/* * (C) Copyright 2004 * esd gmbh <www.esd-electronics.com> * Reinhard Arlt <reinhard.arlt@esd-electronics.com> * * based on code from grub2 fs/ext2.c and fs/fshelp.c by * * GRUB -- GRand Unified Bootloader * Copyright (C) 2003, 2004 Free Software Foundation, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <common.h> #include <ext2fs.h> #include <malloc.h> #include <asm/byteorder.h> extern int ext2fs_devread (int sector, int byte_offset, int byte_len, char *buf); /* Magic value used to identify an ext2 filesystem. */ #define EXT2_MAGIC 0xEF53 /* Amount of indirect blocks in an inode. */ #define INDIRECT_BLOCKS 12 /* Maximum lenght of a pathname. */ #define EXT2_PATH_MAX 4096 /* Maximum nesting of symlinks, used to prevent a loop. */ #define EXT2_MAX_SYMLINKCNT 8 /* Filetype used in directory entry. */ #define FILETYPE_UNKNOWN 0 #define FILETYPE_REG 1 #define FILETYPE_DIRECTORY 2 #define FILETYPE_SYMLINK 7 /* Filetype information as used in inodes. */ #define FILETYPE_INO_MASK 0170000 #define FILETYPE_INO_REG 0100000 #define FILETYPE_INO_DIRECTORY 0040000 #define FILETYPE_INO_SYMLINK 0120000 /* Bits used as offset in sector */ #define DISK_SECTOR_BITS 9 /* Log2 size of ext2 block in 512 blocks. */ #define LOG2_EXT2_BLOCK_SIZE(data) (__le32_to_cpu (data->sblock.log2_block_size) + 1) /* Log2 size of ext2 block in bytes. */ #define LOG2_BLOCK_SIZE(data) (__le32_to_cpu (data->sblock.log2_block_size) + 10) /* The size of an ext2 block in bytes. */ #define EXT2_BLOCK_SIZE(data) (1 << LOG2_BLOCK_SIZE(data)) /* The ext2 superblock. */ struct ext2_sblock { uint32_t total_inodes; uint32_t total_blocks; uint32_t reserved_blocks; uint32_t free_blocks; uint32_t free_inodes; uint32_t first_data_block; uint32_t log2_block_size; uint32_t log2_fragment_size; uint32_t blocks_per_group; uint32_t fragments_per_group; uint32_t inodes_per_group; uint32_t mtime; uint32_t utime; uint16_t mnt_count; uint16_t max_mnt_count; uint16_t magic; uint16_t fs_state; uint16_t error_handling; uint16_t minor_revision_level; uint32_t lastcheck; uint32_t checkinterval; uint32_t creator_os; uint32_t revision_level; uint16_t uid_reserved; uint16_t gid_reserved; uint32_t first_inode; uint16_t inode_size; uint16_t block_group_number; uint32_t feature_compatibility; uint32_t feature_incompat; uint32_t feature_ro_compat; uint32_t unique_id[4]; char volume_name[16]; char last_mounted_on[64]; uint32_t compression_info; }; /* The ext2 blockgroup. */ struct ext2_block_group { uint32_t block_id; uint32_t inode_id; uint32_t inode_table_id; uint16_t free_blocks; uint16_t free_inodes; uint16_t used_dir_cnt; uint32_t reserved[3]; }; /* The ext2 inode. */ struct ext2_inode { uint16_t mode; uint16_t uid; uint32_t size; uint32_t atime; uint32_t ctime; uint32_t mtime; uint32_t dtime; uint16_t gid; uint16_t nlinks; uint32_t blockcnt; /* Blocks of 512 bytes!! */ uint32_t flags; uint32_t osd1; union { struct datablocks { uint32_t dir_blocks[INDIRECT_BLOCKS]; uint32_t indir_block; uint32_t double_indir_block; uint32_t tripple_indir_block; } blocks; char symlink[60]; } b; uint32_t version; uint32_t acl; uint32_t dir_acl; uint32_t fragment_addr; uint32_t osd2[3]; }; /* The header of an