/*
* (C) Copyright 2013
* Faraday Technology Corporation.
* Kuo-Jung Su
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include
#include
#include
#include
#include
#ifndef CONFIG_FTSSP010_BASE_LIST
#define CONFIG_FTSSP010_BASE_LIST { CONFIG_FTSSP010_BASE }
#endif
#ifndef CONFIG_FTSSP010_GPIO_BASE
#define CONFIG_FTSSP010_GPIO_BASE 0
#endif
#ifndef CONFIG_FTSSP010_GPIO_LIST
#define CONFIG_FTSSP010_GPIO_LIST { CONFIG_FTSSP010_GPIO_BASE }
#endif
#ifndef CONFIG_FTSSP010_CLOCK
#define CONFIG_FTSSP010_CLOCK clk_get_rate("SSP");
#endif
#ifndef CONFIG_FTSSP010_TIMEOUT
#define CONFIG_FTSSP010_TIMEOUT 100
#endif
/* FTSSP010 chip registers */
struct ftssp010_regs {
uint32_t cr[3];/* control register */
uint32_t sr; /* status register */
uint32_t icr; /* interrupt control register */
uint32_t isr; /* interrupt status register */
uint32_t dr; /* data register */
uint32_t rsvd[17];
uint32_t revr; /* revision register */
uint32_t fear; /* feature register */
};
/* Control Register 0 */
#define CR0_FFMT_MASK (7 << 12)
#define CR0_FFMT_SSP (0 << 12)
#define CR0_FFMT_SPI (1 << 12)
#define CR0_FFMT_MICROWIRE (2 << 12)
#define CR0_FFMT_I2S (3 << 12)
#define CR0_FFMT_AC97 (4 << 12)
#define CR0_FLASH (1 << 11)
#define CR0_FSDIST(x) (((x) & 0x03) << 8)
#define CR0_LOOP (1 << 7) /* loopback mode */
#define CR0_LSB (1 << 6) /* LSB */
#define CR0_FSPO (1 << 5) /* fs atcive low (I2S only) */
#define CR0_FSJUSTIFY (1 << 4)
#define CR0_OPM_SLAVE (0 << 2)
#define CR0_OPM_MASTER (3 << 2)
#define CR0_OPM_I2S_MSST (3 << 2) /* master stereo mode */
#define CR0_OPM_I2S_MSMO (2 << 2) /* master mono mode */
#define CR0_OPM_I2S_SLST (1 << 2) /* slave stereo mode */
#define CR0_OPM_I2S_SLMO (0 << 2) /* slave mono mode */
#define CR0_SCLKPO (1 << 1) /* clock polarity */
#define CR0_SCLKPH (1 << 0) /* clock phase */
/* Control Register 1 */
#define CR1_PDL(x) (((x) & 0xff) << 24) /* padding length */
#define CR1_SDL(x) ((((x) - 1) & 0x1f) << 16) /* data length */
#define CR1_DIV(x) (((x) - 1) & 0xffff) /* clock divider */
/* Control Register 2 */
#define CR2_CS(x) (((x) & 3) << 10) /* CS/FS select */
#define CR2_FS (1 << 9) /* CS/FS signal level */
#define CR2_TXEN (1 << 8) /* tx enable */
#define CR2_RXEN (1 << 7) /* rx enable */
#define CR2_RESET (1 << 6) /* chip reset */
#define CR2_TXFC (1 << 3) /* tx fifo Clear */
#define CR2_RXFC (1 << 2) /* rx fifo Clear */
#define CR2_TXDOE (1 << 1) /* tx data output enable */
#define CR2_EN (1 << 0) /* chip enable */
/* Status Register */
#define SR_RFF (1 << 0) /* rx fifo full */
#define SR_TFNF (1 << 1) /* tx fifo not full */
#define SR_BUSY (1 << 2) /* chip busy */
#define SR_RFVE(reg) (((reg) >> 4) & 0x1f) /* rx fifo valid entries */
#define SR_TFVE(reg) (((reg) >> 12) & 0x1f) /* tx fifo valid entries */
/* Feature Register */
#define FEAR_BITS(reg) ((((reg) >> 0) & 0xff) + 1) /* data width */
