/* * tsec.c * Freescale Three Speed Ethernet Controller driver * * This software may be used and distributed according to the * terms of the GNU Public License, Version 2, incorporated * herein by reference. * * Copyright 2004 Freescale Semiconductor. * (C) Copyright 2003, Motorola, Inc. * author Andy Fleming * */ #include <config.h> #include <mpc85xx.h> #include <mpc86xx.h> #include <common.h> #include <malloc.h> #include <net.h> #include <command.h> #if defined(CONFIG_TSEC_ENET) #include "tsec.h" #include "miiphy.h" DECLARE_GLOBAL_DATA_PTR; #define TX_BUF_CNT 2 static uint rxIdx; /* index of the current RX buffer */ static uint txIdx; /* index of the current TX buffer */ typedef volatile struct rtxbd { txbd8_t txbd[TX_BUF_CNT]; rxbd8_t rxbd[PKTBUFSRX]; } RTXBD; struct tsec_info_struct { unsigned int phyaddr; u32 flags; unsigned int phyregidx; }; /* The tsec_info structure contains 3 values which the * driver uses to determine how to operate a given ethernet * device. The information needed is: * phyaddr - The address of the PHY which is attached to * the given device. * * flags - This variable indicates whether the device * supports gigabit speed ethernet, and whether it should be * in reduced mode. * * phyregidx - This variable specifies which ethernet device * controls the MII Management registers which are connected * to the PHY. For now, only TSEC1 (index 0) has * access to the PHYs, so all of the entries have "0". * * The values specified in the table are taken from the board's * config file in include/configs/. When implementing a new * board with ethernet capability, it is necessary to define: * TSECn_PHY_ADDR * TSECn_PHYIDX * * for n = 1,2,3, etc. And for FEC: * FEC_PHY_ADDR * FEC_PHYIDX */ static struct tsec_info_struct tsec_info[] = { #if defined(CONFIG_MPC85XX_TSEC1) || defined(CONFIG_MPC83XX_TSEC1) {TSEC1_PHY_ADDR, TSEC_GIGABIT, TSEC1_PHYIDX}, #elif defined(CONFIG_MPC86XX_TSEC1) {TSEC1_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC1_PHYIDX}, #else { 0, 0, 0}, #endif #if defined(CONFIG_MPC85XX_TSEC2) || defined(CONFIG_MPC83XX_TSEC2) {TSEC2_PHY_ADDR, TSEC_GIGABIT, TSEC2_PHYIDX}, #elif defined(CONFIG_MPC86XX_TSEC2) {TSEC2_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC2_PHYIDX}, #else { 0, 0, 0}, #endif #ifdef CONFIG_MPC85XX_FEC {FEC_PHY_ADDR, 0, FEC_PHYIDX}, #else #if defined(CONFIG_MPC85XX_TSEC3) || defined(CONFIG_MPC83XX_TSEC3) || defined(CONFIG_MPC86XX_TSEC3) {TSEC3_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC3_PHYIDX}, #else { 0, 0, 0}, #endif #if defined(CONFIG_MPC85XX_TSEC4) || defined(CONFIG_MPC83XX_TSEC4) || defined(CONFIG_MPC86XX_TSEC4) {TSEC4_PHY_ADDR, TSEC_GIGABIT | TSEC_REDUCED, TSEC4_PHYIDX}, #else { 0, 0, 0}, #endif #endif }; #define MAXCONTROLLERS (4) static int relocated = 0; static struct tsec_private *privlist[MAXCONTROLLERS]; #ifdef __GNUC__ static RTXBD rtx __attribute__ ((aligned(8))); #else #error "rtx must be 64-bit aligned" #endif static int tsec_send(struct eth_device* dev, volatile void *packet, int length); static int tsec_recv(struct eth_device* dev); static int tsec_init(struct eth_device* dev, bd_t * bd); static void tsec_halt(struct eth_device* dev); static void init_registers(volatile tsec_t *regs); static void startup_tsec(struct eth_device *dev); static int init_phy(struct eth_device *dev); void write_phy_reg(struct tsec_private *priv, uint regnum, uint value); uint read_phy_reg(struct tsec_private *priv, uint regnum); struct phy_info * get_phy_info(struct eth_device *dev); void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd); static void adjust_link(struct eth_device *dev); static void relocate_cmds(void); static int tsec_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value); static int tsec_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value); /* Initialize device structure. Returns success if PHY * initialization succeeded (i.e. if it recognizes the PHY) */ int tsec_initialize(bd_t *bis, int index, char *devname) { struct eth_device* dev; int i; struct tsec_private *priv; dev = (struct eth_device*) malloc(sizeof *dev); if(NULL == dev) return 