ext2 directory entry. */ struct ext2_dirent { uint32_t inode; uint16_t direntlen; uint8_t namelen; uint8_t filetype; }; struct ext2fs_node { struct ext2_data *data; struct ext2_inode inode; int ino; int inode_read; }; /* Information about a "mounted" ext2 filesystem. */ struct ext2_data { struct ext2_sblock sblock; struct ext2_inode *inode; struct ext2fs_node diropen; }; typedef struct ext2fs_node *ext2fs_node_t; struct ext2_data *ext2fs_root = NULL; ext2fs_node_t ext2fs_file = NULL; int symlinknest = 0; uint32_t *indir1_block = NULL; int indir1_size = 0; int indir1_blkno = -1; uint32_t *indir2_block = NULL; int indir2_size = 0; int indir2_blkno = -1; static unsigned int inode_size; static int ext2fs_blockgroup (struct ext2_data *data, int group, struct ext2_block_group *blkgrp) { unsigned int blkno; unsigned int blkoff; unsigned int desc_per_blk; desc_per_blk = EXT2_BLOCK_SIZE(data) / sizeof(struct ext2_block_group); blkno = __le32_to_cpu(data->sblock.first_data_block) + 1 + group / desc_per_blk; blkoff = (group % desc_per_blk) * sizeof(struct ext2_block_group); #ifdef DEBUG printf ("ext2fs read %d group descriptor (blkno %d blkoff %d)\n", group, blkno, blkoff); #endif return (ext2fs_devread (blkno << LOG2_EXT2_BLOCK_SIZE(data), blkoff, sizeof(struct ext2_block_group), (char *)blkgrp)); } static int ext2fs_read_inode (struct ext2_data *data, int ino, struct ext2_inode *inode) { struct ext2_block_group blkgrp; struct ext2_sblock *sblock = &data->sblock; int inodes_per_block; int status; unsigned int blkno; unsigned int blkoff; #ifdef DEBUG printf ("ext2fs read inode %d, inode_size %d\n", ino, inode_size); #endif /* It is easier to calculate if the first inode is 0. */ ino--; status = ext2fs_blockgroup (data, ino / __le32_to_cpu (sblock->inodes_per_group), &blkgrp); if (status == 0) { return (0); } inodes_per_block = EXT2_BLOCK_SIZE(data) / inode_size; blkno = __le32_to_cpu (blkgrp.inode_table_id) + (ino % __le32_to_cpu (sblock->inodes_per_group)) / inodes_per_block; blkoff = (ino % inodes_per_block) * inode_size; #ifdef DEBUG printf ("ext2fs read inode blkno %d blkoff %d\n", blkno, blkoff); #endif /* Read the inode. */ status = ext2fs_devread (blkno << LOG2_EXT2_BLOCK_SIZE (data), blkoff, sizeof (struct ext2_inode), (char *) inode); if (status == 0) { return (0); } return (1); } void ext2fs_free_node (ext2fs_node_t node, ext2fs_node_t currroot) { if ((node != &ext2fs_root->diropen) && (node != currroot)) { free (node); } } static int ext2fs_read_block (ext2fs_node_t node, int fileblock) { struct ext2_data *data = node->data; struct ext2_inode *inode = &node->inode; int blknr; int blksz = EXT2_BLOCK_SIZE (data); int log2_blksz = LOG2_EXT2_BLOCK_SIZE (data); int status; /* Direct blocks. */ if (fileblock < INDIRECT_BLOCKS) { blknr = __le32_to_cpu (inode->b.blocks.dir_blocks[fileblock]); } /* Indirect. */ else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4))) { if (indir1_block == NULL) { indir1_block = (uint32_t *) malloc (blksz); if (indir1_block == NULL) { printf ("** ext2fs read block (indir 1) malloc failed. **\n"); return (-1); } indir1_size = blksz; indir1_blkno = -1; } if (blksz != indir1_size) { free (indir1_block); indir1_block = NULL; indir1_size = 0; indir1_blkno = -1; indir1_block = (uint32_t *) malloc (blksz); if (indir1_block == NULL) { printf ("** ext2fs read block (indir 1) malloc failed. **\n"); return (-1); } indir1_size = blksz; } if ((__le32_to_cpu (inode->b.blocks.indir_block) << log2_blksz) != indir1_blkno) { status = ext2fs_devread (__le32_to_cpu(inode->b.blocks.indir_block) << log2_blksz, 0, blksz, (char *) indir1_block); if (status == 0) { printf ("** ext2fs read block (indir 1) failed. **\n"); return (0); } indir1_blkno = __le32_to_cpu (inode->b.blocks. indir_block) << log2_blksz; } blknr = __le32_to_cpu (indir1_block [fileblock - INDIRECT_BLOCKS]); } /* Double indirect. */ else if (fileblock < (INDIRECT_BLOCKS + (blksz / 4 * (blksz / 4 + 1)))) { unsigned int perblock = blksz / 4; unsigned int rblock = fileblock - (INDIRECT_BLOCKS + blksz / 4); if (indir1_block == NULL) { indir1_block = (uint32_t *) malloc (blksz); if (indir1_block == NULL) { printf ("** ext2fs read block (indir 2 1) malloc failed. **\n"); return (-1); } indir1_size = blksz; indir1_blkno = -1; } if (blksz != indir1_size) { free (indir1_block); indir1_block = NULL; indir1_size = 0; indir1_blkno = -1; indir1_block = (uint32_t *) malloc (blksz); if (indir1_block == NULL) { printf ("** ext2fs read block (indir 2 1) malloc failed. **\n"); return (-1); } indir1_size = blksz; } if ((__le32_to_cpu (inode->b.blocks.double_indir_block) << log2_blksz) != indir1_blkno) { status = ext2fs_devread (__le32_to_cpu(inode->b.blocks.double_indir_block) << log2_blksz, 0, blksz, (char *) indir1_block); if (status == 0) { printf ("** ext2fs read block (indir 2 1) failed. **\n"); return (-1); } indir1_blkno = __le32_to_cpu (inode->b.blocks.double_indir_block) << log2_blksz; } if (indir2_block == NULL) { indir2_block = (uint32_t *) malloc (blksz); if (indir2_block == NULL) { printf ("** ext2fs read block (indir 2 2) malloc failed. **\n"); return (-1); } indir2_size = blksz; indir2_blkno = -1; } if (blksz != indir2_size) { free (indir2_block); indir2_block = NULL; indir2_size = 0; indir2_blkno = -1; indir2_block = (uint32_t *) malloc (blksz); if (indir2_block == NULL) { printf ("** ext2fs read block (indir 2 2) malloc failed. **\n"); return (-1); } indir2_size = blksz; } if ((__le32_to_cpu (indir1_block[rblock / perblock]) << log2_blksz) != indir2_blkno) { status = ext2fs_devread (__le32_to_cpu(indir1_block[rblock / perblock]) << log2_blksz, 0, blksz, (char *) indir2_block); if (status == 0) { printf ("** ext2fs read block (indir 2 2) failed. **\n"); return (-1); } indir2_blkno = __le32_to_cpu (indir1_block[rblock / perblock]) << log2_blksz; } blknr = __le32_to_cpu (indir2_block[rblock % perblock]); } /* Tripple indirect. */ else { printf ("** ext2fs doesn't support tripple indirect blocks. **\n"); return (-1); } #ifdef DEBUG printf ("ext2fs_read_block %08x\n", blknr); #endif return (blknr); } int ext2fs_read_file (ext2fs_node_t node, int pos, unsigned int len, char *buf) { int i; int blockcnt; int log2blocksize = LOG2_EXT2_BLOCK_SIZE (node->data); int blocksize = 1 << (log2blocksize + DISK_SECTOR_BITS); unsigned int filesize = __le32_to_cpu(node->inode.size); /* Adjust len so