/* * Copyright (C) 2006 Freescale Semiconductor, Inc. * * Dave Liu <daveliu@freescale.com> * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include "common.h" #include "net.h" #include "malloc.h" #include "asm/errno.h" #include "asm/io.h" #include "asm/immap_qe.h" #include "qe.h" #include "uccf.h" #include "uec.h" #include "uec_phy.h" #include "miiphy.h" #ifdef CONFIG_UEC_ETH1 static uec_info_t eth1_uec_info = { .uf_info = { .ucc_num = CFG_UEC1_UCC_NUM, .rx_clock = CFG_UEC1_RX_CLK, .tx_clock = CFG_UEC1_TX_CLK, .eth_type = CFG_UEC1_ETH_TYPE, }, #if (CFG_UEC1_ETH_TYPE == FAST_ETH) .num_threads_tx = UEC_NUM_OF_THREADS_1, .num_threads_rx = UEC_NUM_OF_THREADS_1, #else .num_threads_tx = UEC_NUM_OF_THREADS_4, .num_threads_rx = UEC_NUM_OF_THREADS_4, #endif .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .tx_bd_ring_len = 16, .rx_bd_ring_len = 16, .phy_address = CFG_UEC1_PHY_ADDR, .enet_interface = CFG_UEC1_INTERFACE_MODE, }; #endif #ifdef CONFIG_UEC_ETH2 static uec_info_t eth2_uec_info = { .uf_info = { .ucc_num = CFG_UEC2_UCC_NUM, .rx_clock = CFG_UEC2_RX_CLK, .tx_clock = CFG_UEC2_TX_CLK, .eth_type = CFG_UEC2_ETH_TYPE, }, #if (CFG_UEC2_ETH_TYPE == FAST_ETH) .num_threads_tx = UEC_NUM_OF_THREADS_1, .num_threads_rx = UEC_NUM_OF_THREADS_1, #else .num_threads_tx = UEC_NUM_OF_THREADS_4, .num_threads_rx = UEC_NUM_OF_THREADS_4, #endif .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .tx_bd_ring_len = 16, .rx_bd_ring_len = 16, .phy_address = CFG_UEC2_PHY_ADDR, .enet_interface = CFG_UEC2_INTERFACE_MODE, }; #endif #ifdef CONFIG_UEC_ETH3 static uec_info_t eth3_uec_info = { .uf_info = { .ucc_num = CFG_UEC3_UCC_NUM, .rx_clock = CFG_UEC3_RX_CLK, .tx_clock = CFG_UEC3_TX_CLK, .eth_type = CFG_UEC3_ETH_TYPE, }, #if (CFG_UEC3_ETH_TYPE == FAST_ETH) .num_threads_tx = UEC_NUM_OF_THREADS_1, .num_threads_rx = UEC_NUM_OF_THREADS_1, #else .num_threads_tx = UEC_NUM_OF_THREADS_4, .num_threads_rx = UEC_NUM_OF_THREADS_4, #endif .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .tx_bd_ring_len = 16, .rx_bd_ring_len = 16, .phy_address = CFG_UEC3_PHY_ADDR, .enet_interface = CFG_UEC3_INTERFACE_MODE, }; #endif #ifdef CONFIG_UEC_ETH4 static uec_info_t eth4_uec_info = { .uf_info = { .ucc_num = CFG_UEC4_UCC_NUM, .rx_clock = CFG_UEC4_RX_CLK, .tx_clock = CFG_UEC4_TX_CLK, .eth_type = CFG_UEC4_ETH_TYPE, }, #if (CFG_UEC4_ETH_TYPE == FAST_ETH) .num_threads_tx = UEC_NUM_OF_THREADS_1, .num_threads_rx = UEC_NUM_OF_THREADS_1, #else .num_threads_tx = UEC_NUM_OF_THREADS_4, .num_threads_rx = UEC_NUM_OF_THREADS_4, #endif .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, .tx_bd_ring_len = 16, .rx_bd_ring_len = 16, .phy_address = CFG_UEC4_PHY_ADDR, .enet_interface = CFG_UEC4_INTERFACE_MODE, }; #endif #define MAXCONTROLLERS (4) static struct eth_device *devlist[MAXCONTROLLERS]; u16 phy_read (struct uec_mii_info *mii_info, u16 regnum); void phy_write (struct uec_mii_info *mii_info, u16 regnum, u16 val); static int uec_mac_enable(uec_private_t *uec, comm_dir_e mode) { uec_t *uec_regs; u32 maccfg1; if (!uec) { printf("%s: uec not initial\n", __FUNCTION__); return -EINVAL; } uec_regs = uec->uec_regs; maccfg1 = in_be32(&uec_regs->maccfg1); if (mode & COMM_DIR_TX) { maccfg1 |= MACCFG1_ENABLE_TX; out_be32(&uec_regs->maccfg1, maccfg1); uec->mac_tx_enabled = 1; } if (mode & COMM_DIR_RX) { maccfg1 |= MACCFG1_ENABLE_RX; out_be32(&uec_regs->maccfg1, maccfg1); uec->mac_rx_enabled = 1; } return 0; } static int uec_mac_disable(uec_private_t *uec, comm_dir_e mode) { uec_t *uec_regs; u32 maccfg1; if (!uec) { printf("%s: uec not initial\n", __FUNCTION__); return -EINVAL; } uec_regs = uec->uec_regs; maccfg1 = in_be32(&uec_regs->maccfg1); if (mode & COMM_DIR_TX) { maccfg1 &= ~MACCFG1_ENABLE_TX; out_be32(&uec_regs->maccfg1, maccfg1); uec->mac_tx_enabled = 0; } if (mode & COMM_DIR_RX) { maccfg1 &= ~MACCFG1_ENABLE_RX; out_be32(&uec_regs->maccfg1, maccfg1); uec->mac_rx_enabled = 0; } return 0; } static int uec_graceful_stop_tx(uec_private_t *uec) { ucc_fast_t *uf_regs; u32 