/* * Freescale Three Speed Ethernet Controller driver * * This software may be used and distributed according to the * terms of the GNU Public License, Version 2, incorporated * herein by reference. * * Copyright 2004-2011 Freescale Semiconductor, Inc. * (C) Copyright 2003, Motorola, Inc. * author Andy Fleming * */ #include #include #include #include #include #include #include #include "miiphy.h" DECLARE_GLOBAL_DATA_PTR; #define TX_BUF_CNT 2 static uint rxIdx; /* index of the current RX buffer */ static uint txIdx; /* index of the current TX buffer */ typedef volatile struct rtxbd { txbd8_t txbd[TX_BUF_CNT]; rxbd8_t rxbd[PKTBUFSRX]; } RTXBD; #define MAXCONTROLLERS (8) static struct tsec_private *privlist[MAXCONTROLLERS]; static int num_tsecs = 0; #ifdef __GNUC__ static RTXBD rtx __attribute__ ((aligned(8))); #else #error "rtx must be 64-bit aligned" #endif /* Default initializations for TSEC controllers. */ static struct tsec_info_struct tsec_info[] = { #ifdef CONFIG_TSEC1 STD_TSEC_INFO(1), /* TSEC1 */ #endif #ifdef CONFIG_TSEC2 STD_TSEC_INFO(2), /* TSEC2 */ #endif #ifdef CONFIG_MPC85XX_FEC { .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000), .miiregs = (tsec_mdio_t *)(MDIO_BASE_ADDR), .devname = CONFIG_MPC85XX_FEC_NAME, .phyaddr = FEC_PHY_ADDR, .flags = FEC_FLAGS }, /* FEC */ #endif #ifdef CONFIG_TSEC3 STD_TSEC_INFO(3), /* TSEC3 */ #endif #ifdef CONFIG_TSEC4 STD_TSEC_INFO(4), /* TSEC4 */ #endif }; /* Writes the given phy's reg with value, using the specified MDIO regs */ static void tsec_local_mdio_write(tsec_mdio_t *phyregs, uint addr, uint reg, uint value) { int timeout = 1000000; out_be32(&phyregs->miimadd, (addr << 8) | reg); out_be32(&phyregs->miimcon, value); timeout = 1000000; while ((in_be32(&phyregs->miimind) & MIIMIND_BUSY) && timeout--) ; } /* Provide the default behavior of writing the PHY of this ethernet device */ #define write_phy_reg(priv, regnum, value) \ tsec_local_mdio_write(priv->phyregs,priv->phyaddr,regnum,value) /* Reads register regnum on the device's PHY through the * specified registers. It lowers and raises the read * command, and waits for the data to become valid (miimind * notvalid bit cleared), and the bus to cease activity (miimind * busy bit cleared), and then returns the value */ static uint tsec_local_mdio_read(tsec_mdio_t *phyregs, uint phyid, uint regnum) { uint value; /* Put the address of the phy, and the register * number into MIIMADD */ out_be32(&phyregs->miimadd, (phyid << 8) | regnum); /* Clear the command register, and wait */ out_be32(&phyregs->miimcom, 0); /* Initiate a read command, and wait */ out_be32(&phyregs->miimcom, MIIM_READ_COMMAND); /* Wait for the the indication that the read is done */ while ((in_be32(&phyregs->miimind) & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ; /* Grab the value read from the PHY */ value = in_be32(&phyregs->miimstat); return value; } /* #define to provide old read_phy_reg functionality without duplicating code */ #define read_phy_reg(priv,regnum) \ tsec_local_mdio_read(priv->phyregs,priv->phyaddr,regnum) #define TBIANA_SETTINGS ( \ TBIANA_ASYMMETRIC_PAUSE \ | TBIANA_SYMMETRIC_PAUSE \ | TBIANA_FULL_DUPLEX \ ) /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */ #ifndef CONFIG_TSEC_TBICR_SETTINGS #define CONFIG_TSEC_TBICR_SETTINGS ( \ TBICR_PHY_RESET \ | TBICR_ANEG_ENABLE \ | TBICR_FULL_DUPLEX \ | TBICR_SPEED1_SET \ ) #endif /* CONFIG_TSEC_TBICR_SETTINGS */ /* Configure the TBI for SGMII operation */ static void tsec_configure_serdes(struct tsec_private *priv) { /* Access TBI PHY registers at given TSEC register offset as opposed * to the register offset used for external PHY accesses */ tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_ANA, TBIANA_SETTINGS); tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_TBICON, TBICON_CLK_SELECT); tsec_local_mdio_write(priv->phyregs_sgmii, priv->regs->tbipa, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS); } /* * Returns which value to write to the control register. * For 10/100, the value is slightly different */ static uint mii_cr_init(uint mii_reg, struct tsec_private * priv) { if (priv->flags & TSEC_GIGABIT) return MIIM_CONTROL_INIT; else return MIIM_CR_INIT; } /* * Wait for auto-negotiation to complete, then determine link */ static uint mii_parse_sr(uint mii_reg, struct tsec_private * priv) { /* * Wait if the link is up, and autonegotiation is in progress * (ie - we're capable and it's not done) */ mii_reg = read_phy_reg(priv, MIIM_STATUS); if ((mii_reg & BMSR_ANEGCAPABLE) && !