#define FEAR_RFSZ(reg) ((((reg) >> 8) & 0xff) + 1) /* rx fifo size */
#define FEAR_TFSZ(reg) ((((reg) >> 16) & 0xff) + 1) /* tx fifo size */
#define FEAR_AC97 (1 << 24)
#define FEAR_I2S (1 << 25)
#define FEAR_SPI_MWR (1 << 26)
#define FEAR_SSP (1 << 27)
#define FEAR_SPDIF (1 << 28)
/* FTGPIO010 chip registers */
struct ftgpio010_regs {
uint32_t out; /* 0x00: Data Output */
uint32_t in; /* 0x04: Data Input */
uint32_t dir; /* 0x08: Direction */
uint32_t bypass; /* 0x0c: Bypass */
uint32_t set; /* 0x10: Data Set */
uint32_t clr; /* 0x14: Data Clear */
uint32_t pull_up; /* 0x18: Pull-Up Enabled */
uint32_t pull_st; /* 0x1c: Pull State (0=pull-down, 1=pull-up) */
};
struct ftssp010_gpio {
struct ftgpio010_regs *regs;
uint32_t pin;
};
struct ftssp010_spi {
struct spi_slave slave;
struct ftssp010_gpio gpio;
struct ftssp010_regs *regs;
uint32_t fifo;
uint32_t mode;
uint32_t div;
uint32_t clk;
uint32_t speed;
uint32_t revision;
};
static inline struct ftssp010_spi *to_ftssp010_spi(struct spi_slave *slave)
{
return container_of(slave, struct ftssp010_spi, slave);
}
static int get_spi_chip(int bus, struct ftssp010_spi *chip)
{
uint32_t fear, base[] = CONFIG_FTSSP010_BASE_LIST;
if (bus >= ARRAY_SIZE(base) || !base[bus])
return -1;
chip->regs = (struct ftssp010_regs *)base[bus];
chip->revision = readl(&chip->regs->revr);
fear = readl(&chip->regs->fear);
chip->fifo = min_t(uint32_t, FEAR_TFSZ(fear), FEAR_RFSZ(fear));
return 0;
}
static int get_spi_gpio(int bus, struct ftssp010_gpio *chip)
{
uint32_t base[] = CONFIG_FTSSP010_GPIO_LIST;
if (bus >= ARRAY_SIZE(base) || !base[bus])
return -1;
chip->regs = (struct ftgpio010_regs *)(base[bus] & 0xfff00000);
chip->pin = base[bus] & 0x1f;
/* make it an output pin */
setbits_le32(&chip->regs->dir, 1 << chip->pin);
return 0;
}
static int ftssp010_wait(struct ftssp010_spi *chip)
{
struct ftssp010_regs *regs = chip->regs;
int ret = -1;
ulong t;
/* wait until device idle */
for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
if (readl(®s->sr) & SR_BUSY)
continue;
ret = 0;
break;
}
if (ret)
puts("ftspi010: busy timeout\n");
return ret;
}
static int ftssp010_wait_tx(struct ftssp010_spi *chip)
{
struct ftssp010_regs *regs = chip->regs;
int ret = -1;
ulong t;
/* wait until tx fifo not full */
for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
if (!(readl(®s->sr) & SR_TFNF))
continue;
ret = 0;
break;
}
if (ret)
puts("ftssp010: tx timeout\n");
return ret;
}
static int ftssp010_wait_rx(struct ftssp010_spi *chip)
{
struct ftssp010_regs *regs = chip->regs;
int ret = -1;
ulong t;
/* wait until rx fifo not empty */
for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
if (!SR_RFVE(readl(®s->sr)))
continue;
ret = 0;
break;
}
if (ret)
puts("ftssp010: rx timeout\n");
return ret;
}
static int ftssp010_spi_work_transfer_v2(struct ftssp010_spi *chip,
const void *tx_buf, void *rx_buf, int len, uint flags)
{
struct ftssp010_regs *regs = chip->regs;