cecr_subblock; u32 ucce; if (!uec || !uec->uccf) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } uf_regs = uec->uccf->uf_regs; /* Clear the grace stop event */ out_be32(&uf_regs->ucce, UCCE_GRA); /* Issue host command */ cecr_subblock = ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, (u8)QE_CR_PROTOCOL_ETHERNET, 0); /* Wait for command to complete */ do { ucce = in_be32(&uf_regs->ucce); } while (! (ucce & UCCE_GRA)); uec->grace_stopped_tx = 1; return 0; } static int uec_graceful_stop_rx(uec_private_t *uec) { u32 cecr_subblock; u8 ack; if (!uec) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } if (!uec->p_rx_glbl_pram) { printf("%s: No init rx global parameter\n", __FUNCTION__); return -EINVAL; } /* Clear acknowledge bit */ ack = uec->p_rx_glbl_pram->rxgstpack; ack &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX; uec->p_rx_glbl_pram->rxgstpack = ack; /* Keep issuing cmd and checking ack bit until it is asserted */ do { /* Issue host command */ cecr_subblock = ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock, (u8)QE_CR_PROTOCOL_ETHERNET, 0); ack = uec->p_rx_glbl_pram->rxgstpack; } while (! (ack & GRACEFUL_STOP_ACKNOWLEDGE_RX )); uec->grace_stopped_rx = 1; return 0; } static int uec_restart_tx(uec_private_t *uec) { u32 cecr_subblock; if (!uec || !uec->uec_info) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } cecr_subblock = ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); qe_issue_cmd(QE_RESTART_TX, cecr_subblock, (u8)QE_CR_PROTOCOL_ETHERNET, 0); uec->grace_stopped_tx = 0; return 0; } static int uec_restart_rx(uec_private_t *uec) { u32 cecr_subblock; if (!uec || !uec->uec_info) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } cecr_subblock = ucc_fast_get_qe_cr_subblock(uec->uec_info->uf_info.ucc_num); qe_issue_cmd(QE_RESTART_RX, cecr_subblock, (u8)QE_CR_PROTOCOL_ETHERNET, 0); uec->grace_stopped_rx = 0; return 0; } static int uec_open(uec_private_t *uec, comm_dir_e mode) { ucc_fast_private_t *uccf; if (!uec || !uec->uccf) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } uccf = uec->uccf; /* check if the UCC number is in range. */ if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) { printf("%s: ucc_num out of range.\n", __FUNCTION__); return -EINVAL; } /* Enable MAC */ uec_mac_enable(uec, mode); /* Enable UCC fast */ ucc_fast_enable(uccf, mode); /* RISC microcode start */ if ((mode & COMM_DIR_TX) && uec->grace_stopped_tx) { uec_restart_tx(uec); } if ((mode & COMM_DIR_RX) && uec->grace_stopped_rx) { uec_restart_rx(uec); } return 0; } static int uec_stop(uec_private_t *uec, comm_dir_e mode) { ucc_fast_private_t *uccf; if (!uec || !uec->uccf) { printf("%s: No handle passed.\n", __FUNCTION__); return -EINVAL; } uccf = uec->uccf; /* check if the UCC number is in range. */ if (uec->uec_info->uf_info.ucc_num >= UCC_MAX_NUM) { printf("%s: ucc_num out of range.\n", __FUNCTION__); return -EINVAL; } /* Stop any transmissions */ if ((mode & COMM_DIR_TX) && !uec->grace_stopped_tx) { uec_graceful_stop_tx(uec); } /* Stop any receptions */ if ((mode & COMM_DIR_RX) && !uec->grace_stopped_rx) { uec_graceful_stop_rx(uec); } /* Disable the UCC fast */ ucc_fast_disable(uec->uccf, mode); /* Disable the MAC */ uec_mac_disable(uec, mode); return 0; } static int uec_set_mac_duplex(uec_private_t *uec, int duplex) { uec_t *uec_regs; u32 maccfg2; if (!uec) { printf("%s: uec not initial\n", __FUNCTION__); return -EINVAL; } uec_regs = uec->uec_regs; if (duplex == DUPLEX_HALF) { maccfg2 = in_be32(&uec_regs->maccfg2); maccfg2 &= ~MACCFG2_FDX; out_be32(&uec_regs->maccfg2, maccfg2); } if (duplex == DUPLEX_FULL) { maccfg2 = in_be32(&uec_regs->maccfg2); maccfg2 |= MACCFG2_FDX; out_be32(&uec_regs->maccfg2, maccfg2); } return 0; } static int uec_set_mac_if_mode(uec_private_t *uec, enet_interface_e if_mode) { enet_interface_e enet_if_mode; uec_info_t *uec_info; uec_t *uec_regs; u32 upsmr; u32 maccfg2; if (!uec) { printf("%s: uec not initial\n", __FUNCTION__); return -EINVAL; } uec_info = uec->uec_info; uec_regs = uec->uec_regs; enet_if_mode = if_mode; maccfg2 = in_be32(&uec_regs->maccfg2); maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK; upsmr = in_be32(&uec->uccf->uf_regs->upsmr); upsmr &= ~(UPSMR_RPM | UPSMR_TBIM | UPSMR_R10M | UPSMR_RMM); switch (enet_if_mode) { case ENET_100_MII: case ENET_10_MII: maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; break; case ENET_1000_GMII: maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; break; case ENET_1000_TBI: maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; upsmr |= UPSMR_TBIM; break; case ENET_1000_RTBI: maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; upsmr |= (UPSMR_RPM | UPSMR_TBIM); break; case ENET_1000_RGMII_RXID: case ENET_1000_RGMII: maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; upsmr |= UPSMR_RPM; break; case ENET_100_RGMII: maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; upsmr |= UPSMR_RPM; break; case ENET_10_RGMII: maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; upsmr |= (UPSMR_RPM | UPSMR_R10M); break; case ENET_100_RMII: maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; upsmr |= UPSMR_RMM; break; case ENET_10_RMII: maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; upsmr |= (UPSMR_R10M | UPSMR_RMM); break; default: return -EINVAL; break; } out_be32(&uec_regs->maccfg2, maccfg2); out_be32(&uec->uccf->uf_regs->upsmr, upsmr); return 0; } static int init_mii_management_configuration(uec_mii_t *uec_mii_regs) { uint timeout = 0x1000; u32 miimcfg = 0; miimcfg = in_be32(&uec_mii_regs->miimcfg); miimcfg |= MIIMCFG_MNGMNT_CLC_DIV_INIT_VALUE; out_be32(&uec_mii_regs->miimcfg, miimcfg); /* Wait until the bus is free */ while ((in_be32(&uec_mii_regs->miimcfg) & MIIMIND_BUSY) && timeout--); if (timeout <= 0) { printf("%s: The MII Bus is stuck!", __FUNCTION__); return -ETIMEDOUT; } return 0; } static int init_phy(struct eth_device *dev) { uec_private_t *uec; uec_mii_t *umii_regs; struct uec_mii_info *mii_info; struct phy_info *curphy; int err; uec = (uec_private_t *)dev->priv; umii_regs = uec->uec_mii_regs; uec->oldlink = 0; uec->oldspeed = 0; uec->oldduplex = -1; mii_info = malloc(sizeof(*mii_info)); if (!mii_info) { printf("%s: Could not allocate mii_info", dev->name); return -ENOMEM; } memset(mii_info, 0, sizeof(*mii_info)); if (uec->uec_info->uf_info.eth_type == GIGA_ETH) { mii_info->speed = SPEED_1000; } else { mii_info->speed = SPEED_100; } mii_info->duplex = DUPLEX_FULL; mii_info->pause = 0; mii_info->link = 1; mii_info->advertising = (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full); mii_info->autoneg = 1; mii_info->mii_id = uec->uec_info->phy_address; mii_info->dev = dev; mii_info->mdio_read = &uec_read_phy_reg; mii_info->mdio_write = &uec_write_phy_reg; uec->mii_info = mii_info; qe_set_mii_clk_src(uec->uec_info->uf_info.ucc_num); if (init_mii_management_configuration(umii_regs)) { printf("%s: The MII Bus is stuck!", dev->name); err = -1; goto bus_fail; } /* get info for this PHY */ curphy = uec_get_phy_info(uec->mii_info); if (!curphy) { printf("%s: No PHY found", dev->name); err = -1; goto no_phy; } mii_info->phyinfo = curphy; /* Run the commands which initialize the PHY */ if (curphy->init) { err = curphy->init(uec->mii_info); if (err) goto phy_init_fail; } return 0; phy_init_fail: no_phy: bus_fail: free(mii_info); return err; } static void adjust_link(struct eth_device *dev) { uec_private_t *uec = (uec_private_t *)dev->priv; uec_t *uec_regs; struct uec_mii_info *mii_info = uec->mii_info; extern void change_phy_interface_mode(struct eth_device *dev, enet_interface_e mode); uec_regs = uec->uec_regs; if (mii_info->link) { /* Now we make sure that we can be in full duplex mode. * If not, we operate in half-duplex mode. */ if (mii_info->duplex != uec->oldduplex) { if (!