(mii_reg & BMSR_ANEGCOMPLETE)) { int i = 0; puts("Waiting for PHY auto negotiation to complete"); while (!(mii_reg & BMSR_ANEGCOMPLETE)) { /* * Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; return 0; } if (ctrlc()) { puts("user interrupt!\n"); priv->link = 0; return -EINTR; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_STATUS); } puts(" done\n"); /* Link status bit is latched low, read it again */ mii_reg = read_phy_reg(priv, MIIM_STATUS); udelay(500000); /* another 500 ms (results in faster booting) */ } priv->link = mii_reg & MIIM_STATUS_LINK ? 1 : 0; return 0; } /* Generic function which updates the speed and duplex. If * autonegotiation is enabled, it uses the AND of the link * partner's advertised capabilities and our advertised * capabilities. If autonegotiation is disabled, we use the * appropriate bits in the control register. * * Stolen from Linux's mii.c and phy_device.c */ static uint mii_parse_link(uint mii_reg, struct tsec_private *priv) { /* We're using autonegotiation */ if (mii_reg & BMSR_ANEGCAPABLE) { uint lpa = 0; uint gblpa = 0; /* Check for gigabit capability */ if (mii_reg & BMSR_ERCAP) { /* We want a list of states supported by * both PHYs in the link */ gblpa = read_phy_reg(priv, MII_STAT1000); gblpa &= read_phy_reg(priv, MII_CTRL1000) << 2; } /* Set the baseline so we only have to set them * if they're different */ priv->speed = 10; priv->duplexity = 0; /* Check the gigabit fields */ if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) { priv->speed = 1000; if (gblpa & PHY_1000BTSR_1000FD) priv->duplexity = 1; /* We're done! */ return 0; } lpa = read_phy_reg(priv, MII_ADVERTISE); lpa &= read_phy_reg(priv, MII_LPA); if (lpa & (LPA_100FULL | LPA_100HALF)) { priv->speed = 100; if (lpa & LPA_100FULL) priv->duplexity = 1; } else if (lpa & LPA_10FULL) priv->duplexity = 1; } else { uint bmcr = read_phy_reg(priv, MII_BMCR); priv->speed = 10; priv->duplexity = 0; if (bmcr & BMCR_FULLDPLX) priv->duplexity = 1; if (bmcr & BMCR_SPEED1000) priv->speed = 1000; else if (bmcr & BMCR_SPEED100) priv->speed = 100; } return 0; } /* * "Ethernet@Wirespeed" needs to be enabled to achieve link in certain * circumstances. eg a gigabit TSEC connected to a gigabit switch with * a 4-wire ethernet cable. Both ends advertise gigabit, but can't * link. "Ethernet@Wirespeed" reduces advertised speed until link * can be achieved. */ static uint mii_BCM54xx_wirespeed(uint mii_reg, struct tsec_private *priv) { return (read_phy_reg(priv, mii_reg) & 0x8FFF) | 0x8010; } /* * Parse the BCM54xx status register for speed and duplex information. * The linux sungem_phy has this information, but in a table format. */ static uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv) { /* If there is no link, speed and duplex don't matter */ if (!priv->link) return 0; switch ((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT) { case 1: priv->duplexity = 0; priv->speed = 10; break; case 2: priv->duplexity = 1; priv->speed = 10; break; case 3: priv->duplexity = 0; priv->speed = 100; break; case 5: priv->duplexity = 1; priv->speed = 100; break; case 6: priv->duplexity = 0; priv->speed = 1000; break; case 7: priv->duplexity = 1; priv->speed = 1000; break; default: printf("Auto-neg error, defaulting to 10BT/HD\n"); priv->duplexity = 0; priv->speed = 10; break; } return 0; } /* * Find out if PHY is in copper or serdes mode by looking at Expansion Reg * 0x42 - "Operating Mode Status Register" */ static int BCM8482_is_serdes(struct tsec_private *priv) { u16 val; int serdes = 