, nand_writesize + nand_oobsize); /* Mark the NAND page is OK. */ buf[offset + nand_writesize] = 0xff; } free(fcbblock); return ret; } static int mx28_nand_write_dbbt(struct mx28_nand_dbbt *dbbt, uint8_t *buf) { uint32_t offset; int i = STRIDE_PAGES * STRIDE_COUNT; for (; i < 2 * STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { offset = i * nand_writesize; memcpy(buf + offset, dbbt, sizeof(struct mx28_nand_dbbt)); } return 0; } static int mx28_nand_write_firmware(struct mx28_nand_fcb *fcb, int infd, uint8_t *buf) { int ret; off_t size; uint32_t offset1, offset2; size = lseek(infd, 0, SEEK_END); lseek(infd, 0, SEEK_SET); offset1 = fcb->firmware1_starting_sector * nand_writesize; offset2 = fcb->firmware2_starting_sector * nand_writesize; ret = read(infd, buf + offset1, size); if (ret != size) return -1; memcpy(buf + offset2, buf + offset1, size); return 0; } static void usage(void) { printf( "Usage: mxsboot [ops] <type> <infile> <outfile>\n" "Augment BootStream file with a proper header for i.MX28 boot\n" "\n" " <type> type of image:\n" " \"nand\" for NAND image\n" " \"sd\" for SD image\n" " <infile> input file, the u-boot.sb bootstream\n" " <outfile> output file, the bootable image\n" "\n"); printf( "For NAND boot, these options are accepted:\n" " -w <size> NAND page size\n" " -o <size> NAND OOB size\n" " -e <size> NAND erase size\n" "\n" "For SD boot, these options are accepted:\n" " -p <sector> Sector where the SGTL partition starts\n" ); } static int mx28_create_nand_image(int infd, int outfd) { struct mx28_nand_fcb *fcb; struct mx28_nand_dbbt *dbbt; int ret = -1; uint8_t *buf; int size; ssize_t wr_size; size = nand_writesize * 512 + 2 * MAX_BOOTSTREAM_SIZE; buf = malloc(size); if (!buf) { printf("Can not allocate output buffer of %d bytes\n", size); goto err0; } memset(buf, 0, size); fcb = mx28_nand_get_fcb(MAX_BOOTSTREAM_SIZE); if (!fcb) { printf("Unable to compile FCB\n"); goto err1; } dbbt = mx28_nand_get_dbbt(); if (!dbbt) { printf("Unable to compile DBBT\n"); goto err2; } ret = mx28_nand_write_fcb(fcb, buf); if (ret) { printf("Unable to write FCB to buffer\n"); goto err3; } ret = mx28_nand_write_dbbt(dbbt, buf); if (ret) { printf("Unable to write DBBT to buffer\n"); goto err3; } ret = mx28_nand_write_firmware(fcb, infd, buf); if (ret) { printf("Unable to write firmware to buffer\n"); goto err3; } wr_size = write(outfd, buf, size); if (wr_size != size) { ret = -1; goto err3; } ret = 0; err3: free(dbbt); err2: free(fcb); err1: free(buf); err0: return ret; } static int mx28_create_sd_image(int infd, int outfd) { int ret = -1; uint32_t *buf; int size; off_t fsize; ssize_t wr_size; struct mx28_sd_config_block *cb; fsize = lseek(infd, 0, SEEK_END); lseek(infd, 0, SEEK_SET); size = fsize + 4 * 512; buf = malloc(size); if (!buf) { printf("Can not allocate output buffer of %d bytes\n", size); goto err0; } ret = read(infd, (uint8_t *)buf + 4 * 512, fsize); if (ret != fsize) { ret = -1; goto err1; } cb = (struct mx28_sd_config_block *)buf; cb->signature = 0x00112233; cb->primary_boot_tag = 0x1; cb->secondary_boot_tag = 0x1; cb->num_copies = 1; cb->drv_info[0].chip_num = 0x0; cb->drv_info[0].drive_type = 0x0; cb->drv_info[0].tag = 0x1; cb->drv_info[0].first_sector_number = sd_sector + 4; cb->drv_info[0].sector_count = (size - 4) / 512; wr_size = write(outfd, buf, size); if (wr_size != size) { ret = -1; goto err1; } ret = 0; err1: free(buf); err0: return ret; } static int parse_ops(int argc, char **argv) { int i; int tmp; char *end; enum param { PARAM_WRITE, PARAM_OOB, PARAM_ERASE, PARAM_PART, PARAM_SD, PARAM_NAND }; int type; if (argc < 4) return -1; for (i = 1; i < argc; i++) { if (!strncmp(argv[i], "-w", 2)) type = PARAM_WRITE; else if (!strncmp(argv[i], "-o", 2)) type = PARAM_OOB; else if (!strncmp(argv[i], "-e", 2)) type = PARAM_ERASE; else if (!strncmp(argv[i], "-p", 2)) type = PARAM_PART; else /* SD/MMC */ break; tmp = strtol(argv[++i], &end, 10); if (tmp % 2) return -1; if (tmp <= 0) return -1; if (type == PARAM_WRITE) nand_writesize = tmp; if (type == PARAM_OOB) nand_oobsize = tmp; if (type == PARAM_ERASE) nand_erasesize = tmp; if (type == PARAM_PART) sd_sector = tmp; } if (strcmp(argv[i], "sd") && strcmp(argv[i], "nand")) return -1; if (i + 3 != argc) return -1; return i; } int main(int argc, char **argv) { int infd, outfd; int ret = 0; int offset; offset = parse_ops(argc, argv); if (offset < 0) { usage(); ret = 1; goto err1; } infd = open(argv[offset + 1], O_RDONLY); if (infd < 0) { printf("Input BootStream file can not be opened\n"); ret = 2; goto err1; } outfd = open(argv[offset + 2], O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR); if (outfd < 0) { printf("Output file can not be created\n"); ret = 3; goto err2; } if (!strcmp(argv[offset], "sd")) ret = mx28_create_sd_image(infd, outfd); else if (!strcmp(argv[offset], "nand")) ret = mx28_create_nand_image(infd, outfd); close(outfd); err2: close(infd); err1: return ret; }