/* * Copyright (c) 2011-12 The Chromium OS Authors. * * SPDX-License-Identifier: GPL-2.0+ * * This file is derived from the flashrom project. */ #include <common.h> #include <malloc.h> #include <spi.h> #include <pci.h> #include <pci_ids.h> #include <asm/io.h> #include "ich.h" #define SPI_OPCODE_WREN 0x06 #define SPI_OPCODE_FAST_READ 0x0b struct ich_ctlr { pci_dev_t dev; /* PCI device number */ int ich_version; /* Controller version, 7 or 9 */ int ichspi_lock; int locked; uint8_t *opmenu; int menubytes; void *base; /* Base of register set */ uint16_t *preop; uint16_t *optype; uint32_t *addr; uint8_t *data; unsigned databytes; uint8_t *status; uint16_t *control; uint32_t *bbar; uint32_t *pr; /* only for ich9 */ uint8_t *speed; /* pointer to speed control */ ulong max_speed; /* Maximum bus speed in MHz */ }; struct ich_ctlr ctlr; static inline struct ich_spi_slave *to_ich_spi(struct spi_slave *slave) { return container_of(slave, struct ich_spi_slave, slave); } static unsigned int ich_reg(const void *addr) { return (unsigned)(addr - ctlr.base) & 0xffff; } static u8 ich_readb(const void *addr) { u8 value = readb(addr); debug("read %2.2x from %4.4x\n", value, ich_reg(addr)); return value; } static u16 ich_readw(const void *addr) { u16 value = readw(addr); debug("read %4.4x from %4.4x\n", value, ich_reg(addr)); return value; } static u32 ich_readl(const void *addr) { u32 value = readl(addr); debug("read %8.8x from %4.4x\n", value, ich_reg(addr)); return value; } static void ich_writeb(u8 value, void *addr) { writeb(value, addr); debug("wrote %2.2x to %4.4x\n", value, ich_reg(addr)); } static void ich_writew(u16 value, void *addr) { writew(value, addr); debug("wrote %4.4x to %4.4x\n", value, ich_reg(addr)); } static void ich_writel(u32 value, void *addr) { writel(value, addr); debug("wrote %8.8x to %4.4x\n", value, ich_reg(addr)); } static void write_reg(const void *value, void *dest, uint32_t size) { memcpy_toio(dest, value, size); } static void read_reg(const void *src, void *value, uint32_t size) { memcpy_fromio(value, src, size); } static void ich_set_bbar(struct ich_ctlr *ctlr, uint32_t minaddr) { const uint32_t bbar_mask = 0x00ffff00; uint32_t ichspi_bbar; minaddr &= bbar_mask; ichspi_bbar = ich_readl(ctlr->bbar) & ~bbar_mask; ichspi_bbar |= minaddr; ich_writel(ichspi_bbar, ctlr->bbar); } int spi_cs_is_valid(unsigned int bus, unsigned int cs) { puts("spi_cs_is_valid used but not implemented\n"); return 0; } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct ich_spi_slave *ich; ich = spi_alloc_slave(struct ich_spi_slave, bus, cs); if (!ich) { puts("ICH SPI: Out of memory\n"); return NULL; } /* * Yes this controller can only write a small number of bytes at * once! The limit is typically 64 bytes. */ ich->slave.max_write_size = ctlr.databytes; ich->speed = max_hz; return &ich->slave; } void spi_free_slave(struct spi_slave *slave) { struct ich_spi_slave *ich = to_ich_spi(slave); free(ich); } /* * Check if this device ID matches one of supported Intel PCH devices. * * Return the ICH version if there is a match, or zero otherwise. */ static int get_ich_version(uint16_t device_id) { if (device_id == PCI_DEVICE_ID_INTEL_TGP_LPC) return 7; if ((device_id >= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MIN && device_id <= PCI_DEVICE_ID_INTEL_COUGARPOINT_LPC_MAX) || (device_id >= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MIN && device_id <= PCI_DEVICE_ID_INTEL_PANTHERPOINT_LPC_MAX)) return 9; return 0; } /* @return 