(mii_info->duplex)) { uec_set_mac_duplex(uec, DUPLEX_HALF); printf("%s: Half Duplex\n", dev->name); } else { uec_set_mac_duplex(uec, DUPLEX_FULL); printf("%s: Full Duplex\n", dev->name); } uec->oldduplex = mii_info->duplex; } if (mii_info->speed != uec->oldspeed) { if (uec->uec_info->uf_info.eth_type == GIGA_ETH) { switch (mii_info->speed) { case 1000: break; case 100: printf ("switching to rgmii 100\n"); /* change phy to rgmii 100 */ change_phy_interface_mode(dev, ENET_100_RGMII); /* change the MAC interface mode */ uec_set_mac_if_mode(uec,ENET_100_RGMII); break; case 10: printf ("switching to rgmii 10\n"); /* change phy to rgmii 10 */ change_phy_interface_mode(dev, ENET_10_RGMII); /* change the MAC interface mode */ uec_set_mac_if_mode(uec,ENET_10_RGMII); break; default: printf("%s: Ack,Speed(%d)is illegal\n", dev->name, mii_info->speed); break; } } printf("%s: Speed %dBT\n", dev->name, mii_info->speed); uec->oldspeed = mii_info->speed; } if (!uec->oldlink) { printf("%s: Link is up\n", dev->name); uec->oldlink = 1; } } else { /* if (mii_info->link) */ if (uec->oldlink) { printf("%s: Link is down\n", dev->name); uec->oldlink = 0; uec->oldspeed = 0; uec->oldduplex = -1; } } } static void phy_change(struct eth_device *dev) { uec_private_t *uec = (uec_private_t *)dev->priv; /* Update the link, speed, duplex */ uec->mii_info->phyinfo->read_status(uec->mii_info); /* Adjust the interface according to speed */ adjust_link(dev); } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) /* * Read a MII PHY register. * * Returns: * 0 on success */ static int uec_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value) { *value = uec_read_phy_reg(devlist[0], addr, reg); return 0; } /* * Write a MII PHY register. * * Returns: * 0 on success */ static int uec_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value) { uec_write_phy_reg(devlist[0], addr, reg, value); return 0; } #endif static int uec_set_mac_address(uec_private_t *uec, u8 *mac_addr) { uec_t *uec_regs; u32 mac_addr1; u32 mac_addr2; if (!uec) { printf("%s: uec not initial\n", __FUNCTION__); return -EINVAL; } uec_regs = uec->uec_regs; /* if a station address of 0x12345678ABCD, perform a write to MACSTNADDR1 of 0xCDAB7856, MACSTNADDR2 of 0x34120000 */ mac_addr1 = (mac_addr[5] << 24) | (mac_addr[4] << 16) | \ (mac_addr[3] << 8) | (mac_addr[2]); out_be32(&uec_regs->macstnaddr1, mac_addr1); mac_addr2 = ((mac_addr[1] << 24) | (mac_addr[0] << 16)) & 0xffff0000; out_be32(&uec_regs->macstnaddr2, mac_addr2); return 0; } static int uec_convert_threads_num(uec_num_of_threads_e threads_num, int *threads_num_ret) { int num_threads_numerica; switch (threads_num) { case UEC_NUM_OF_THREADS_1: num_threads_numerica = 1; break; case UEC_NUM_OF_THREADS_2: num_threads_numerica = 2; break; case UEC_NUM_OF_THREADS_4: num_threads_numerica = 4; break; case UEC_NUM_OF_THREADS_6: num_threads_numerica = 6; break; case UEC_NUM_OF_THREADS_8: num_threads_numerica = 8; break; default: printf("%s: Bad number of threads value.", __FUNCTION__); return -EINVAL; } *threads_num_ret = num_threads_numerica; return 0; } static void uec_init_tx_parameter(uec_private_t *uec, int num_threads_tx) { uec_info_t *uec_info; u32 end_bd; u8 bmrx = 0; int i; uec_info = uec->uec_info; /* Alloc global Tx parameter RAM page */ uec->tx_glbl_pram_offset = qe_muram_alloc( sizeof(uec_tx_global_pram_t), UEC_TX_GLOBAL_PRAM_ALIGNMENT); uec->p_tx_glbl_pram = (uec_tx_global_pram_t *) qe_muram_addr(uec->tx_glbl_pram_offset); /* Zero the global Tx prameter RAM */ memset(uec->p_tx_glbl_pram, 0, sizeof(uec_tx_global_pram_t)); /* Init global Tx parameter RAM */ /* TEMODER, RMON statistics disable, one Tx queue */ out_be16(&uec->p_tx_glbl_pram->temoder, TEMODER_INIT_VALUE); /* SQPTR */ uec->send_q_mem_reg_offset = qe_muram_alloc( sizeof(uec_send_queue_qd_t), UEC_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT); uec->p_send_q_mem_reg = (uec_send_queue_mem_region_t *) qe_muram_addr(uec->send_q_mem_reg_offset); out_be32(&uec->p_tx_glbl_pram->sqptr, uec->send_q_mem_reg_offset); /* Setup the table with TxBDs ring */ end_bd = (u32)uec->p_tx_bd_ring + (uec_info->tx_bd_ring_len - 