0; memset(dev, 0, sizeof *dev); priv = (struct tsec_private *) malloc(sizeof(*priv)); if(NULL == priv) return 0; privlist[index] = priv; priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index*TSEC_SIZE); priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR + tsec_info[index].phyregidx*TSEC_SIZE); priv->phyaddr = tsec_info[index].phyaddr; priv->flags = tsec_info[index].flags; sprintf(dev->name, devname); dev->iobase = 0; dev->priv = priv; dev->init = tsec_init; dev->halt = tsec_halt; dev->send = tsec_send; dev->recv = tsec_recv; /* Tell u-boot to get the addr from the env */ for(i=0;i<6;i++) dev->enetaddr[i] = 0; eth_register(dev); /* Reset the MAC */ priv->regs->maccfg1 |= MACCFG1_SOFT_RESET; priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET); #if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) \ && !defined(BITBANGMII) miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write); #endif /* Try to initialize PHY here, and return */ return init_phy(dev); } /* Initializes data structures and registers for the controller, * and brings the interface up. Returns the link status, meaning * that it returns success if the link is up, failure otherwise. * This allows u-boot to find the first active controller. */ int tsec_init(struct eth_device* dev, bd_t * bd) { uint tempval; char tmpbuf[MAC_ADDR_LEN]; int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Make sure the controller is stopped */ tsec_halt(dev); /* Init MACCFG2. Defaults to GMII */ regs->maccfg2 = MACCFG2_INIT_SETTINGS; /* Init ECNTRL */ regs->ecntrl = ECNTRL_INIT_SETTINGS; /* Copy the station address into the address registers. * Backwards, because little endian MACS are dumb */ for(i=0;i<MAC_ADDR_LEN;i++) { tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i]; } regs->macstnaddr1 = *((uint *)(tmpbuf)); tempval = *((uint *)(tmpbuf +4)); regs->macstnaddr2 = tempval; /* reset the indices to zero */ rxIdx = 0; txIdx = 0; /* Clear out (for the most part) the other registers */ init_registers(regs); /* Ready the device for tx/rx */ startup_tsec(dev); /* If there's no link, fail */ return priv->link; } /* Write value to the device's PHY through the registers * specified in priv, modifying the register specified in regnum. * It will wait for the write to be done (or for a timeout to * expire) before exiting */ void write_phy_reg(struct tsec_private *priv, uint regnum, uint value) { volatile tsec_t *regbase = priv->phyregs; uint phyid = priv->phyaddr; int timeout=1000000; regbase->miimadd = (phyid << 8) | regnum; regbase->miimcon = value; asm("sync"); timeout=1000000; while((regbase->miimind & MIIMIND_BUSY) && timeout--); } /* Reads register regnum on the device's PHY through the * registers specified in priv. It lowers and raises the read * command, and waits for the data to become valid (miimind * notvalid bit cleared), and the bus to cease activity (miimind * busy bit cleared), and then returns the value */ uint read_phy_reg(struct tsec_private *priv, uint regnum) { uint value; volatile tsec_t *regbase = priv->phyregs; uint phyid = priv->phyaddr; /* Put the address of the phy, and the register * number into MIIMADD */ regbase->miimadd = (phyid << 8) | regnum; /* Clear the command register, and wait */ regbase->miimcom = 0; asm("sync"); /* Initiate a read command, and wait */ regbase->miimcom = MIIM_READ_COMMAND; asm("sync"); /* Wait for the the indication that the read is done */ while((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))); /* Grab the value read from the PHY */ value = regbase->miimstat; return value; } /* Discover which PHY is attached to the device, and configure it * properly. If the PHY is not recognized, then return 0 * (failure). Otherwise, return 1 */ static int init_phy(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; struct phy_info *curphy; /* Assign a Physical address to the TBI */ { volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR); regs->tbipa = TBIPA_VALUE; regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE); regs->tbipa = TBIPA_VALUE; asm("sync"); } /* Reset MII (due to new