/* SRMMU page table defines and code, * taken from the SPARC port of Linux * * Copyright (C) 2007 Daniel Hellstrom (daniel@gaisler.com) * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA * */ #ifndef __SPARC_SRMMU_H__ #define __SPARC_SRMMU_H__ #include <asm/asi.h> #include <asm/page.h> /* Number of contexts is implementation-dependent; 64k is the most we support */ #define SRMMU_MAX_CONTEXTS 65536 /* PMD_SHIFT determines the size of the area a second-level page table entry can map */ #define SRMMU_REAL_PMD_SHIFT 18 #define SRMMU_REAL_PMD_SIZE (1UL << SRMMU_REAL_PMD_SHIFT) #define SRMMU_REAL_PMD_MASK (~(SRMMU_REAL_PMD_SIZE-1)) #define SRMMU_REAL_PMD_ALIGN(__addr) (((__addr)+SRMMU_REAL_PMD_SIZE-1)&SRMMU_REAL_PMD_MASK) /* PGDIR_SHIFT determines what a third-level page table entry can map */ #define SRMMU_PGDIR_SHIFT 24 #define SRMMU_PGDIR_SIZE (1UL << SRMMU_PGDIR_SHIFT) #define SRMMU_PGDIR_MASK (~(SRMMU_PGDIR_SIZE-1)) #define SRMMU_PGDIR_ALIGN(addr) (((addr)+SRMMU_PGDIR_SIZE-1)&SRMMU_PGDIR_MASK) #define SRMMU_REAL_PTRS_PER_PTE 64 #define SRMMU_REAL_PTRS_PER_PMD 64 #define SRMMU_PTRS_PER_PGD 256 #define SRMMU_REAL_PTE_TABLE_SIZE (SRMMU_REAL_PTRS_PER_PTE*4) #define SRMMU_PMD_TABLE_SIZE (SRMMU_REAL_PTRS_PER_PMD*4) #define SRMMU_PGD_TABLE_SIZE (SRMMU_PTRS_PER_PGD*4) /* * To support pagetables in highmem, Linux introduces APIs which * return struct page* and generally manipulate page tables when * they are not mapped into kernel space. Our hardware page tables * are smaller than pages. We lump hardware tabes into big, page sized * software tables. * * PMD_SHIFT determines the size of the area a second-level page table entry * can map, and our pmd_t is 16 times larger than normal. The values which * were once defined here are now generic for 4c and srmmu, so they're * found in pgtable.h. */ #define SRMMU_PTRS_PER_PMD 4 /* Definition of the values in the ET field of PTD's and PTE's */ #define SRMMU_ET_MASK 0x3 #define SRMMU_ET_INVALID 0x0 #define SRMMU_ET_PTD 0x1 #define SRMMU_ET_PTE 0x2 #define SRMMU_ET_REPTE 0x3 /* AIEEE, SuperSparc II reverse endian page! */ /* Physical page extraction from PTP's and PTE's. */ #define SRMMU_CTX_PMASK 0xfffffff0 #define SRMMU_PTD_PMASK 0xfffffff0 #define SRMMU_PTE_PMASK 0xffffff00 /* The pte non-page bits. Some notes: * 1) cache, dirty, valid, and ref are frobbable * for both supervisor and user pages. * 2) exec and write will only give the desired effect * on user pages * 3) use priv and priv_readonly for changing the * characteristics of supervisor ptes */ #define SRMMU_CACHE 0x80 #define SRMMU_DIRTY 0x40 #define SRMMU_REF 0x20 #define SRMMU_NOREAD 0x10 #define SRMMU_EXEC 0x08 #define SRMMU_WRITE 0x04 #define SRMMU_VALID 0x02 /* SRMMU_ET_PTE */ #define SRMMU_PRIV 0x1c #define SRMMU_PRIV_RDONLY 0x18 #define