1) * SIZEOFBD; out_be32(&uec->p_send_q_mem_reg->sqqd[0].bd_ring_base, (u32)(uec->p_tx_bd_ring)); out_be32(&uec->p_send_q_mem_reg->sqqd[0].last_bd_completed_address, end_bd); /* Scheduler Base Pointer, we have only one Tx queue, no need it */ out_be32(&uec->p_tx_glbl_pram->schedulerbasepointer, 0); /* TxRMON Base Pointer, TxRMON disable, we don't need it */ out_be32(&uec->p_tx_glbl_pram->txrmonbaseptr, 0); /* TSTATE, global snooping, big endian, the CSB bus selected */ bmrx = BMR_INIT_VALUE; out_be32(&uec->p_tx_glbl_pram->tstate, ((u32)(bmrx) << BMR_SHIFT)); /* IPH_Offset */ for (i = 0; i < MAX_IPH_OFFSET_ENTRY; i++) { out_8(&uec->p_tx_glbl_pram->iphoffset[i], 0); } /* VTAG table */ for (i = 0; i < UEC_TX_VTAG_TABLE_ENTRY_MAX; i++) { out_be32(&uec->p_tx_glbl_pram->vtagtable[i], 0); } /* TQPTR */ uec->thread_dat_tx_offset = qe_muram_alloc( num_threads_tx * sizeof(uec_thread_data_tx_t) + 32 *(num_threads_tx == 1), UEC_THREAD_DATA_ALIGNMENT); uec->p_thread_data_tx = (uec_thread_data_tx_t *) qe_muram_addr(uec->thread_dat_tx_offset); out_be32(&uec->p_tx_glbl_pram->tqptr, uec->thread_dat_tx_offset); } static void uec_init_rx_parameter(uec_private_t *uec, int num_threads_rx) { u8 bmrx = 0; int i; uec_82xx_address_filtering_pram_t *p_af_pram; /* Allocate global Rx parameter RAM page */ uec->rx_glbl_pram_offset = qe_muram_alloc( sizeof(uec_rx_global_pram_t), UEC_RX_GLOBAL_PRAM_ALIGNMENT); uec->p_rx_glbl_pram = (uec_rx_global_pram_t *) qe_muram_addr(uec->rx_glbl_pram_offset); /* Zero Global Rx parameter RAM */ memset(uec->p_rx_glbl_pram, 0, sizeof(uec_rx_global_pram_t)); /* Init global Rx parameter RAM */ /* REMODER, Extended feature mode disable, VLAN disable, LossLess flow control disable, Receive firmware statisic disable, Extended address parsing mode disable, One Rx queues, Dynamic maximum/minimum frame length disable, IP checksum check disable, IP address alignment disable */ out_be32(&uec->p_rx_glbl_pram->remoder, REMODER_INIT_VALUE); /* RQPTR */ uec->thread_dat_rx_offset = qe_muram_alloc( num_threads_rx * sizeof(uec_thread_data_rx_t), UEC_THREAD_DATA_ALIGNMENT); uec->p_thread_data_rx = (uec_thread_data_rx_t *) qe_muram_addr(uec->thread_dat_rx_offset); out_be32(&uec->p_rx_glbl_pram->rqptr, uec->thread_dat_rx_offset); /* Type_or_Len */ out_be16(&uec->p_rx_glbl_pram->typeorlen, 3072); /* RxRMON base pointer, we don't need it */ out_be32(&uec->p_rx_glbl_pram->rxrmonbaseptr, 0); /* IntCoalescingPTR, we don't need it, no interrupt */ out_be32(&uec->p_rx_glbl_pram->intcoalescingptr, 0); /* RSTATE, global snooping, big endian, the CSB bus selected */ bmrx = BMR_INIT_VALUE; out_8(&uec->p_rx_glbl_pram->rstate, bmrx); /* MRBLR */ out_be16(&uec->p_rx_glbl_pram->mrblr, MAX_RXBUF_LEN); /* RBDQPTR */ uec->rx_bd_qs_tbl_offset = qe_muram_alloc( sizeof(uec_rx_bd_queues_entry_t) + \ sizeof(uec_rx_prefetched_bds_t), UEC_RX_BD_QUEUES_ALIGNMENT); uec->p_rx_bd_qs_tbl = (uec_rx_bd_queues_entry_t *) qe_muram_addr(uec->rx_bd_qs_tbl_offset); /* Zero it */ memset(uec->p_rx_bd_qs_tbl, 0, sizeof(uec_rx_bd_queues_entry_t) + \ sizeof(uec_rx_prefetched_bds_t)); out_be32(&uec->p_rx_glbl_pram->rbdqptr, uec->rx_bd_qs_tbl_offset); out_be32(&uec->p_rx_bd_qs_tbl->externalbdbaseptr, (u32)uec->p_rx_bd_ring); /* MFLR */ out_be16(&uec->p_rx_glbl_pram->mflr, MAX_FRAME_LEN); /* MINFLR */ out_be16(&uec->p_rx_glbl_pram->minflr, MIN_FRAME_LEN); /* MAXD1 */ out_be16(&uec->p_rx_glbl_pram->maxd1, MAX_DMA1_LEN); /* MAXD2 */ out_be16(&uec->p_rx_glbl_pram->maxd2, MAX_DMA2_LEN); /* ECAM_PTR */ out_be32(&uec->p_rx_glbl_pram->ecamptr, 0); /* L2QT */ out_be32(&uec->p_rx_glbl_pram->l2qt, 0); /* L3QT */ for (i = 0; i < 8; i++) { out_be32(&uec->p_rx_glbl_pram->l3qt[i], 0); } /* VLAN_TYPE */ out_be16(&uec->p_rx_glbl_pram->vlantype, 0x8100); /* TCI */ out_be16(&uec->p_rx_glbl_pram->vlantci, 0); /* Clear PQ2 style address filtering hash table */ p_af_pram = (uec_82xx_address_filtering_pram_t *) \ uec->p_rx_glbl_pram->addressfiltering; p_af_pram->iaddr_h = 0; p_af_pram->iaddr_l = 0; p_af_pram->gaddr_h = 0; p_af_pram->gaddr_l = 0; } static int uec_issue_init_enet_rxtx_cmd(uec_private_t *uec, int thread_tx, int thread_rx) { uec_init_cmd_pram_t *p_init_enet_param; u32 init_enet_param_offset; uec_info_t *uec_info; int i; int snum; u32 init_enet_offset; u32 entry_val; u32 command; u32 cecr_subblock; uec_info = uec->uec_info; /* Allocate init enet command parameter */ uec->init_enet_param_offset = qe_muram_alloc( sizeof(uec_init_cmd_pram_t), 4); init_enet_param_offset = uec->init_enet_param_offset; uec->p_init_enet_param = (uec_init_cmd_pram_t *) qe_muram_addr(uec->init_enet_param_offset); /* Zero init enet command struct */ memset((void *)uec->p_init_enet_param, 0, sizeof(uec_init_cmd_pram_t)); /* Init the command struct */ p_init_enet_param = uec->p_init_enet_param; p_init_enet_param->resinit0 = ENET_INIT_PARAM_MAGIC_RES_INIT0; p_init_enet_param->resinit1 = ENET_INIT_PARAM_MAGIC_RES_INIT1; p_init_enet_param->resinit2 = ENET_INIT_PARAM_MAGIC_RES_INIT2; p_init_enet_param->resinit3 = ENET_INIT_PARAM_MAGIC_RES_INIT3; p_init_enet_param->resinit4 = ENET_INIT_PARAM_MAGIC_RES_INIT4; p_init_enet_param->largestexternallookupkeysize = 0; p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_rx) << ENET_INIT_PARAM_RGF_SHIFT; p_init_enet_param->rgftgfrxglobal |= ((u32)uec_info->num_threads_tx) << ENET_INIT_PARAM_TGF_SHIFT; /* Init Rx global parameter pointer */ p_init_enet_param->rgftgfrxglobal |= uec->rx_glbl_pram_offset | (u32)uec_info->riscRx; /* Init Rx threads */ for (i = 0; i < (thread_rx + 1); i++) { if ((snum = qe_get_snum()) < 0) { printf("%s can not get snum\n", __FUNCTION__); return -ENOMEM; } if (i==0) { init_enet_offset = 0; } else { init_enet_offset = qe_muram_alloc( sizeof(uec_thread_rx_pram_t), UEC_THREAD_RX_PRAM_ALIGNMENT); } entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset | (u32)uec_info->riscRx; p_init_enet_param->rxthread[i] = entry_val; } /* Init Tx global parameter pointer */ p_init_enet_param->txglobal = uec->tx_glbl_pram_offset | (u32)uec_info->riscTx; /* Init Tx threads */ for (i = 0; i < thread_tx; i++) { if ((snum = qe_get_snum()) < 0) { printf("%s can not get snum\n", __FUNCTION__); return -ENOMEM; } init_enet_offset = qe_muram_alloc(sizeof(uec_thread_tx_pram_t), UEC_THREAD_TX_PRAM_ALIGNMENT); entry_val = ((u32)snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset | (u32)uec_info->riscTx; p_init_enet_param->txthread[i] = entry_val; } __asm__ __volatile__("sync"); /* Issue QE command */ command = QE_INIT_TX_RX; cecr_subblock = ucc_fast_get_qe_cr_subblock( uec->uec_info->uf_info.ucc_num); qe_issue_cmd(command, cecr_subblock, (u8) QE_CR_PROTOCOL_ETHERNET, init_enet_param_offset); return 0; } static int uec_startup(uec_private_t *uec) { uec_info_t *uec_info; ucc_fast_info_t *uf_info; ucc_fast_private_t *uccf; ucc_fast_t *uf_regs; uec_t *uec_regs; int num_threads_tx; int num_threads_rx; u32 utbipar; enet_interface_e enet_interface; u32 length; u32 align; qe_bd_t *bd; u8 *buf; int i; if (!uec || !uec->uec_info) { printf("%s: uec or uec_info not initial\n", __FUNCTION__); return -EINVAL; } uec_info = uec->uec_info; uf_info = &(uec_info->uf_info); /* Check if Rx BD ring len is illegal */ if ((uec_info->rx_bd_ring_len < UEC_RX_BD_RING_SIZE_MIN) || \ (uec_info->rx_bd_ring_len % UEC_RX_BD_RING_SIZE_ALIGNMENT)) { printf("%s: Rx BD ring len must be multiple of 4, and > 8.\n", __FUNCTION__); return -EINVAL; } /* Check if Tx BD ring len is illegal */ if (uec_info->tx_bd_ring_len < UEC_TX_BD_RING_SIZE_MIN) { printf("%s: Tx BD ring length must not be smaller than 2.\n", __FUNCTION__); return -EINVAL; } /* Check if MRBLR is illegal */ if ((MAX_RXBUF_LEN == 0) || (MAX_RXBUF_LEN % UEC_MRBLR_ALIGNMENT)) { printf("%s: max rx buffer length must be mutliple of 128.