it we can't read past the end of the file. */ if (len > filesize) { len = filesize; } blockcnt = ((len + pos) + blocksize - 1) / blocksize; for (i = pos / blocksize; i < blockcnt; i++) { int blknr; int blockoff = pos % blocksize; int blockend = blocksize; int skipfirst = 0; blknr = ext2fs_read_block (node, i); if (blknr < 0) { return (-1); } blknr = blknr << log2blocksize; /* Last block. */ if (i == blockcnt - 1) { blockend = (len + pos) % blocksize; /* The last portion is exactly blocksize. */ if (!blockend) { blockend = blocksize; } } /* First block. */ if (i == pos / blocksize) { skipfirst = blockoff; blockend -= skipfirst; } /* If the block number is 0 this block is not stored on disk but is zero filled instead. */ if (blknr) { int status; status = ext2fs_devread (blknr, skipfirst, blockend, buf); if (status == 0) { return (-1); } } else { memset (buf, 0, blocksize - skipfirst); } buf += blocksize - skipfirst; } return (len); } static int ext2fs_iterate_dir (ext2fs_node_t dir, char *name, ext2fs_node_t * fnode, int *ftype) { unsigned int fpos = 0; int status; struct ext2fs_node *diro = (struct ext2fs_node *) dir; #ifdef DEBUG if (name != NULL) printf ("Iterate dir %s\n", name); #endif /* of DEBUG */ if (!diro->inode_read) { status = ext2fs_read_inode (diro->data, diro->ino, &diro->inode); if (status == 0) { return (0); } } /* Search the file. */ while (fpos < __le32_to_cpu (diro->inode.size)) { struct ext2_dirent dirent; status = ext2fs_read_file (diro, fpos, sizeof (struct ext2_dirent), (char *) &dirent); if (status < 1) { return (0); } if (dirent.namelen != 0) { char filename[dirent.namelen + 1]; ext2fs_node_t fdiro; int type = FILETYPE_UNKNOWN; status = ext2fs_read_file (diro, fpos + sizeof (struct ext2_dirent), dirent.namelen, filename); if (status < 1) { return (0); } fdiro = malloc (sizeof (struct ext2fs_node)); if (!fdiro) { return (0); } fdiro->data = diro->data; fdiro->ino = __le32_to_cpu (dirent.inode); filename[dirent.namelen] = '\0'; if (dirent.filetype != FILETYPE_UNKNOWN) { fdiro->inode_read = 0; if (dirent.filetype == FILETYPE_DIRECTORY) { type = FILETYPE_DIRECTORY; } else if (dirent.filetype == FILETYPE_SYMLINK) { type = FILETYPE_SYMLINK; } else if (dirent.filetype == FILETYPE_REG) { type = FILETYPE_REG; } } else { /* The filetype can not be read from the dirent, get it from inode */ status = ext2fs_read_inode (diro->data, __le32_to_cpu(dirent.inode), &fdiro->inode); if (status == 0) { free (fdiro); return (0); } fdiro->inode_read = 1; if ((__le16_to_cpu (fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_DIRECTORY) { type = FILETYPE_DIRECTORY; } else if ((__le16_to_cpu (fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_SYMLINK) { type = FILETYPE_SYMLINK; } else if ((__le16_to_cpu (fdiro->inode.mode) & FILETYPE_INO_MASK) == FILETYPE_INO_REG) { type = FILETYPE_REG; } } #ifdef DEBUG printf ("iterate >%s<\n", filename); #endif /* of DEBUG */ if ((name != NULL) && (fnode != NULL) && (ftype != NULL)) { if (strcmp (filename, name) == 0) { *ftype = type; *fnode = fdiro; return (1); } } else { if (fdiro->inode_read == 0) { status = ext2fs_read_inode (diro->data, __le32_to_cpu (dirent.inode), &fdiro->inode); if (status == 0) { free (fdiro); return (0); } fdiro->inode_read = 1; } switch (type) { case FILETYPE_DIRECTORY: printf ("<DIR> "); break; case FILETYPE_SYMLINK: printf ("<SYM> "); break; case FILETYPE_REG: printf (" "); break; default: printf ("< ? > "); break; } printf ("%10d %s\n", __le32_to_cpu (fdiro->inode.size), filename); } free (fdiro); } fpos += __le16_to_cpu (dirent.direntlen); } return (0); } static char *ext2fs_read_symlink (ext2fs_node_t node) { char *symlink; struct ext2fs_node *diro = node; int status; if (!diro->inode_read) { status = ext2fs_read_inode (diro->data, diro->ino, &diro->inode); if (status == 0) { return (0); } } symlink = malloc (__le32_to_cpu (diro->inode.size) + 1); if (!symlink) { return (0); } /* If the filesize of the symlink is bigger than 60 the symlink is stored in a separate block, otherwise it is stored in the inode. */ if (__le32_to_cpu (diro->inode.size) <= 60) { strncpy (symlink, diro->inode.b.symlink, __le32_to_cpu (diro->inode.size)); } else { status = ext2fs_read_file (diro, 0, __le32_to_cpu (diro->inode.size), symlink); if (status == 0) { free (symlink); return (0); } } symlink[__le32_to_cpu (diro->inode.size)] = '\0'; return (symlink); } int ext2fs_find_file1 (const char *currpath, ext2fs_node_t currroot, ext2fs_node_t * currfound, int *foundtype) { char fpath[strlen (currpath) + 1]; char *name = fpath; char *next; int status; int type = FILETYPE_DIRECTORY; ext2fs_node_t currnode = currroot; ext2fs_node_t oldnode = currroot; strncpy (fpath, currpath, strlen (currpath) + 1); /* Remove all leading slashes. */ while (*name == '/') { name++; } if (!*name) { *currfound = currnode; return (1); } for (;;) { int found; /* Extract the actual part from the pathname. */ next = strchr (name, '/'); if (next) { /* Remove all leading slashes. */ while (*next == '/') { *(next++) = '\0'; } } /* At this point it is expected that the current node is a directory, check if this is true. */ if (type != FILETYPE_DIRECTORY) { ext2fs_free_node (currnode, currroot); return (0); } oldnode = currnode; /* Iterate over the directory. */ found = ext2fs_iterate_dir (currnode, name, &currnode, &type); if (found == 0) { return (0); } if (found == -1) { break; } /* Read in the symlink and follow it. */ if (type == FILETYPE_SYMLINK) { char *symlink; /* Test if the symlink does not loop. */ if (++symlinknest == 8) { ext2fs_free_node (currnode, currroot); ext2fs_free_node (oldnode, currroot); return (0); } symlink = ext2fs_read_symlink (currnode); ext2fs_free_node (currnode, currroot); if (!symlink) { ext2fs_free_node (oldnode, currroot); return (0); } #ifdef DEBUG printf ("Got symlink >%s<\n", symlink); #endif /* of DEBUG */ /* The symlink is an absolute path, go back to the root inode. */ if (symlink[0] == '/') { ext2fs_free_node (oldnode, currroot); oldnode = &ext2fs_root->diropen; } /* Lookup the node the symlink points to. */ status = ext2fs_find_file1 (symlink, oldnode, &currnode, &type); free (symlink); if (status == 0) { ext2fs_free_node (oldnode, currroot); return (0); } } ext2fs_free_node (oldnode, currroot); /* Found the node! */ if (!next || *next == '\0') { *currfound = currnode; *foundtype = type; return (1); } name = next; } return (-1); } int ext2fs_find_file (const char *path, ext2fs_node_t rootnode, ext2fs_node_t * foundnode, int expecttype) { int status; int foundtype = FILETYPE_DIRECTORY; symlinknest = 0; if (!path) { return (0); } status = ext2fs_find_file1 (path, rootnode, foundnode, &foundtype); if (status == 0) { return (0); } /* Check if the node that was found was of the expected type. */ if ((expecttype == FILETYPE_REG) && (foundtype != expecttype)) { return (0); } else if ((expecttype == FILETYPE_DIRECTORY) && (foundtype != expecttype)) { return (0); } return (1); } int ext2fs_ls (const char *dirname) { ext2fs_node_t dirnode; int status; if (ext2fs_root == NULL) { return (0); } status = ext2fs_find_file (dirname, &ext2fs_root->diropen, &dirnode, FILETYPE_DIRECTORY); if (status != 1) { printf ("** Can not find directory. **\n"); return (1); } ext2fs_iterate_dir (dirnode, NULL, NULL, NULL); ext2fs_free_node (dirnode, &ext2fs_root->diropen); return (0); } int ext2fs_open (const char *filename) { ext2fs_node_t fdiro = NULL; int status; int len; if (ext2fs_root == NULL) { return (-1); } ext2fs_file = NULL; status = ext2fs_find_file (filename, &ext2fs_root->diropen, &fdiro, FILETYPE_REG); if (status == 0) { goto fail; } if (!fdiro->inode_read) { status = ext2fs_read_inode (fdiro->data, fdiro->ino, &fdiro->inode); if (status == 0) { goto fail; } } len = __le32_to_cpu (fdiro->inode.size); ext2fs_file = fdiro; return (len); fail: ext2fs_free_node (fdiro, &ext2fs_root->diropen); return (-1); } int ext2fs_close (void ) { if ((ext2fs_file != NULL) && (ext2fs_root != NULL)) { ext2fs_free_node (ext2fs_file, &ext2fs_root->diropen); ext2fs_file = NULL; } if (ext2fs_root != NULL) { free (ext2fs_root); ext2fs_root = NULL; } if (indir1_block != NULL) { free (indir1_block); indir1_block = NULL; indir1_size = 0; indir1_blkno = -1; } if (indir2_block != NULL) { free (indir2_block); indir2_block = NULL; indir2_size = 0; indir2_blkno = -1; } return (0); } int ext2fs_read (char *buf, unsigned len) { int status; if (ext2fs_root == NULL) { return (0); } if (ext2fs_file == NULL) { return (0); } status = ext2fs_read_file (ext2fs_file, 0, len, buf); return (status); } int ext2fs_mount (unsigned part_length) { struct ext2_data *data; int status; data = malloc (sizeof (struct ext2_data)); if (!data) { return (0); } /* Read the superblock. */ status = ext2fs_devread (1 * 2, 0, sizeof (struct ext2_sblock), (char *) &data->sblock); if (status == 0) { goto fail; } /* Make sure this is an ext2 filesystem. */ if (__le16_to_cpu (data->sblock.magic) != EXT2_MAGIC) { goto fail; } if (__le32_to_cpu(data->sblock.revision_level == 0)) { inode_size = 128; } else { inode_size = __le16_to_cpu(data->sblock.inode_size); } #ifdef DEBUG printf("EXT2 rev %d, inode_size %d\n", __le32_to_cpu(data->sblock.revision_level), inode_size); #endif data->diropen.data = data; data->diropen.ino = 2; data->diropen.inode_read = 1; data->inode = &data->diropen.inode; status = ext2fs_read_inode (data, 2, data->inode); if (status == 0) { goto fail; } ext2fs_root = data; return (1); fail: printf ("Failed to mount ext2 filesystem...\n"); free (data); ext2fs_root = NULL; return (0); }