0; write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42); val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA); switch (val & 0x1f) { case 0x0d: /* RGMII-to-100Base-FX */ case 0x0e: /* RGMII-to-SGMII */ case 0x0f: /* RGMII-to-SerDes */ case 0x12: /* SGMII-to-SerDes */ case 0x13: /* SGMII-to-100Base-FX */ case 0x16: /* SerDes-to-Serdes */ serdes = 1; break; case 0x6: /* RGMII-to-Copper */ case 0x14: /* SGMII-to-Copper */ case 0x17: /* SerDes-to-Copper */ break; default: printf("ERROR, invalid PHY mode (0x%x\n)", val); break; } return serdes; } /* * Determine SerDes link speed and duplex from Expansion reg 0x42 "Operating * Mode Status Register" */ uint mii_parse_BCM5482_serdes_sr(struct tsec_private *priv) { u16 val; int i = 0; /* Wait 1s for link - Clause 37 autonegotiation happens very fast */ while (1) { write_phy_reg(priv, MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_ER | 0x42); val = read_phy_reg(priv, MIIM_BCM54XX_EXP_DATA); if (val & 0x8000) break; if (i++ > 1000) { priv->link = 0; return 1; } udelay(1000); /* 1 ms */ } priv->link = 1; switch ((val >> 13) & 0x3) { case (0x00): priv->speed = 10; break; case (0x01): priv->speed = 100; break; case (0x02): priv->speed = 1000; break; } priv->duplexity = (val & 0x1000) == 0x1000; return 0; } /* * Figure out if BCM5482 is in serdes or copper mode and determine link * configuration accordingly */ static uint mii_parse_BCM5482_sr(uint mii_reg, struct tsec_private *priv) { if (BCM8482_is_serdes(priv)) { mii_parse_BCM5482_serdes_sr(priv); priv->flags |= TSEC_FIBER; } else { /* Wait for auto-negotiation to complete or fail */ mii_parse_sr(mii_reg, priv); /* Parse BCM54xx copper aux status register */ mii_reg = read_phy_reg(priv, MIIM_BCM54xx_AUXSTATUS); mii_parse_BCM54xx_sr(mii_reg, priv); } return 0; } /* Parse the 88E1011's status register for speed and duplex * information */ static uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv) { uint speed; mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) && !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) { int i = 0; puts("Waiting for PHY realtime link"); while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) { /* Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; break; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); } puts(" done\n"); udelay(500000); /* another 500 ms (results in faster booting) */ } else { if (mii_reg & MIIM_88E1011_PHYSTAT_LINK) priv->link = 1; else priv->link = 0; } if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED); switch (speed) { case MIIM_88E1011_PHYSTAT_GBIT: priv->speed = 1000; break; case MIIM_88E1011_PHYSTAT_100: priv->speed = 100; break; default: priv->speed = 10; } return 0; } /* Parse the RTL8211B's status register for speed and duplex * information */ static uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv) { uint speed; mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS); if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) { int i = 0; /* in case of timeout ->link is cleared */ priv->link = 1; puts("Waiting for PHY realtime link"); while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) { /* Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; break; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS); } puts(" done\n"); udelay(500000); /* another 500 ms (results in faster booting) */ } else { if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK) priv->link = 1; else priv->link = 0; } if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED); switch (speed) { case MIIM_RTL8211B_PHYSTAT_GBIT: priv->speed = 1000; break; case MIIM_RTL8211B_PHYSTAT_100: priv->speed = 100; break; default: priv->speed = 10; } return 0; } /* Parse the cis8201's status register for speed and duplex * information */ static uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv) { uint speed; if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED; switch (speed) { case MIIM_CIS8201_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_CIS8201_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the