\n", __FUNCTION__); return -EINVAL; } /* Both Rx and Tx are stopped */ uec->grace_stopped_rx = 1; uec->grace_stopped_tx = 1; /* Init UCC fast */ if (ucc_fast_init(uf_info, &uccf)) { printf("%s: failed to init ucc fast\n", __FUNCTION__); return -ENOMEM; } /* Save uccf */ uec->uccf = uccf; /* Convert the Tx threads number */ if (uec_convert_threads_num(uec_info->num_threads_tx, &num_threads_tx)) { return -EINVAL; } /* Convert the Rx threads number */ if (uec_convert_threads_num(uec_info->num_threads_rx, &num_threads_rx)) { return -EINVAL; } uf_regs = uccf->uf_regs; /* UEC register is following UCC fast registers */ uec_regs = (uec_t *)(&uf_regs->ucc_eth); /* Save the UEC register pointer to UEC private struct */ uec->uec_regs = uec_regs; /* Init UPSMR, enable hardware statistics (UCC) */ out_be32(&uec->uccf->uf_regs->upsmr, UPSMR_INIT_VALUE); /* Init MACCFG1, flow control disable, disable Tx and Rx */ out_be32(&uec_regs->maccfg1, MACCFG1_INIT_VALUE); /* Init MACCFG2, length check, MAC PAD and CRC enable */ out_be32(&uec_regs->maccfg2, MACCFG2_INIT_VALUE); /* Setup MAC interface mode */ uec_set_mac_if_mode(uec, uec_info->enet_interface); /* Setup MII management base */ #ifndef CONFIG_eTSEC_MDIO_BUS uec->uec_mii_regs = (uec_mii_t *)(&uec_regs->miimcfg); #else uec->uec_mii_regs = (uec_mii_t *) CONFIG_MIIM_ADDRESS; #endif /* Setup MII master clock source */ qe_set_mii_clk_src(uec_info->uf_info.ucc_num); /* Setup UTBIPAR */ utbipar = in_be32(&uec_regs->utbipar); utbipar &= ~UTBIPAR_PHY_ADDRESS_MASK; enet_interface = uec->uec_info->enet_interface; if (enet_interface == ENET_1000_TBI || enet_interface == ENET_1000_RTBI) { utbipar |= (uec_info->phy_address + uec_info->uf_info.ucc_num) << UTBIPAR_PHY_ADDRESS_SHIFT; } else { utbipar |= (0x10 + uec_info->uf_info.ucc_num) << UTBIPAR_PHY_ADDRESS_SHIFT; } out_be32(&uec_regs->utbipar, utbipar); /* Allocate Tx BDs */ length = ((uec_info->tx_bd_ring_len * SIZEOFBD) / UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) * UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; if ((uec_info->tx_bd_ring_len * SIZEOFBD) % UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) { length += UEC_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; } align = UEC_TX_BD_RING_ALIGNMENT; uec->tx_bd_ring_offset = (u32)malloc((u32)(length + align)); if (uec->tx_bd_ring_offset != 0) { uec->p_tx_bd_ring = (u8 *)((uec->tx_bd_ring_offset + align) & ~(align - 1)); } /* Zero all of Tx BDs */ memset((void *)(uec->tx_bd_ring_offset), 0, length + align); /* Allocate Rx BDs */ length = uec_info->rx_bd_ring_len * SIZEOFBD; align = UEC_RX_BD_RING_ALIGNMENT; uec->rx_bd_ring_offset = (u32)(malloc((u32)(length + align))); if (uec->rx_bd_ring_offset != 0) { uec->p_rx_bd_ring = (u8 *)((uec->rx_bd_ring_offset + align) & ~(align - 1)); } /* Zero all of Rx BDs */ memset((void *)(uec->rx_bd_ring_offset), 0, length + align); /* Allocate Rx buffer */ length = uec_info->rx_bd_ring_len * MAX_RXBUF_LEN; align = UEC_RX_DATA_BUF_ALIGNMENT; uec->rx_buf_offset = (u32)malloc(length + align); if (uec->rx_buf_offset != 0) { uec->p_rx_buf = (u8 *)((uec->rx_buf_offset + align) & ~(align - 1)); } /* Zero all of the Rx buffer */ memset((void *)(uec->rx_buf_offset), 0, length + align); /* Init TxBD ring */ bd = (qe_bd_t *)uec->p_tx_bd_ring; uec->txBd = bd; for (i = 0; i < uec_info->tx_bd_ring_len; i++) { BD_DATA_CLEAR(bd); BD_STATUS_SET(bd, 0); BD_LENGTH_SET(bd, 0); bd ++; } BD_STATUS_SET((--bd), TxBD_WRAP); /* Init RxBD ring */ bd = (qe_bd_t *)uec->p_rx_bd_ring; uec->rxBd = bd; buf = uec->p_rx_buf; for (i = 0; i < uec_info->rx_bd_ring_len; i++) { BD_DATA_SET(bd, buf); BD_LENGTH_SET(bd, 0); BD_STATUS_SET(bd, RxBD_EMPTY); buf += MAX_RXBUF_LEN; bd ++; } BD_STATUS_SET((--bd), RxBD_WRAP | RxBD_EMPTY); /* Init global Tx parameter RAM */ uec_init_tx_parameter(uec, num_threads_tx); /* Init global Rx parameter RAM */ uec_init_rx_parameter(uec, num_threads_rx); /* Init ethernet Tx and Rx parameter command */ if (uec_issue_init_enet_rxtx_cmd(uec, num_threads_tx, num_threads_rx)) { printf("%s issue init enet cmd failed\n", __FUNCTION__); return -ENOMEM; } return 0; } static int uec_init(struct eth_device* dev, bd_t *bd) { uec_private_t *uec; int err, i; struct phy_info *curphy; uec = (uec_private_t *)dev->priv; if (uec->the_first_run == 0) { err = init_phy(dev); if (err) { printf("%s: Cannot initialize PHY, aborting.