/* * Copyright (C) 2016 The Android Open Source Project * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, * modify, merge, publish, distribute, sublicense, and/or sell copies * of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ /* Copyright (c) 2011 The Chromium OS Authors. All rights reserved. * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ /* Implementation of RSA signature verification which uses a pre-processed * key for computation. The code extends libmincrypt RSA verification code to * support multiple RSA key lengths and hash digest algorithms. */ #include "avb_rsa.h" #include "avb_sha.h" #include "avb_util.h" #include "avb_vbmeta_image.h" typedef struct Key { unsigned int len; /* Length of n[] in number of uint32_t */ uint32_t n0inv; /* -1 / n[0] mod 2^32 */ uint32_t* n; /* modulus as array (host-byte order) */ uint32_t* rr; /* R^2 as array (host-byte order) */ } Key; Key* parse_key_data(const uint8_t* data, size_t length) { AvbRSAPublicKeyHeader h; Key* key = NULL; size_t expected_length; unsigned int i; const uint8_t* n; const uint8_t* rr; if (!avb_rsa_public_key_header_validate_and_byteswap( (const AvbRSAPublicKeyHeader*)data, &h)) { avb_error("Invalid key.\n"); goto fail; } if (!(h.key_num_bits == 2048 || h.key_num_bits == 4096 || h.key_num_bits == 8192)) { avb_error("Unexpected key length.\n"); goto fail; } expected_length = sizeof(AvbRSAPublicKeyHeader) + 2 * h.key_num_bits / 8; if (length != expected_length) { avb_error("Key does not match expected length.\n"); goto fail; } n = data + sizeof(AvbRSAPublicKeyHeader); rr = data + sizeof(AvbRSAPublicKeyHeader) + h.key_num_bits / 8; /* Store n and rr following the key header so we only have to do one * allocation. */ key = (Key*)(avb_malloc(sizeof(Key) + 2 * h.key_num_bits / 8)); if (key == NULL) { goto fail; } key->len = h.key_num_bits / 32; key->n0inv = h.n0inv; key->n = (uint32_t*)(key + 1); /* Skip ahead sizeof(Key) bytes. */ key->rr = key->n + key->len; /* Crypto-code below (modpowF4() and friends) expects the key in * little-endian format (rather than the format we're storing the * key in), so convert it. */ for (i = 0; i < key->len; i++) { key->n[i] = avb_be32toh(((uint32_t*)n)[key->len - i - 1]); key->rr[i] = avb_be32toh(((uint32_t*)rr)[key->len - i - 1]); } return key; fail: if (key != NULL) { avb_free(key); } return NULL; } void free_parsed_key(Key* key) { avb_free(key); } /* a[] -= mod */ static void subM(const Key* key, uint32_t* a) { int64_t A = 0; uint32_t i; for (i = 0; i < key->len; ++i) { A += (uint64_t)a[i] - key->n[i]; a[i] = (uint32_t)A; A >>= 32; } } /* return a[] >= mod */ static int geM(const Key* key, uint32_t* a) { uint32_t i; for (i = key->len; i;) { --i; if (a[i] < key->n[i]) { return 0; } if (a[i] > key->n[i]) { return 1; } } return 1; /* equal */ } /* montgomery c[] += a * b[] / R % mod */ static void montMulAdd(const Key* key, uint32_t* c, const uint32_t a, const uint32_t* b) { uint64_t A = (uint64_t)a * b[0] + c[0]; uint32_t d0 = (uint32_t)A * key->n0inv; uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A; uint32_t i; for (i = 1; i < key->len; ++i) { A = (A >> 32) + (uint64_t)a * b[i] + c[i]; B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A; c[i - 1] = (uint32_t)B; } A = (A >> 32) + (B >> 32); c[i - 1] = (uint32_t)A; if (A >> 32) { subM(key, c); } } /* montgomery c[] = a[] * b[] / R % mod */ static void montMul(const Key* key, uint32_t* c, uint32_t* a, uint32_t* b) { uint32_t i; for (i = 0; i < key->len; ++i) { c[i] = 0; } for (i = 0; i < key->len; ++i) { montMulAdd(key, c, a[i], b); } } /* In-place public exponentiation. (65537} * Input and output big-endian byte array in inout. */ static void modpowF4(const Key* key, uint8_t* inout) { uint32_t* a = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); uint32_t* aR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); uint32_t* aaR = (uint32_t*)avb_malloc(key->len * sizeof(uint32_t)); if (a == NULL || aR == NULL || aaR == NULL) { goto out; } uint32_t* aaa = aaR; /* Re-use location. */ int i; /* Convert from big endian byte array to little endian word array. */ for (i = 0; i < (int)key->len; ++i) { uint32_t tmp = (inout[((key->len - 1 - i) * 4) + 0] << 24) | (inout[((key->len - 1 - i) * 4) + 1] << 16) | (inout[((key->len - 1 - i) * 4) + 2] << 8) | (inout[((key->len - 1 - i) * 4) + 3] << 0); a[i] = tmp; } montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */ for (i = 0; i < 16; i += 2) { montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */ montMul(key, aR, aaR, aaR); /* aR = aaR * aaR / R mod M */ } montMul(key, aaa, aR, a); /* aaa = aR * a / R mod M */ /* Make sure aaa < mod; aaa is at most 1x mod too large. */ if (geM(key, aaa)) { subM(key, aaa); } /* Convert to bigendian byte array */ for (i = (int)key->len - 1; i >= 0; --i) { uint32_t tmp = aaa[i]; *inout++ = (uint8_t)(tmp >> 24); *inout++ = (uint8_t)(tmp >> 16); *inout++ = (uint8_t)(tmp >> 8); *inout++ = (uint8_t)(tmp >> 0); } out: if (a != NULL) { avb_free(a); } if (aR != NULL) { avb_free(aR); } if (aaR != NULL) { avb_free(aaR); } } /* Verify a RSA PKCS1.5 signature against an expected hash. * Returns false on failure, true on success. */ bool avb_rsa_verify(const uint8_t* key, size_t key_num_bytes, const uint8_t* sig, size_t sig_num_bytes, const uint8_t* hash, size_t hash_num_bytes, const uint8_t* padding, size_t padding_num_bytes) { uint8_t* buf = NULL; Key* parsed_key = NULL; bool success = false; if (key == NULL || sig == NULL || hash == NULL || padding == NULL) { avb_error("Invalid input.\n"); goto out; } parsed_key = parse_key_data(key, key_num_bytes); if (parsed_key == NULL) { avb_error("Error parsing key.\n"); goto out; } if (sig_num_bytes != (parsed_key->len * sizeof(uint32_t))) { avb_error("Signature length does not match key length.\n"); goto out; } if (padding_num_bytes != sig_num_bytes - hash_num_bytes) { avb_error("Padding length does not match hash and signature lengths.\n"); goto out; } buf = (uint8_t*)avb_malloc(sig_num_bytes); if (buf == NULL) { avb_error("Error allocating memory.\n"); goto out; } avb_memcpy(buf, sig, sig_num_bytes); modpowF4(parsed_key, buf); /* Check padding bytes. * * Even though there are probably no timing issues here, we use * avb_safe_memcmp() just to be on the safe side. */ if (avb_safe_memcmp(buf, padding, padding_num_bytes)) { avb_error("Padding check failed.\n"); goto out; } /* Check hash. */ if (avb_safe_memcmp(buf + padding_num_bytes, hash, hash_num_bytes)) { avb_error("Hash check failed.\n"); goto out; } success = true; out: if (parsed_key != NULL) { free_parsed_key(parsed_key); } if (buf != NULL) { avb_free(buf); } return success; }