1 if the SPI flash supports the 33MHz speed */ static int ich9_can_do_33mhz(pci_dev_t dev) { u32 fdod, speed; /* Observe SPI Descriptor Component Section 0 */ pci_write_config_dword(dev, 0xb0, 0x1000); /* Extract the Write/Erase SPI Frequency from descriptor */ pci_read_config_dword(dev, 0xb4, &fdod); /* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */ speed = (fdod >> 21) & 7; return speed == 1; } static int ich_find_spi_controller(pci_dev_t *devp, int *ich_versionp) { int last_bus = pci_last_busno(); int bus; if (last_bus == -1) { debug("No PCI busses?\n"); return -1; } for (bus = 0; bus <= last_bus; bus++) { uint16_t vendor_id, device_id; uint32_t ids; pci_dev_t dev; dev = PCI_BDF(bus, 31, 0); pci_read_config_dword(dev, 0, &ids); vendor_id = ids; device_id = ids >> 16; if (vendor_id == PCI_VENDOR_ID_INTEL) { *devp = dev; *ich_versionp = get_ich_version(device_id); return 0; } } debug("ICH SPI: No ICH found.\n"); return -1; } static int ich_init_controller(struct ich_ctlr *ctlr) { uint8_t *rcrb; /* Root Complex Register Block */ uint32_t rcba; /* Root Complex Base Address */ pci_read_config_dword(ctlr->dev, 0xf0, &rcba); /* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */ rcrb = (uint8_t *)(rcba & 0xffffc000); if (ctlr->ich_version == 7) { struct ich7_spi_regs *ich7_spi; ich7_spi = (struct ich7_spi_regs *)(rcrb + 0x3020); ctlr->ichspi_lock = ich_readw(&ich7_spi->spis) & SPIS_LOCK; ctlr->opmenu = ich7_spi->opmenu; ctlr->menubytes = sizeof(ich7_spi->opmenu); ctlr->optype = &ich7_spi->optype; ctlr->addr = &ich7_spi->spia; ctlr->data = (uint8_t *)ich7_spi->spid; ctlr->databytes = sizeof(ich7_spi->spid); ctlr->status = (uint8_t *)&ich7_spi->spis; ctlr->control = &ich7_spi->spic; ctlr->bbar = &ich7_spi->bbar; ctlr->preop = &ich7_spi->preop; ctlr->base = ich7_spi; } else if (ctlr->ich_version == 9) { struct ich9_spi_regs *ich9_spi; ich9_spi = (struct ich9_spi_regs *)(rcrb + 0x3800); ctlr->ichspi_lock = ich_readw(&ich9_spi->hsfs) & HSFS_FLOCKDN; ctlr->opmenu = ich9_spi->opmenu; ctlr->menubytes = sizeof(ich9_spi->opmenu); ctlr->optype = &ich9_spi->optype; ctlr->addr = &ich9_spi->faddr; ctlr->data = (uint8_t *)ich9_spi->fdata; ctlr->databytes = sizeof(ich9_spi->fdata); ctlr->status = &ich9_spi->ssfs; ctlr->control = (uint16_t *)ich9_spi->ssfc; ctlr->speed = ich9_spi->ssfc + 2; ctlr->bbar = &ich9_spi->bbar; ctlr->preop = &ich9_spi->preop; ctlr->pr = &ich9_spi->pr[0]; ctlr->base = ich9_spi; } else { debug("ICH SPI: Unrecognized ICH version %d.\n", ctlr->ich_version); return -1; } debug("ICH SPI: Version %d detected\n", ctlr->ich_version); /* Work out the maximum speed we can support */ ctlr->max_speed = 20000000; if (ctlr->ich_version == 9 && ich9_can_do_33mhz(ctlr->dev)) ctlr->max_speed = 33000000; ich_set_bbar(ctlr, 0); return 0; } void spi_init(void) { uint8_t bios_cntl; if (ich_find_spi_controller(&ctlr.dev, &ctlr.ich_version)) { printf("ICH SPI: Cannot find device\n"); return; } if (ich_init_controller(&ctlr)) { printf("ICH SPI: Cannot setup controller\n"); return; } /* * Disable the BIOS write protect so write commands are allowed. On * v9, deassert SMM BIOS Write Protect Disable. */ pci_read_config_byte(ctlr.dev, 0xdc, &bios_cntl); if (ctlr.ich_version == 9) bios_cntl &= ~(1 << 5); pci_write_config_byte(ctlr.dev, 0xdc, bios_cntl | 0x1); } int spi_claim_bus(struct spi_slave *slave) { /* Handled by ICH automatically. */ return 0; } void spi_release_bus(struct spi_slave *slave) { /* Handled by ICH