\n", dev->name); return err; } curphy = uec->mii_info->phyinfo; if (curphy->config_aneg) { err = curphy->config_aneg(uec->mii_info); if (err) { printf("%s: Can't negotiate PHY\n", dev->name); return err; } } /* Give PHYs up to 5 sec to report a link */ i = 50; do { err = curphy->read_status(uec->mii_info); udelay(100000); } while (((i-- > 0) && !uec->mii_info->link) || err); if (err || i <= 0) printf("warning: %s: timeout on PHY link\n", dev->name); uec->the_first_run = 1; } /* Set up the MAC address */ if (dev->enetaddr[0] & 0x01) { printf("%s: MacAddress is multcast address\n", __FUNCTION__); return -1; } uec_set_mac_address(uec, dev->enetaddr); err = uec_open(uec, COMM_DIR_RX_AND_TX); if (err) { printf("%s: cannot enable UEC device\n", dev->name); return -1; } phy_change(dev); return (uec->mii_info->link ? 0 : -1); } static void uec_halt(struct eth_device* dev) { uec_private_t *uec = (uec_private_t *)dev->priv; uec_stop(uec, COMM_DIR_RX_AND_TX); } static int uec_send(struct eth_device* dev, volatile void *buf, int len) { uec_private_t *uec; ucc_fast_private_t *uccf; volatile qe_bd_t *bd; u16 status; int i; int result = 0; uec = (uec_private_t *)dev->priv; uccf = uec->uccf; bd = uec->txBd; /* Find an empty TxBD */ for (i = 0; bd->status & TxBD_READY; i++) { if (i > 0x100000) { printf("%s: tx buffer not ready\n", dev->name); return result; } } /* Init TxBD */ BD_DATA_SET(bd, buf); BD_LENGTH_SET(bd, len); status = bd->status; status &= BD_WRAP; status |= (TxBD_READY | TxBD_LAST); BD_STATUS_SET(bd, status); /* Tell UCC to transmit the buffer */ ucc_fast_transmit_on_demand(uccf); /* Wait for buffer to be transmitted */ for (i = 0; bd->status & TxBD_READY; i++) { if (i > 0x100000) { printf("%s: tx error\n", dev->name); return result; } } /* Ok, the buffer be transimitted */ BD_ADVANCE(bd, status, uec->p_tx_bd_ring); uec->txBd = bd; result = 1; return result; } static int uec_recv(struct eth_device* dev) { uec_private_t *uec = dev->priv; volatile qe_bd_t *bd; u16 status; u16 len; u8 *data; bd = uec->rxBd; status = bd->status; while (!(status & RxBD_EMPTY)) { if (!(status & RxBD_ERROR)) { data = BD_DATA(bd); len = BD_LENGTH(bd); NetReceive(data, len); } else { printf("%s: Rx error\n", dev->name); } status &= BD_CLEAN; BD_LENGTH_SET(bd, 0); BD_STATUS_SET(bd, status | RxBD_EMPTY); BD_ADVANCE(bd, status, uec->p_rx_bd_ring); status = bd->status; } uec->rxBd = bd; return 1; } int uec_initialize(int index) { struct eth_device *dev; int i; uec_private_t *uec; uec_info_t *uec_info; int err; dev = (struct eth_device *)malloc(sizeof(struct eth_device)); if (!dev) return 0; memset(dev, 0, sizeof(struct eth_device)); /* Allocate the UEC private struct */ uec = (uec_private_t *)malloc(sizeof(uec_private_t)); if (!uec) { return -ENOMEM; } memset(uec, 0, sizeof(uec_private_t)); /* Init UEC private struct, they come from board.h */ uec_info = NULL; if (index == 0) { #ifdef CONFIG_UEC_ETH1 uec_info = ð1_uec_info; #endif } else if (index == 1) { #ifdef CONFIG_UEC_ETH2 uec_info = ð2_uec_info; #endif } else if (index == 2) { #ifdef CONFIG_UEC_ETH3 uec_info = ð3_uec_info; #endif } else if (index == 3) { #ifdef CONFIG_UEC_ETH4 uec_info = ð4_uec_info; #endif } else { printf("%s: index is illegal.\n", __FUNCTION__); return -EINVAL; } devlist[index] = dev; uec->uec_info = uec_info; sprintf(dev->name, "FSL UEC%d", index); dev->iobase = 0; dev->priv = (void *)uec; dev->init = uec_init; dev->halt = uec_halt; dev->send = uec_send; dev->recv = uec_recv; /* Clear the ethnet address */ for (i = 0; i < 6; i++) dev->enetaddr[i] = 0; eth_register(dev); err = uec_startup(uec); if (err) { printf("%s: Cannot configure net device, aborting.",dev->name); return err; } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) miiphy_register(dev->name, uec_miiphy_read, uec_miiphy_write); #endif return 1; }