vsc8244's status register for speed and duplex * information */ static uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv) { uint speed; if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED; switch (speed) { case MIIM_VSC8244_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_VSC8244_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the DM9161's status register for speed and duplex * information */ static uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv) { if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H)) priv->speed = 100; else priv->speed = 10; if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F)) priv->duplexity = 1; else priv->duplexity = 0; return 0; } /* * Hack to write all 4 PHYs with the LED values */ static uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv) { uint phyid; tsec_mdio_t *regbase = priv->phyregs; int timeout = 1000000; for (phyid = 0; phyid < 4; phyid++) { out_be32(®base->miimadd, (phyid << 8) | mii_reg); out_be32(®base->miimcon, MIIM_CIS8204_SLEDCON_INIT); timeout = 1000000; while ((in_be32(®base->miimind) & MIIMIND_BUSY) && timeout--) ; } return MIIM_CIS8204_SLEDCON_INIT; } static uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv) { if (priv->flags & TSEC_REDUCED) return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII; else return MIIM_CIS8204_EPHYCON_INIT; } static uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv) { uint mii_data = read_phy_reg(priv, mii_reg); if (priv->flags & TSEC_REDUCED) mii_data = (mii_data & 0xfff0) | 0x000b; return mii_data; } static struct phy_info phy_info_M88E1149S = { 0x1410ca, "Marvell 88E1149S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */ static struct phy_info phy_info_BCM5461S = { 0x02060c1, /* 5461 ID */ "Broadcom BCM5461S", 0, /* not clear to me what minor revisions we can shift away */ (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_BCM5464S = { 0x02060b1, /* 5464 ID */ "Broadcom BCM5464S", 0, /* not clear to me what minor revisions we can shift away */ (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_BCM5482S = { 0x0143bcb, "Broadcom BCM5482S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, /* Setup read from auxilary control shadow register 7 */ {MIIM_BCM54xx_AUXCNTL, MIIM_BCM54xx_AUXCNTL_ENCODE(7), NULL}, /* Read Misc Control register and or in Ethernet@Wirespeed */ {MIIM_BCM54xx_AUXCNTL, 0, &mii_BCM54xx_wirespeed}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, /* Initial config/enable of secondary SerDes interface */ {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x14, 0xf), NULL}, /* Write intial value to secondary SerDes Contol */ {MIIM_BCM54XX_EXP_SEL, MIIM_BCM54XX_EXP_SEL_SSD | 0, NULL}, {MIIM_BCM54XX_EXP_DATA, MIIM_CONTROL_RESTART, NULL}, /* Enable copper/fiber auto-detect */ {MIIM_BCM54XX_SHD, MIIM_BCM54XX_SHD_WR_ENCODE(0x1e, 0x201)}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Determine copper/fiber, auto-negotiate, and read the result */ {MIIM_STATUS, miim_read, &mii_parse_BCM5482_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_M88E1011S = { 0x01410c6, "Marvell 88E1011S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_M88E1111S = { 0x01410cc, "Marvell 88E1111S", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1b, 0x848f, &mii_m88e1111s_setmode}, {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */ {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_M88E1118 = { 0x01410e1, "Marvell 88E1118", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x16, 0x0002, NULL}, /* Change Page Number */ {0x15, 0x1070, NULL}, /* Delay RGMII TX and RX */ {0x16, 0x0003, NULL}, /* Change Page Number */ {0x10, 0x021e, NULL}, /* Adjust LED control */ {0x16, 0x0000, NULL}, /* Change Page Number */ {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ {0x16, 0x0000, NULL}, /* Change Page Number */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; /* * Since to access LED register we need do switch the page, we * do LED configuring in