SRMMU_FILE 0x40 /* Implemented in software */ #define SRMMU_PTE_FILE_SHIFT 8 /* == 32-PTE_FILE_MAX_BITS */ #define SRMMU_CHG_MASK (0xffffff00 | SRMMU_REF | SRMMU_DIRTY) /* SRMMU swap entry encoding * * We use 5 bits for the type and 19 for the offset. This gives us * 32 swapfiles of 4GB each. Encoding looks like: * * oooooooooooooooooootttttRRRRRRRR * fedcba9876543210fedcba9876543210 * * The bottom 8 bits are reserved for protection and status bits, especially * FILE and PRESENT. */ #define SRMMU_SWP_TYPE_MASK 0x1f #define SRMMU_SWP_TYPE_SHIFT SRMMU_PTE_FILE_SHIFT #define SRMMU_SWP_OFF_MASK 0x7ffff #define SRMMU_SWP_OFF_SHIFT (SRMMU_PTE_FILE_SHIFT + 5) /* Some day I will implement true fine grained access bits for * user pages because the SRMMU gives us the capabilities to * enforce all the protection levels that vma's can have. * XXX But for now... */ #define SRMMU_PAGE_NONE __pgprot(SRMMU_CACHE | \ SRMMU_PRIV | SRMMU_REF) #define SRMMU_PAGE_SHARED __pgprot(SRMMU_VALID | SRMMU_CACHE | \ SRMMU_EXEC | SRMMU_WRITE | SRMMU_REF) #define SRMMU_PAGE_COPY __pgprot(SRMMU_VALID | SRMMU_CACHE | \ SRMMU_EXEC | SRMMU_REF) #define SRMMU_PAGE_RDONLY __pgprot(SRMMU_VALID | SRMMU_CACHE | \ SRMMU_EXEC | SRMMU_REF) #define SRMMU_PAGE_KERNEL __pgprot(SRMMU_VALID | SRMMU_CACHE | SRMMU_PRIV | \ SRMMU_DIRTY | SRMMU_REF) /* SRMMU Register addresses in ASI 0x4. These are valid for all * current SRMMU implementations that exist. */ #define SRMMU_CTRL_REG 0x00000000 #define SRMMU_CTXTBL_PTR 0x00000100 #define SRMMU_CTX_REG 0x00000200 #define SRMMU_FAULT_STATUS 0x00000300 #define SRMMU_FAULT_ADDR 0x00000400 #define WINDOW_FLUSH(tmp1, tmp2) \ mov 0, tmp1; \ 98: ld [%g6 + TI_UWINMASK], tmp2; \ orcc %g0, tmp2, %g0; \ add tmp1, 1, tmp1; \ bne 98b; \ save %sp, -64, %sp; \ 99: subcc tmp1, 1, tmp1; \ bne 99b; \ restore %g0, %g0, %g0; #ifndef __ASSEMBLY__ /* This makes sense. Honest it does - Anton */ /* XXX Yes but it's ugly as sin. FIXME. -KMW */ extern void *srmmu_nocache_pool; #define __nocache_pa(VADDR) (((unsigned long)VADDR) - SRMMU_NOCACHE_VADDR + __pa((unsigned long)srmmu_nocache_pool)) #define __nocache_va(PADDR) (__va((unsigned long)PADDR) - (unsigned long)srmmu_nocache_pool + SRMMU_NOCACHE_VADDR) #define __nocache_fix(VADDR) __va(__nocache_pa(VADDR)) /* Accessing the MMU control register. */ extern __inline__ unsigned int srmmu_get_mmureg(void) { unsigned int retval; __asm__ __volatile__("lda [%%g0] %1, %0\n\t": "=r"(retval):"i"(ASI_M_MMUREGS)); return retval; } extern __inline__ void srmmu_set_mmureg(unsigned long regval) { __asm__ __volatile__("sta %0, [%%g0] %1\n\t"::"r"(regval), "i"(ASI_M_MMUREGS):"memory"); } extern __inline__ void srmmu_set_ctable_ptr(unsigned long paddr) { paddr = ((paddr >> 4) & SRMMU_CTX_PMASK); __asm__ __volatile__("sta %0, [%1] %2\n\t"::"r"(paddr), "r"(SRMMU_CTXTBL_PTR), "i"(ASI_M_MMUREGS):"memory"); } extern __inline__ unsigned long srmmu_get_ctable_ptr(void) { unsigned int retval; __asm__ __volatile__("lda [%1] %2, %0\n\t": "=r"(retval): "r"(SRMMU_CTXTBL_PTR), "i"(ASI_M_MMUREGS)); return (retval & SRMMU_CTX_PMASK) << 4; } extern __inline__ void srmmu_set_context(int context) { __asm__ __volatile__("sta %0, [%1] %2\n\t"::"r"(context), "r"(SRMMU_CTX_REG), "i"(ASI_M_MMUREGS):"memory"); } extern __inline__ int srmmu_get_context(void) { register int retval; __asm__ __volatile__("lda [%1] %2, %0\n\t": "=r"(retval): "r"(SRMMU_CTX_REG), "i"(ASI_M_MMUREGS)); return retval; } extern __inline__ unsigned int srmmu_get_fstatus(void) { unsigned int retval; __asm__ __volatile__("lda [%1] %2, %0\n\t": "=r"(retval): "r"(SRMMU_FAULT_STATUS), "i"(ASI_M_MMUREGS)); return retval; } extern __inline__ unsigned int srmmu_get_faddr(void) { unsigned int retval; __asm__ __volatile__("lda [%1] %2, %0\n\t": "=r"(retval): "r"(SRMMU_FAULT_ADDR), "i"(ASI_M_MMUREGS)); return retval; } /* This is guaranteed on all SRMMU's. */ extern __inline__ void srmmu_flush_whole_tlb(void) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(0x400), /* Flush entire TLB!! */ "i"(ASI_M_FLUSH_PROBE):"memory"); } /* These flush types are not available on all chips... */ extern __inline__ void srmmu_flush_tlb_ctx(void) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(0x300), /* Flush TLB ctx.. */ "i"(ASI_M_FLUSH_PROBE):"memory"); } extern __inline__ void srmmu_flush_tlb_region(unsigned long addr) { addr &= SRMMU_PGDIR_MASK; __asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(addr | 0x200), /* Flush TLB region.. */ "i"(ASI_M_FLUSH_PROBE):"memory"); } extern __inline__ void srmmu_flush_tlb_segment(unsigned long addr) { addr &= SRMMU_REAL_PMD_MASK; __asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(addr | 0x100), /* Flush TLB segment.. */ "i"(ASI_M_FLUSH_PROBE):"memory"); } extern __inline__ void srmmu_flush_tlb_page(unsigned long page) { page &= PAGE_MASK; __asm__ __volatile__("sta %%g0, [%0] %1\n\t"::"r"(page), /* Flush TLB page.. */ "i"(ASI_M_FLUSH_PROBE):"memory"); } extern __inline__ unsigned long srmmu_hwprobe(unsigned long vaddr) { unsigned long retval; vaddr &= PAGE_MASK; __asm__ __volatile__("lda [%1] %2, %0\n\t": "=r"(retval): "r"(vaddr | 0x400), "i"(ASI_M_FLUSH_PROBE)); return retval; } extern __inline__ int srmmu_get_pte(unsigned long addr) { register unsigned long entry; __asm__ __volatile__("\n\tlda [%1] %2,%0\n\t": "=r"(entry): "r"((addr & 0xfffff000) | 0x400), "i"(ASI_M_FLUSH_PROBE)); return entry; } extern unsigned long (*srmmu_read_physical) (unsigned long paddr); extern void (*srmmu_write_physical) (unsigned long paddr, unsigned long word); #endif /* !(__ASSEMBLY__) */ #endif /* !(__SPARC_SRMMU_H__) */