addresses) */ priv->phyregs->miimcfg = MIIMCFG_RESET; asm("sync"); priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE; asm("sync"); while(priv->phyregs->miimind & MIIMIND_BUSY); if(0 == relocated) relocate_cmds(); /* Get the cmd structure corresponding to the attached * PHY */ curphy = get_phy_info(dev); if(NULL == curphy) { printf("%s: No PHY found\n", dev->name); return 0; } priv->phyinfo = curphy; phy_run_commands(priv, priv->phyinfo->config); return 1; } /* Returns which value to write to the control register. */ /* For 10/100, the value is slightly different */ uint mii_cr_init(uint mii_reg, struct tsec_private *priv) { if(priv->flags & TSEC_GIGABIT) return MIIM_CONTROL_INIT; else return MIIM_CR_INIT; } /* Parse the status register for link, and then do * auto-negotiation */ uint mii_parse_sr(uint mii_reg, struct tsec_private *priv) { /* * Wait if PHY is capable of autonegotiation and autonegotiation is not complete */ mii_reg = read_phy_reg(priv, MIIM_STATUS); if ((mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) { int i = 0; puts ("Waiting for PHY auto negotiation to complete"); while (!((mii_reg & PHY_BMSR_AUTN_COMP) && (mii_reg & MIIM_STATUS_LINK))) { /* * Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts (" TIMEOUT !\n"); priv->link = 0; return 0; } if ((i++ % 1000) == 0) { putc ('.'); } udelay (1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_STATUS); } puts (" done\n"); priv->link = 1; udelay (500000); /* another 500 ms (results in faster booting) */ } else { priv->link = 1; } return 0; } /* Parse the 88E1011's status register for speed and duplex * information */ uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private *priv) { uint speed; mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); if (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) && (mii_reg & MIIM_88E1011_PHYSTAT_LINK))) { int i = 0; puts ("Waiting for PHY realtime link"); while (!((mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE) && (mii_reg & MIIM_88E1011_PHYSTAT_LINK))) { /* * Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts (" TIMEOUT !\n"); priv->link = 0; break; } if ((i++ % 1000) == 0) { putc ('.'); } udelay (1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); } puts (" done\n"); udelay (500000); /* another 500 ms (results in faster booting) */ } if(mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = (mii_reg &MIIM_88E1011_PHYSTAT_SPEED); switch(speed) { case MIIM_88E1011_PHYSTAT_GBIT: priv->speed = 1000; break; case MIIM_88E1011_PHYSTAT_100: priv->speed = 100; break; default: priv->speed = 10; } return 0; } /* Parse the cis8201's status register for speed and duplex * information */ uint mii_parse_cis8201(uint mii_reg, struct tsec_private *priv) { uint speed; if(mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED; switch(speed) { case MIIM_CIS8201_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_CIS8201_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the vsc8244's status register for speed and duplex * information */ uint mii_parse_vsc8244(uint mii_reg, struct tsec_private *priv) { uint speed; if(mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED; switch(speed) { case MIIM_VSC8244_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_VSC8244_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the DM9161's status register for speed and duplex * information */ uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private *priv) { if(mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H)) priv->speed = 100; else priv->speed = 10; if(mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F)) priv->duplexity = 1; else priv->duplexity = 0; return 0; } /* Hack to write all 4 PHYs with the LED values */ uint mii_cis8204_fixled(uint mii_reg, struct tsec_private *priv) { uint phyid; volatile tsec_t *regbase = priv->phyregs; int timeout=1000000; for(phyid=0;phyid<4;phyid++) { regbase->miimadd = (phyid << 8) | mii_reg; regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT; asm("sync"); timeout=1000000; while((regbase->miimind & MIIMIND_BUSY) && timeout--); } return