const uint8_t *txb = tx_buf;
uint8_t *rxb = rx_buf;
while (len > 0) {
int i, depth = min(chip->fifo >> 2, len);
uint32_t xmsk = 0;
if (tx_buf) {
for (i = 0; i < depth; ++i) {
ftssp010_wait_tx(chip);
writel(*txb++, ®s->dr);
}
xmsk |= CR2_TXEN | CR2_TXDOE;
if ((readl(®s->cr[2]) & xmsk) != xmsk)
setbits_le32(®s->cr[2], xmsk);
}
if (rx_buf) {
xmsk |= CR2_RXEN;
if ((readl(®s->cr[2]) & xmsk) != xmsk)
setbits_le32(®s->cr[2], xmsk);
for (i = 0; i < depth; ++i) {
ftssp010_wait_rx(chip);
*rxb++ = (uint8_t)readl(®s->dr);
}
}
len -= depth;
}
return 0;
}
static int ftssp010_spi_work_transfer_v1(struct ftssp010_spi *chip,
const void *tx_buf, void *rx_buf, int len, uint flags)
{
struct ftssp010_regs *regs = chip->regs;
const uint8_t *txb = tx_buf;
uint8_t *rxb = rx_buf;
while (len > 0) {
int i, depth = min(chip->fifo >> 2, len);
uint32_t tmp;
for (i = 0; i < depth; ++i) {
ftssp010_wait_tx(chip);
writel(txb ? (*txb++) : 0, ®s->dr);
}
for (i = 0; i < depth; ++i) {
ftssp010_wait_rx(chip);
tmp = readl(®s->dr);
if (rxb)
*rxb++ = (uint8_t)tmp;
}
len -= depth;
}
return 0;
}
static void ftssp010_cs_set(struct ftssp010_spi *chip, int high)
{
struct ftssp010_regs *regs = chip->regs;
struct ftssp010_gpio *gpio = &chip->gpio;
uint32_t mask;
/* cs pull high/low */
if (chip->revision >= 0x11900) {
mask = CR2_CS(chip->slave.cs) | (high ? CR2_FS : 0);
writel(mask, ®s->cr[2]);
} else if (gpio->regs) {
mask = 1 << gpio->pin;
if (high)
writel(mask, &gpio->regs->set);
else
writel(mask, &gpio->regs->clr);
}
/* extra delay for signal propagation */
udelay_masked(1);
}
/*
* Determine if a SPI chipselect is valid.
* This function is provided by the board if the low-level SPI driver
* needs it to determine if a given chipselect is actually valid.
*
* Returns: 1 if bus:cs identifies a valid chip on this board, 0
* otherwise.
*/
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
struct ftssp010_spi chip;
if (get_spi_chip(bus, &chip))
return 0;
if (!cs)
return 1;
else if ((cs < 4) && (chip.revision >= 0x11900))
return 1;
return 0;
}
/*
* Activate a SPI chipselect.
* This function is provided by the board code when using a driver
* that can't control its chipselects automatically (e.g.
* common/soft_spi.c). When called, it should activate the chip select
* to the device identified by "slave".
*/
void spi_cs_activate(struct spi_slave *slave)
{
struct ftssp010_spi *chip = to_ftssp010_spi(slave);
struct ftssp010_regs *regs = chip->regs;
/* cs pull */
if (chip->mode & SPI_CS_HIGH)
ftssp010_cs_set(chip, 1);
else
ftssp010_cs_set(chip, 0);
/* chip enable + fifo clear */
setbits_le32(®s->cr[2], CR2_EN | CR2_TXFC | CR2_RXFC);
}
/*
* Deactivate a SPI chipselect.
* This function is provided by the board code when using a driver
* that can't control its chipselects automatically (e.g.
* common/soft_spi.c). When called, it should deactivate the chip
* select to the device identified by "slave".
