/* * * (C) Copyright 2000-2003 * Wolfgang Denk, DENX Software Engineering, wd@denx.de. * * Copyright (C) 2004-2009 Freescale Semiconductor, Inc. * TsiChung Liew (Tsi-Chung.Liew@freescale.com) * * See file CREDITS for list of people who contributed to this * project. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include <common.h> #include <spi.h> #include <malloc.h> #include <asm/immap.h> struct cf_spi_slave { struct spi_slave slave; uint baudrate; int charbit; }; int cfspi_xfer(struct spi_slave *slave, uint bitlen, const void *dout, void *din, ulong flags); struct spi_slave *cfspi_setup_slave(struct cf_spi_slave *cfslave, uint mode); void cfspi_init(void); void cfspi_tx(u32 ctrl, u16 data); u16 cfspi_rx(void); extern void cfspi_port_conf(void); extern int cfspi_claim_bus(uint bus, uint cs); extern void cfspi_release_bus(uint bus, uint cs); DECLARE_GLOBAL_DATA_PTR; #if defined(CONFIG_CF_DSPI) /* DSPI specific mode */ #define SPI_MODE_MOD 0x00200000 #define SPI_DBLRATE 0x00100000 void cfspi_init(void) { volatile dspi_t *dspi = (dspi_t *) MMAP_DSPI; cfspi_port_conf(); /* port configuration */ dspi->mcr = DSPI_MCR_MSTR | DSPI_MCR_CSIS7 | DSPI_MCR_CSIS6 | DSPI_MCR_CSIS5 | DSPI_MCR_CSIS4 | DSPI_MCR_CSIS3 | DSPI_MCR_CSIS2 | DSPI_MCR_CSIS1 | DSPI_MCR_CSIS0 | DSPI_MCR_CRXF | DSPI_MCR_CTXF; /* Default setting in platform configuration */ #ifdef CONFIG_SYS_DSPI_CTAR0 dspi->ctar[0] = CONFIG_SYS_DSPI_CTAR0; #endif #ifdef CONFIG_SYS_DSPI_CTAR1 dspi->ctar[1] = CONFIG_SYS_DSPI_CTAR1; #endif #ifdef CONFIG_SYS_DSPI_CTAR2 dspi->ctar[2] = CONFIG_SYS_DSPI_CTAR2; #endif #ifdef CONFIG_SYS_DSPI_CTAR3 dspi->ctar[3] = CONFIG_SYS_DSPI_CTAR3; #endif #ifdef CONFIG_SYS_DSPI_CTAR4 dspi->ctar[4] = CONFIG_SYS_DSPI_CTAR4; #endif #ifdef CONFIG_SYS_DSPI_CTAR5 dspi->ctar[5] = CONFIG_SYS_DSPI_CTAR5; #endif #ifdef CONFIG_SYS_DSPI_CTAR6 dspi->ctar[6] = CONFIG_SYS_DSPI_CTAR6; #endif #ifdef CONFIG_SYS_DSPI_CTAR7 dspi->ctar[7] = CONFIG_SYS_DSPI_CTAR7; #endif } void cfspi_tx(u32 ctrl, u16 data) { volatile dspi_t *dspi = (dspi_t *) MMAP_DSPI; while ((dspi->sr & 0x0000F000) >= 4) ; dspi->tfr = (ctrl | data); } u16 cfspi_rx(void) { volatile dspi_t *dspi = (dspi_t *) MMAP_DSPI; while ((dspi->sr & 0x000000F0) == 0) ; return (dspi->rfr & 0xFFFF); } int cfspi_xfer(struct spi_slave *slave, uint bitlen, const void *dout, void *din, ulong flags) { struct cf_spi_slave *cfslave = (struct cf_spi_slave *)slave; u16 *spi_rd16 = NULL, *spi_wr16 = NULL; u8 *spi_rd = NULL, *spi_wr = NULL; static u32 ctrl = 0; uint len = bitlen >> 3; if (cfslave->charbit == 16) { bitlen >>= 1; spi_wr16 = (u16 *) dout; spi_rd16 = (u16 *) din; } else { spi_wr = (u8 *) dout; spi_rd = (u8 *) din; } if ((flags & SPI_XFER_BEGIN) == SPI_XFER_BEGIN) ctrl |= DSPI_TFR_CONT; ctrl = (ctrl & 0xFF000000) | ((1 << slave->cs) << 16); if (len > 1) { int tmp_len = len - 1; while (tmp_len--) { if (dout != NULL) { if (cfslave->charbit == 16) cfspi_tx(ctrl, *spi_wr16++); else cfspi_tx(ctrl, *spi_wr++); cfspi_rx(); } if (din != NULL) { cfspi_tx(ctrl, 0); if (cfslave->charbit == 16) *spi_rd16++ = cfspi_rx(); else *spi_rd++ = cfspi_rx(); } } len = 1; /* remaining byte */ } if ((flags & SPI_XFER_END) == SPI_XFER_END) ctrl &= ~DSPI_TFR_CONT; if (len) { if (dout != NULL) { if (cfslave->charbit == 16) cfspi_tx(ctrl, *spi_wr16); else cfspi_tx(ctrl, *spi_wr); cfspi_rx(); } if (din != NULL) { cfspi_tx(ctrl, 0); if (cfslave->charbit == 16) *spi_rd16 = cfspi_rx(); else *spi_rd = cfspi_rx(); } } else { /* dummy read */ cfspi_tx(ctrl, 0); cfspi_rx(); } return 0; } struct spi_slave *cfspi_setup_slave(struct cf_spi_slave *cfslave, uint mode) { /* * bit definition for mode: * bit 31 - 28: Transfer size 3 to 