MIIM_CIS8204_SLEDCON_INIT; } uint mii_cis8204_setmode(uint mii_reg, struct tsec_private *priv) { if (priv->flags & TSEC_REDUCED) return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII; else return MIIM_CIS8204_EPHYCON_INIT; } /* Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, * choose a more appropriate value) */ static void init_registers(volatile tsec_t *regs) { /* Clear IEVENT */ regs->ievent = IEVENT_INIT_CLEAR; regs->imask = IMASK_INIT_CLEAR; regs->hash.iaddr0 = 0; regs->hash.iaddr1 = 0; regs->hash.iaddr2 = 0; regs->hash.iaddr3 = 0; regs->hash.iaddr4 = 0; regs->hash.iaddr5 = 0; regs->hash.iaddr6 = 0; regs->hash.iaddr7 = 0; regs->hash.gaddr0 = 0; regs->hash.gaddr1 = 0; regs->hash.gaddr2 = 0; regs->hash.gaddr3 = 0; regs->hash.gaddr4 = 0; regs->hash.gaddr5 = 0; regs->hash.gaddr6 = 0; regs->hash.gaddr7 = 0; regs->rctrl = 0x00000000; /* Init RMON mib registers */ memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t)); regs->rmon.cam1 = 0xffffffff; regs->rmon.cam2 = 0xffffffff; regs->mrblr = MRBLR_INIT_SETTINGS; regs->minflr = MINFLR_INIT_SETTINGS; regs->attr = ATTR_INIT_SETTINGS; regs->attreli = ATTRELI_INIT_SETTINGS; } /* Configure maccfg2 based on negotiated speed and duplex * reported by PHY handling code */ static void adjust_link(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; if(priv->link) { if(priv->duplexity != 0) regs->maccfg2 |= MACCFG2_FULL_DUPLEX; else regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX); switch(priv->speed) { case 1000: regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF)) | MACCFG2_GMII); break; case 100: case 10: regs->maccfg2 = ((regs->maccfg2&~(MACCFG2_IF)) | MACCFG2_MII); /* If We're in reduced mode, we need * to say whether we're 10 or 100 MB. */ if ((priv->speed == 100) && (priv->flags & TSEC_REDUCED)) regs->ecntrl |= ECNTRL_R100; else regs->ecntrl &= ~(ECNTRL_R100); break; default: printf("%s: Speed was bad\n", dev->name); break; } printf("Speed: %d, %s duplex\n", priv->speed, (priv->duplexity) ? "full" : "half"); } else { printf("%s: No link.\n", dev->name); } } /* Set up the buffers and their descriptors, and bring up the * interface */ static void startup_tsec(struct eth_device *dev) { int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Point to the buffer descriptors */ regs->tbase = (unsigned int)(&rtx.txbd[txIdx]); regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]); /* Initialize the Rx Buffer descriptors */ for (i = 0; i < PKTBUFSRX; i++) { rtx.rxbd[i].status = RXBD_EMPTY; rtx.rxbd[i].length = 0; rtx.rxbd[i].bufPtr = (uint)NetRxPackets[i]; } rtx.rxbd[PKTBUFSRX -1].status |= RXBD_WRAP; /* Initialize the TX Buffer Descriptors */ for(i=0; i<TX_BUF_CNT; i++) { rtx.txbd[i].status = 0; rtx.txbd[i].length = 0; rtx.txbd[i].bufPtr = 0; } rtx.txbd[TX_BUF_CNT -1].status |= TXBD_WRAP; /* Start up the PHY */ phy_run_commands(priv, priv->phyinfo->startup); adjust_link(dev); /* Enable Transmit and Receive */ regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ regs->dmactrl |= DMACTRL_INIT_SETTINGS; regs->tstat = TSTAT_CLEAR_THALT; regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); } /* This returns the status bits of the device. The return value * is never checked, and this is what the 8260 driver did, so we * do the same. Presumably, this would be zero if there were no * errors */ static int tsec_send(struct eth_device* dev, volatile void *packet, int length) { int i; int result = 0; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Find an empty buffer descriptor */ for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug ("%s: tsec: tx buffers full\n", dev->name); return result; } } rtx.txbd[txIdx].bufPtr = (uint)packet; rtx.txbd[txIdx].length = length; rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT); /* Tell the DMA to go */ regs->tstat = TSTAT_CLEAR_THALT; /* Wait for buffer to be transmitted */ for(i=0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug ("%s: tsec: tx error\n", dev->name); return result; } } txIdx = (txIdx + 1) % TX_BUF_CNT; result = rtx.txbd[txIdx].status & TXBD_STATS; return result; } static int tsec_recv(struct eth_device* dev) { int length; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; while(!