*/
void spi_cs_deactivate(struct spi_slave *slave)
{
struct ftssp010_spi *chip = to_ftssp010_spi(slave);
/* wait until chip idle */
ftssp010_wait(chip);
/* cs pull */
if (chip->mode & SPI_CS_HIGH)
ftssp010_cs_set(chip, 0);
else
ftssp010_cs_set(chip, 1);
}
void spi_init(void)
{
/* nothing to do */
}
struct spi_slave *spi_setup_slave(uint bus, uint cs, uint max_hz, uint mode)
{
struct ftssp010_spi *chip;
if (mode & SPI_3WIRE) {
puts("ftssp010: can't do 3-wire\n");
return NULL;
}
if (mode & SPI_SLAVE) {
puts("ftssp010: can't do slave mode\n");
return NULL;
}
if (mode & SPI_PREAMBLE) {
puts("ftssp010: can't skip preamble bytes\n");
return NULL;
}
if (!spi_cs_is_valid(bus, cs)) {
puts("ftssp010: invalid (bus, cs)\n");
return NULL;
}
chip = spi_alloc_slave(struct ftssp010_spi, bus, cs);
if (!chip)
return NULL;
if (get_spi_chip(bus, chip))
goto free_out;
if (chip->revision < 0x11900 && get_spi_gpio(bus, &chip->gpio)) {
puts("ftssp010: Before revision 1.19.0, its clock & cs are\n"
"controlled by tx engine which is not synced with rx engine,\n"
"so the clock & cs might be shutdown before rx engine\n"
"finishs its jobs.\n"
"If possible, please add a dedicated gpio for it.\n");
}
chip->mode = mode;
chip->clk = CONFIG_FTSSP010_CLOCK;
chip->div = 2;
if (max_hz) {
while (chip->div < 0xffff) {
if ((chip->clk / (2 * chip->div)) <= max_hz)
break;
chip->div += 1;
}
}
chip->speed = chip->clk / (2 * chip->div);
return &chip->slave;
free_out:
free(chip);
return NULL;
}
void spi_free_slave(struct spi_slave *slave)
{
free(slave);
}
int spi_claim_bus(struct spi_slave *slave)
{
struct ftssp010_spi *chip = to_ftssp010_spi(slave);
struct ftssp010_regs *regs = chip->regs;
writel(CR1_SDL(8) | CR1_DIV(chip->div), ®s->cr[1]);
if (chip->revision >= 0x11900) {
writel(CR0_OPM_MASTER | CR0_FFMT_SPI | CR0_FSPO | CR0_FLASH,
®s->cr[0]);
writel(CR2_TXFC | CR2_RXFC,
®s->cr[2]);
} else {
writel(CR0_OPM_MASTER | CR0_FFMT_SPI | CR0_FSPO,
®s->cr[0]);
writel(CR2_TXFC | CR2_RXFC | CR2_EN | CR2_TXDOE,
®s->cr[2]);
}
if (chip->mode & SPI_LOOP)
setbits_le32(®s->cr[0], CR0_LOOP);
if (chip->mode & SPI_CPOL)
setbits_le32(®s->cr[0], CR0_SCLKPO);
if (chip->mode & SPI_CPHA)
setbits_le32(®s->cr[0], CR0_SCLKPH);
spi_cs_deactivate(slave);
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct ftssp010_spi *chip = to_ftssp010_spi(slave);
struct ftssp010_regs *regs = chip->regs;
writel(0, ®s->cr[2]);
}
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct ftssp010_spi *chip = to_ftssp010_spi(slave);
uint32_t len = bitlen >> 3;
if (flags & SPI_XFER_BEGIN)
spi_cs_activate(slave);
if (chip->revision >= 0x11900)
ftssp010_spi_work_transfer_v2(chip, dout, din, len, flags);
else
ftssp010_spi_work_transfer_v1(chip, dout, din, len, flags);
if (flags & SPI_XFER_END)
spi_cs_deactivate(slave);
return 0;
}