automatically. */ } void spi_cs_activate(struct spi_slave *slave) { /* Handled by ICH automatically. */ } void spi_cs_deactivate(struct spi_slave *slave) { /* Handled by ICH automatically. */ } static inline void spi_use_out(struct spi_trans *trans, unsigned bytes) { trans->out += bytes; trans->bytesout -= bytes; } static inline void spi_use_in(struct spi_trans *trans, unsigned bytes) { trans->in += bytes; trans->bytesin -= bytes; } static void spi_setup_type(struct spi_trans *trans, int data_bytes) { trans->type = 0xFF; /* Try to guess spi type from read/write sizes. */ if (trans->bytesin == 0) { if (trans->bytesout + data_bytes > 4) /* * If bytesin = 0 and bytesout > 4, we presume this is * a write data operation, which is accompanied by an * address. */ trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; else trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; return; } if (trans->bytesout == 1) { /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; return; } if (trans->bytesout == 4) /* and bytesin is > 0 */ trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; /* Fast read command is called with 5 bytes instead of 4 */ if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) { trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; --trans->bytesout; } } static int spi_setup_opcode(struct spi_trans *trans) { uint16_t optypes; uint8_t opmenu[ctlr.menubytes]; trans->opcode = trans->out[0]; spi_use_out(trans, 1); if (!ctlr.ichspi_lock) { /* The lock is off, so just use index 0. */ ich_writeb(trans->opcode, ctlr.opmenu); optypes = ich_readw(ctlr.optype); optypes = (optypes & 0xfffc) | (trans->type & 0x3); ich_writew(optypes, ctlr.optype); return 0; } else { /* The lock is on. See if what we need is on the menu. */ uint8_t optype; uint16_t opcode_index; /* Write Enable is handled as atomic prefix */ if (trans->opcode == SPI_OPCODE_WREN) return 0; read_reg(ctlr.opmenu, opmenu, sizeof(opmenu)); for (opcode_index = 0; opcode_index < ctlr.menubytes; opcode_index++) { if (opmenu[opcode_index] == trans->opcode) break; } if (opcode_index == ctlr.menubytes) { printf("ICH SPI: Opcode %x not found\n", trans->opcode); return -1; } optypes = ich_readw(ctlr.optype); optype = (optypes >> (opcode_index * 2)) & 0x3; if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && trans->bytesout >= 3) { /* We guessed wrong earlier. Fix it up. */ trans->type = optype; } if (optype != trans->type) { printf("ICH SPI: Transaction doesn't fit type %d\n", optype); return -1; } return opcode_index; } } static int spi_setup_offset(struct spi_trans *trans) { /* Separate the SPI address and data. */ switch (trans->type) { case SPI_OPCODE_TYPE_READ_NO_ADDRESS: case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS: return 0; case SPI_OPCODE_TYPE_READ_WITH_ADDRESS: case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS: trans->offset = ((uint32_t)trans->out[0] << 16) | ((uint32_t)trans->out[1] << 8) | ((uint32_t)trans->out[2] << 0); spi_use_out(trans, 3); return 1; default: printf("Unrecognized SPI transaction type %#x\n", trans->type); return -1; } } /* * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set * below is true) or 0. In case the wait was for the bit(s) to set - write * those bits back, which would cause resetting them. * * Return the last read status value on success or -1 on failure. */ static int ich_status_poll(u16 bitmask, int wait_til_set) { int timeout = 600000; /* This will result in 6s */ u16 status = 0; while (timeout--) { status = ich_readw(ctlr.status); if (wait_til_set ^ ((status & bitmask) == 0)) { if (wait_til_set) ich_writew((status & bitmask), ctlr.status); return status; } udelay(10); } printf("ICH SPI: SCIP timeout, read %x, expected %x\n", status, bitmask); return -1; } /* int spi_xfer(struct spi_slave *slave, const void *dout, unsigned int bitsout, void *din, unsigned int bitsin) */ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct ich_spi_slave *ich = to_ich_spi(slave); uint16_t control; int16_t opcode_index; int with_address; int status; int bytes = bitlen / 8; struct spi_trans *trans = &ich->trans; unsigned type = flags & (SPI_XFER_BEGIN | SPI_XFER_END); int using_cmd = 0; /* Align read transactions to 64-byte boundaries */ char buff[ctlr.databytes]; /* Ee don't support writing partial bytes. */ if (bitlen % 8) { debug("ICH SPI: Accessing partial bytes not supported\n"); return -1; } /* An empty end transaction can be ignored */ if (type == SPI_XFER_END && !dout && !din) return 0; if (type & SPI_XFER_BEGIN) memset(trans, '\0', sizeof(*trans)); /* Dp we need to come back later to finish it? */ if (dout && type == SPI_XFER_BEGIN) { if (bytes > ICH_MAX_CMD_LEN) { debug("ICH SPI: Command length limit exceeded\n"); return -1; } memcpy(trans->cmd, dout, bytes); trans->cmd_len = bytes; debug("ICH SPI: Saved %d bytes\n", bytes); return 0; } /* * We process a 'middle' spi_xfer() call, which has no * SPI_XFER_BEGIN/END, as an independent transaction as if it had * an end. We therefore repeat the command. This is because ICH * seems to have no support for this, or because interest (in digging * out the details and creating a special case in the code) is low. */ if (trans->cmd_len) { trans->out = trans->cmd; trans->bytesout = trans->cmd_len; using_cmd = 1; debug("ICH SPI: Using %d bytes\n", trans->cmd_len); } else { trans->out = dout; trans->bytesout = dout ? bytes : 0; } trans->in = din; trans->bytesin = din ? bytes : 0; /* There has to always at least be an opcode. */ if (!trans->bytesout) { debug("ICH SPI: No opcode for transfer\n"); return -1; } if (ich_status_poll(SPIS_SCIP, 0) == -1) return -1; ich_writew(SPIS_CDS | SPIS_FCERR, ctlr.status); spi_setup_type(trans, using_cmd ? bytes : 0); opcode_index = spi_setup_opcode(trans); if (opcode_index < 0) return -1; with_address = spi_setup_offset(trans); if (with_address < 0) return -1; if (trans->opcode == SPI_OPCODE_WREN) { /* * Treat Write Enable as Atomic Pre-Op if possible * in order to prevent the Management Engine from * issuing a transaction between WREN and DATA. */ if (!ctlr.ichspi_lock) ich_writew(trans->opcode, ctlr.preop); return 0; } if (ctlr.speed && ctlr.max_speed >= 33000000) { int byte; byte = ich_readb(ctlr.speed); if (ich->speed >= 33000000) byte |= SSFC_SCF_33MHZ; else byte &= ~SSFC_SCF_33MHZ; ich_writeb(byte, ctlr.speed); } /* See if we have used up the command data */ if (using_cmd && dout && bytes) { trans->out = dout; trans->bytesout = bytes; debug("ICH SPI: Moving to data, %d bytes\n", bytes); } /* Preset control fields */ control = ich_readw(ctlr.control); control &= ~SSFC_RESERVED; control = SPIC_SCGO | ((opcode_index & 0x07) << 4); /* Issue atomic preop cycle if needed */ if (ich_readw(ctlr.preop)) control |= SPIC_ACS; if (!trans->bytesout && !trans->bytesin) { /* SPI addresses are 24 bit only */ if (with_address) ich_writel(trans->offset & 0x00FFFFFF, ctlr.addr); /* * This is a 'no data' command (like Write Enable), its * bitesout size