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) { length = rtx.rxbd[rxIdx].length; /* Send the packet up if there were no errors */ if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) { NetReceive(NetRxPackets[rxIdx], length - 4); } else { printf("Got error %x\n", (rtx.rxbd[rxIdx].status & RXBD_STATS)); } rtx.rxbd[rxIdx].length = 0; /* Set the wrap bit if this is the last element in the list */ rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); rxIdx = (rxIdx + 1) % PKTBUFSRX; } if(regs->ievent&IEVENT_BSY) { regs->ievent = IEVENT_BSY; regs->rstat = RSTAT_CLEAR_RHALT; } return -1; } /* Stop the interface */ static void tsec_halt(struct eth_device* dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS); while(!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))); regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN); /* Shut down the PHY, as needed */ phy_run_commands(priv, priv->phyinfo->shutdown); } struct phy_info phy_info_M88E1011S = { 0x01410c6, "Marvell 88E1011S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_M88E1111S = { 0x01410cc, "Marvell 88E1111S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv) { unsigned int temp; uint mii_data = read_phy_reg(priv, mii_reg); /* Setting MIIM_88E1145_PHY_EXT_CR */ if (priv->flags & TSEC_REDUCED) return mii_data | MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY; else return mii_data; } static struct phy_info phy_info_M88E1145 = { 0x01410cd, "Marvell 88E1145", 4, (struct phy_cmd[]) { /* config */ /* Errata E0, E1 */ {29, 0x001b, NULL}, {30, 0x418f, NULL}, {29, 0x0016, NULL}, {30, 0xa2da, NULL}, /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL}, {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL}, /* Read the Status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_cis8204 = { 0x3f11, "Cicada Cis8204", 6, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT, &mii_cis8204_fixled}, {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, &mii_cis8204_setmode}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; /* Cicada 8201 */ struct phy_info phy_info_cis8201 = { 0xfc41, "CIS8201", 4, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Set up the interface mode */ {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_VSC8244 = { 0x3f1b, "Vitesse VSC8244", 6, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_dm9161 = { 0x0181b88, "Davicom DM9161E", 4, (struct phy_cmd[]) { /* config */ {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL}, /* Do not bypass the scrambler/descrambler */ {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL}, /* Clear 10BTCSR to default */ {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CR_INIT, NULL}, /* Restart Auto Negotiation */ {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv) { unsigned int speed; if (priv->link) { speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK; switch (speed) { case MIIM_LXT971_SR2_10HDX: priv->speed = 10; priv->duplexity = 0; break; case MIIM_LXT971_SR2_10FDX: priv->speed = 10; priv->duplexity = 1; break; case MIIM_LXT971_SR2_100HDX: priv->speed = 100; priv->duplexity = 0; default: priv->speed = 100; priv->duplexity = 1; break; } } else { priv->speed = 0; priv->duplexity = 0; } return 0; } static struct phy_info phy_info_lxt971 = { 0x0001378e, "LXT971", 4, (struct phy_cmd []) { /* config */ { MIIM_CR, MIIM_CR_INIT, mii_cr_init }, /* autonegotiate */ { miim_end, } }, (struct phy_cmd []) { /* startup - enable interrupts */ /* { 0x12, 0x00f2, NULL }, */ { MIIM_STATUS, miim_read, NULL }, { MIIM_STATUS, miim_read, &mii_parse_sr }, { MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2 }, { miim_end, } }, (struct phy_cmd []) { /* shutdown - disable interrupts */ { miim_end, } }, }; /* Parse the DP83865's link and auto-neg status register for speed and duplex * information */ uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv) { switch (mii_reg & MIIM_DP83865_SPD_MASK) { case MIIM_DP83865_SPD_1000: priv->speed = 1000; break; case MIIM_DP83865_SPD_100: priv->speed = 100; break; default: priv->speed = 10; break; } if (mii_reg & MIIM_DP83865_DPX_FULL) priv->duplexity = 1; else priv->duplexity = 0; return 0; } struct phy_info phy_info_dp83865 = { 0x20005c7, "NatSemi DP83865", 4, (struct phy_cmd[]) { /* config */ {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the link and auto-neg status */ {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info *phy_info[] = { #if 0 &phy_info_cis8201, #endif &phy_info_cis8204, &phy_info_M88E1011S, &phy_info_M88E1111S, &phy_info_M88E1145, &phy_info_dm9161, &phy_info_lxt971, &phy_info_VSC8244, &phy_info_dp83865, NULL }; /* Grab the identifier of the device's PHY, and search through * all of the known PHYs to see if one matches. If so, return * it, if not, return NULL */ struct phy_info * get_phy_info(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; uint phy_reg, phy_ID; int i; struct phy_info *theInfo = NULL; /* Grab the bits from PHYIR1, and put them in the upper half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR1); phy_ID = (phy_reg & 0xffff) << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR2); phy_ID |= (phy_reg & 0xffff); /* loop through all the known PHY types, and find one that */ /* matches the ID we read from the PHY. */ for(i=0; phy_info[i]; i++) { if(phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) theInfo = phy_info[i]; } if(theInfo == NULL) { printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID); return NULL; } else { debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID); } return theInfo; } /* Execute the given series of commands on the given device's * PHY, running functions as necessary*/ void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd) { int i; uint result; volatile tsec_t *phyregs = priv->phyregs; phyregs->miimcfg = MIIMCFG_RESET; phyregs->miimcfg = MIIMCFG_INIT_VALUE; while(phyregs->miimind & MIIMIND_BUSY); for(i=0;cmd->mii_reg != miim_end;i++) { if(cmd->mii_data == miim_read) { result = read_phy_reg(priv, cmd->mii_reg); if(cmd->funct != NULL) (*(cmd->funct))(result, priv); } else { if(cmd->funct != NULL) result = (*(cmd->funct))(cmd->mii_reg, priv); else result = cmd->mii_data; write_phy_reg(priv, cmd->mii_reg, result); } cmd++; } } /* Relocate the function pointers in the phy cmd lists */ static void relocate_cmds(void) { struct phy_cmd **cmdlistptr; struct phy_cmd *cmd; int i,j,k; for(i=0; phy_info[i]; i++) { /* First thing's first: relocate the pointers to the * PHY command structures (the structs were done) */ phy_info[i] = (struct phy_info *) ((uint)phy_info[i] + gd->reloc_off); phy_info[i]->name += gd->reloc_off; phy_info[i]->config = (struct phy_cmd *)((uint)phy_info[i]->config + gd->reloc_off); phy_info[i]->startup = (struct phy_cmd *)((uint)phy_info[i]->startup + gd->reloc_off); phy_info[i]->shutdown = (struct phy_cmd *)((uint)phy_info[i]->shutdown + gd->reloc_off); cmdlistptr = &phy_info[i]->config; j=0; for(;cmdlistptr <= &phy_info[i]->shutdown;cmdlistptr++) { k=0; for(cmd=*cmdlistptr;cmd->mii_reg != miim_end;cmd++) { /* Only relocate non-NULL pointers */ if(cmd->funct) cmd->funct += gd->reloc_off; k++; } j++; } } relocated = 1; } #if defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) \ && !defined(BITBANGMII) struct tsec_private * get_priv_for_phy(unsigned char phyaddr) { int i; for(i=0;i<MAXCONTROLLERS;i++) { if(privlist[i]->phyaddr == phyaddr) return privlist[i]; } return NULL; } /* * Read a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value) { unsigned short ret; struct tsec_private *priv = get_priv_for_phy(addr); if(NULL == priv) { printf("Can't read PHY at address %d\n", addr); return -1; } ret = (unsigned short)read_phy_reg(priv, reg); *value = ret; return 0; } /* * Write a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value) { struct tsec_private *priv = get_priv_for_phy(addr); if(NULL == priv) { printf("Can't write PHY at address %d\n", addr); return -1; } write_phy_reg(priv, reg, value); return 0; } #endif /* defined(CONFIG_MII) || (CONFIG_COMMANDS & CFG_CMD_MII) && !defined(BITBANGMII) */ #endif /* CONFIG_TSEC_ENET */