16 bits * 27 - 26: PCS to SCK delay prescaler * 25 - 24: After SCK delay prescaler * 23 - 22: Delay after transfer prescaler * 21 : Allow overwrite for bit 31-22 and bit 20-8 * 20 : Double baud rate * 19 - 16: PCS to SCK delay scaler * 15 - 12: After SCK delay scaler * 11 - 8: Delay after transfer scaler * 7 - 0: SPI_CPHA, SPI_CPOL, SPI_LSB_FIRST */ volatile dspi_t *dspi = (dspi_t *) MMAP_DSPI; int prescaler[] = { 2, 3, 5, 7 }; int scaler[] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 }; int i, j, pbrcnt, brcnt, diff, tmp, dbr = 0; int best_i, best_j, bestmatch = 0x7FFFFFFF, baud_speed; u32 bus_setup = 0; tmp = (prescaler[3] * scaler[15]); /* Maximum and minimum baudrate it can handle */ if ((cfslave->baudrate > (gd->bus_clk >> 1)) || (cfslave->baudrate < (gd->bus_clk / tmp))) { printf("Exceed baudrate limitation: Max %d - Min %d\n", (int)(gd->bus_clk >> 1), (int)(gd->bus_clk / tmp)); return NULL; } /* Activate Double Baud when it exceed 1/4 the bus clk */ if ((CONFIG_SYS_DSPI_CTAR0 & DSPI_CTAR_DBR) || (cfslave->baudrate > (gd->bus_clk / (prescaler[0] * scaler[0])))) { bus_setup |= DSPI_CTAR_DBR; dbr = 1; } if (mode & SPI_CPOL) bus_setup |= DSPI_CTAR_CPOL; if (mode & SPI_CPHA) bus_setup |= DSPI_CTAR_CPHA; if (mode & SPI_LSB_FIRST) bus_setup |= DSPI_CTAR_LSBFE; /* Overwrite default value set in platform configuration file */ if (mode & SPI_MODE_MOD) { if ((mode & 0xF0000000) == 0) bus_setup |= dspi->ctar[cfslave->slave.bus] & 0x78000000; else bus_setup |= ((mode & 0xF0000000) >> 1); /* * Check to see if it is enabled by default in platform * config, or manual setting passed by mode parameter */ if (mode & SPI_DBLRATE) { bus_setup |= DSPI_CTAR_DBR; dbr = 1; } bus_setup |= (mode & 0x0FC00000) >> 4; /* PSCSCK, PASC, PDT */ bus_setup |= (mode & 0x000FFF00) >> 4; /* CSSCK, ASC, DT */ } else bus_setup |= (dspi->ctar[cfslave->slave.bus] & 0x78FCFFF0); cfslave->charbit = ((dspi->ctar[cfslave->slave.bus] & 0x78000000) == 0x78000000) ? 16 : 8; pbrcnt = sizeof(prescaler) / sizeof(int); brcnt = sizeof(scaler) / sizeof(int); /* baudrate calculation - to closer value, may not be exact match */ for (best_i = 0, best_j = 0, i = 0; i < pbrcnt; i++) { baud_speed = gd->bus_clk / prescaler[i]; for (j = 0; j < brcnt; j++) { tmp = (baud_speed / scaler[j]) * (1 + dbr); if (tmp > cfslave->baudrate) diff = tmp - cfslave->baudrate; else diff = cfslave->baudrate - tmp; if (diff < bestmatch) { bestmatch = diff; best_i = i; best_j = j; } } } bus_setup |= (DSPI_CTAR_PBR(best_i) | DSPI_CTAR_BR(best_j)); dspi->ctar[cfslave->slave.bus] = bus_setup; return &cfslave->slave; } #endif /* CONFIG_CF_DSPI */ #ifdef CONFIG_CF_QSPI /* 52xx, 53xx */ #endif /* CONFIG_CF_QSPI */ #ifdef CONFIG_CMD_SPI int spi_cs_is_valid(unsigned int bus, unsigned int cs) { if (((cs >= 0) && (cs < 8)) && ((bus >= 0) && (bus < 8))) return 1; else return 0; } void spi_init_f(void) { } void spi_init_r(void) { } void spi_init(void) { cfspi_init(); } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct cf_spi_slave *cfslave; if (!spi_cs_is_valid(bus, cs)) return NULL; cfslave = malloc(sizeof(struct cf_spi_slave)); if (!cfslave) return NULL; cfslave->slave.bus = bus; cfslave->slave.cs = cs; cfslave->baudrate = max_hz; /* specific setup */ return cfspi_setup_slave(cfslave, mode); } void spi_free_slave(struct spi_slave *slave) { free(slave); } int spi_claim_bus(struct spi_slave *slave) { return cfspi_claim_bus(slave->bus, slave->cs); } void spi_release_bus(struct spi_slave *slave) { cfspi_release_bus(slave->bus, slave->cs); } int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { return cfspi_xfer(slave, bitlen, dout, din, flags); } #endif /* CONFIG_CMD_SPI */