was 1, decremented to zero while executing * spi_setup_opcode() above. Tell the chip to send the * command. */ ich_writew(control, ctlr.control); /* wait for the result */ status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); if (status == -1) return -1; if (status & SPIS_FCERR) { debug("ICH SPI: Command transaction error\n"); return -1; } return 0; } /* * Check if this is a write command atempting to transfer more bytes * than the controller can handle. Iterations for writes are not * supported here because each SPI write command needs to be preceded * and followed by other SPI commands, and this sequence is controlled * by the SPI chip driver. */ if (trans->bytesout > ctlr.databytes) { debug("ICH SPI: Too much to write. This should be prevented by the driver's max_write_size?\n"); return -1; } /* * Read or write up to databytes bytes at a time until everything has * been sent. */ while (trans->bytesout || trans->bytesin) { uint32_t data_length; uint32_t aligned_offset; uint32_t diff; aligned_offset = trans->offset & ~(ctlr.databytes - 1); diff = trans->offset - aligned_offset; /* SPI addresses are 24 bit only */ ich_writel(aligned_offset & 0x00FFFFFF, ctlr.addr); if (trans->bytesout) data_length = min(trans->bytesout, ctlr.databytes); else data_length = min(trans->bytesin, ctlr.databytes); /* Program data into FDATA0 to N */ if (trans->bytesout) { write_reg(trans->out, ctlr.data, data_length); spi_use_out(trans, data_length); if (with_address) trans->offset += data_length; } /* Add proper control fields' values */ control &= ~((ctlr.databytes - 1) << 8); control |= SPIC_DS; control |= (data_length - 1) << 8; /* write it */ ich_writew(control, ctlr.control); /* Wait for Cycle Done Status or Flash Cycle Error. */ status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); if (status == -1) return -1; if (status & SPIS_FCERR) { debug("ICH SPI: Data transaction error\n"); return -1; } if (trans->bytesin) { if (diff) { data_length -= diff; read_reg(ctlr.data, buff, ctlr.databytes); memcpy(trans->in, buff + diff, data_length); } else { read_reg(ctlr.data, trans->in, data_length); } spi_use_in(trans, data_length); if (with_address) trans->offset += data_length; } } /* Clear atomic preop now that xfer is done */ ich_writew(0, ctlr.preop); return 0; } /* * This uses the SPI controller from the Intel Cougar Point and Panther Point * PCH to write-protect portions of the SPI flash until reboot. The changes * don't actually take effect until the HSFS[FLOCKDN] bit is set, but that's * done elsewhere. */ int spi_write_protect_region(uint32_t lower_limit, uint32_t length, int hint) { uint32_t tmplong; uint32_t upper_limit; if (!ctlr.pr) { printf("%s: operation not supported on this chipset\n", __func__); return -1; } if (length == 0 || lower_limit > (0xFFFFFFFFUL - length) + 1 || hint < 0 || hint > 4) { printf("%s(0x%x, 0x%x, %d): invalid args\n", __func__, lower_limit, length, hint); return -1; } upper_limit = lower_limit + length - 1; /* * Determine bits to write, as follows: * 31 Write-protection enable (includes erase operation) * 30:29 reserved * 28:16 Upper Limit (FLA address bits 24:12, with 11:0 == 0xfff) * 15 Read-protection enable * 14:13 reserved * 12:0 Lower Limit (FLA address bits 24:12, with 11:0 == 0x000) */ tmplong = 0x80000000 | ((upper_limit & 0x01fff000) << 4) | ((lower_limit & 0x01fff000) >> 12); printf("%s: writing 0x%08x to %p\n", __func__, tmplong, &ctlr.pr[hint]); ctlr.pr[hint] = tmplong; return 0; }