the miim_read-like function as follows */ static uint mii_88E1121_set_led (uint mii_reg, struct tsec_private *priv) { uint pg; /* Switch the page to access the led register */ pg = read_phy_reg(priv, MIIM_88E1121_PHY_PAGE); write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, MIIM_88E1121_PHY_LED_PAGE); /* Configure leds */ write_phy_reg(priv, MIIM_88E1121_PHY_LED_CTRL, MIIM_88E1121_PHY_LED_DEF); /* Restore the page pointer */ write_phy_reg(priv, MIIM_88E1121_PHY_PAGE, pg); return 0; } static struct phy_info phy_info_M88E1121R = { 0x01410cb, "Marvell 88E1121R", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, /* Configure leds */ {MIIM_88E1121_PHY_LED_CTRL, miim_read, &mii_88E1121_set_led}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, /* Disable IRQs and de-assert interrupt */ {MIIM_88E1121_PHY_IRQ_EN, 0, NULL}, {MIIM_88E1121_PHY_IRQ_STATUS, miim_read, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_STATUS, miim_read, &mii_parse_link}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv) { uint mii_data = read_phy_reg(priv, mii_reg); /* Setting MIIM_88E1145_PHY_EXT_CR */ if (priv->flags & TSEC_REDUCED) return mii_data | MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY; else return mii_data; } static struct phy_info phy_info_M88E1145 = { 0x01410cd, "Marvell 88E1145", 4, (struct phy_cmd[]) { /* config */ /* Reset the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, /* Errata E0, E1 */ {29, 0x001b, NULL}, {30, 0x418f, NULL}, {29, 0x0016, NULL}, {30, 0xa2da, NULL}, /* Configure the PHY */ {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL}, {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL}, /* Read the Status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_cis8204 = { 0x3f11, "Cicada Cis8204", 6, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT, &mii_cis8204_fixled}, {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, &mii_cis8204_setmode}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; /* Cicada 8201 */ static struct phy_info phy_info_cis8201 = { 0xfc41, "CIS8201", 4, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Set up the interface mode */ {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_VSC8211 = { 0xfc4b, "Vitesse VSC8211", 4, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Set up the interface mode */ {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_VSC8244 = { 0x3f1b, "Vitesse VSC8244", 6, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_VSC8641 = { 0x7043, "Vitesse VSC8641", 4, (struct phy_cmd[]) { /* config */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_VSC8221 = { 0xfc55, "Vitesse VSC8221", 4, (struct phy_cmd[]) { /* config */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_VSC8601 = { 0x00007042, "Vitesse VSC8601", 4, (struct phy_cmd[]) { /* config */ /* Override PHY config settings */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, #ifdef CONFIG_SYS_VSC8601_SKEWFIX {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL}, #if defined(CONFIG_SYS_VSC8601_SKEW_TX) && defined(CONFIG_SYS_VSC8601_SKEW_RX) {MIIM_EXT_PAGE_ACCESS,1,NULL}, #define VSC8101_SKEW \ (CONFIG_SYS_VSC8601_SKEW_TX << 14) | (CONFIG_SYS_VSC8601_SKEW_RX << 12) {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL}, {MIIM_EXT_PAGE_ACCESS,0,NULL}, #endif #endif {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESTART, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_dm9161 = { 0x0181b88, "Davicom DM9161E", 4, (struct phy_cmd[]) { /* config */ {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL}, /* Do not bypass the scrambler/descrambler */ {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL}, /* Clear 10BTCSR to default */ {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CR_INIT, NULL}, /* Restart Auto Negotiation */ {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; /* micrel KSZ804 */ static struct phy_info phy_info_ksz804 = { 0x0022151, "Micrel KSZ804 PHY", 4, (struct phy_cmd[]) { /* config */ {MII_BMCR, BMCR_RESET, NULL}, {MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ {MII_BMSR, miim_read, NULL}, {MII_BMSR, miim_read, &mii_parse_sr}, {MII_BMSR, miim_read, &mii_parse_link}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} } }; /* a generic flavor. */ static struct phy_info phy_info_generic = { 0, "Unknown/Generic PHY", 32, (struct phy_cmd[]) { /* config */ {MII_BMCR, BMCR_RESET, NULL}, {MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ {MII_BMSR, miim_read, NULL}, {MII_BMSR, miim_read, &mii_parse_sr}, {MII_BMSR, miim_read, &mii_parse_link}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} } }; static uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv) { unsigned int speed; if (priv->link) { speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK; switch (speed) { case MIIM_LXT971_SR2_10HDX: priv->speed = 10; priv->duplexity = 0; break; case MIIM_LXT971_SR2_10FDX: priv->speed = 10; priv->duplexity = 1; break; case MIIM_LXT971_SR2_100HDX: priv->speed = 100; priv->duplexity = 0; break; default: priv->speed = 100; priv->duplexity = 1; } } else { priv->speed = 0; priv->duplexity = 0; } return 0; } static struct phy_info phy_info_lxt971 = { 0x0001378e, "LXT971", 4, (struct phy_cmd[]) { /* config */ {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */ {miim_end,} }, (struct phy_cmd[]) { /* startup - enable interrupts */ /* { 0x12, 0x00f2, NULL }, */ {MIIM_STATUS, miim_read, NULL}, {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown - disable interrupts */ {miim_end,} }, }; /* Parse the DP83865's link and auto-neg status register for speed and duplex * information */ static uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv) { switch (mii_reg & MIIM_DP83865_SPD_MASK) { case MIIM_DP83865_SPD_1000: priv->speed = 1000; break; case MIIM_DP83865_SPD_100: priv->speed = 100; break; default: priv->speed = 10; break; } if (mii_reg & MIIM_DP83865_DPX_FULL) priv->duplexity = 1; else priv->duplexity = 0; return 0; } static struct phy_info phy_info_dp83865 = { 0x20005c7, "NatSemi DP83865", 4, (struct phy_cmd[]) { /* config */ {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the link and auto-neg status */ {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; static struct phy_info phy_info_rtl8211b = { 0x001cc91, "RealTek RTL8211B", 4, (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_AR8021 = { 0x4dd04, "AR8021", 4, (struct phy_cmd[]) { /* config */ {MII_BMCR, BMCR_RESET, NULL}, {MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART, NULL}, {0x1d, 0x05, NULL}, {0x1e, 0x3D47, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ {MII_BMSR, miim_read, NULL}, {MII_BMSR, miim_read, &mii_parse_sr}, {MII_BMSR, miim_read, &mii_parse_link}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} } }; static struct phy_info *phy_info[] = { &phy_info_cis8204, &phy_info_cis8201, &phy_info_BCM5461S, &phy_info_BCM5464S, &phy_info_BCM5482S, &phy_info_M88E1011S, &phy_info_M88E1111S, &phy_info_M88E1118, &phy_info_M88E1121R, &phy_info_M88E1145, &phy_info_M88E1149S, &phy_info_dm9161, &phy_info_ksz804, &phy_info_lxt971, &phy_info_VSC8211, &phy_info_VSC8244, &phy_info_VSC8601, &phy_info_VSC8641, &phy_info_VSC8221, &phy_info_dp83865, &phy_info_rtl8211b, &phy_info_AR8021, &phy_info_generic, /* must be last; has ID 0 and 32 bit mask */ NULL }; /* Grab the identifier of the device's PHY, and search through * all of the known PHYs to see if one matches. If so, return * it, if not, return NULL */ static struct phy_info *get_phy_info(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; uint phy_reg, phy_ID; int i; struct phy_info *theInfo = NULL; /* Grab the bits from PHYIR1, and put them in the upper half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR1); phy_ID = (phy_reg & 0xffff) << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR2); phy_ID |= (phy_reg & 0xffff); /* loop through all the known PHY types, and find one that */ /* matches the ID we read from the PHY. */ for (i = 0; phy_info[i]; i++) { if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) { theInfo = phy_info[i]; break; } } if (theInfo == &phy_info_generic) { printf("%s: No support for PHY id %x; assuming generic\n", dev->name, phy_ID); } else { debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID); } return theInfo; } /* Execute the given series of commands on the given device's * PHY, running functions as necessary */ static void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd) { int i; uint result; tsec_mdio_t *phyregs = priv->phyregs; out_be32(&phyregs->miimcfg, MIIMCFG_RESET); out_be32(&phyregs->miimcfg, MIIMCFG_INIT_VALUE); while (in_be32(&phyregs->miimind) & MIIMIND_BUSY) ; for (i = 0; cmd->mii_reg != miim_end; i++) { if (cmd->mii_data == miim_read) { result = read_phy_reg(priv, cmd->mii_reg); if (cmd->funct != NULL) (*(cmd->funct)) (result, priv); } else { if (cmd->funct != NULL) result = (*(cmd->funct)) (cmd->mii_reg, priv); else result = cmd->mii_data; write_phy_reg(priv, cmd->mii_reg, result); } cmd++; } } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) /* * Read a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_read(const char *devname, unsigned char addr, unsigned char reg, unsigned short *value) { unsigned short ret; struct tsec_private *priv = privlist[0]; if (NULL == priv) { printf("Can't read PHY at address %d\n", addr); return -1; } ret = (unsigned short)tsec_local_mdio_read(priv->phyregs, addr, reg); *value = ret; return 0; } /* * Write a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_write(const char *devname, unsigned char addr, unsigned char reg, unsigned short value) { struct tsec_private *priv = privlist[0]; if (NULL == priv) { printf("Can't write PHY at address %d\n", addr); return -1; } tsec_local_mdio_write(priv->phyregs, addr, reg, value); return 0; } #endif #ifdef CONFIG_MCAST_TFTP /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */ /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is * gaddr7. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the tregister holds * the entry. */ static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set) { struct tsec_private *priv = privlist[1]; volatile tsec_t *regs = priv->regs; volatile u32 *reg_array, value; u8 result, whichbit, whichreg; result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff); whichbit = result & 0x1f; /* the 5 LSB = which bit to set */ whichreg = result >> 5; /* the 3 MSB = which reg to set it in */ value = (1 << (31-whichbit)); reg_array = &(regs->hash.gaddr0); if (set) { reg_array[whichreg] |= value; } else { reg_array[whichreg] &= ~value; } return 0; } #endif /* Multicast TFTP ? */ /* Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, * choose a more appropriate value) */ static void init_registers(tsec_t *regs) { /* Clear IEVENT */ out_be32(®s->ievent, IEVENT_INIT_CLEAR); out_be32(®s->imask, IMASK_INIT_CLEAR); out_be32(®s->hash.iaddr0, 0); out_be32(®s->hash.iaddr1, 0); out_be32(®s->hash.iaddr2, 0); out_be32(®s->hash.iaddr3, 0); out_be32(®s->hash.iaddr4, 0); out_be32(®s->hash.iaddr5, 0); out_be32(®s->hash.iaddr6, 0); out_be32(®s->hash.iaddr7, 0); out_be32(®s->hash.gaddr0, 0); out_be32(®s->hash.gaddr1, 0); out_be32(®s->hash.gaddr2, 0); out_be32(®s->hash.gaddr3, 0); out_be32(®s->hash.gaddr4, 0); out_be32(®s->hash.gaddr5, 0); out_be32(®s->hash.gaddr6, 0); out_be32(®s->hash.gaddr7, 0); out_be32(®s->rctrl, 0x00000000); /* Init RMON mib registers */ memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t)); out_be32(®s->rmon.cam1, 0xffffffff); out_be32(®s->rmon.cam2, 0xffffffff); out_be32(®s->mrblr, MRBLR_INIT_SETTINGS); out_be32(®s->minflr, MINFLR_INIT_SETTINGS); out_be32(®s->attr, ATTR_INIT_SETTINGS); out_be32(®s->attreli, ATTRELI_INIT_SETTINGS); } /* Configure maccfg2 based on negotiated speed and duplex * reported by PHY handling code */ static void adjust_link(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; u32 ecntrl, maccfg2; if (!priv->link) { printf("%s: No link.\n", dev->name); return; } /* clear all bits relative with interface mode */ ecntrl = in_be32(®s->ecntrl); ecntrl &= ~ECNTRL_R100; maccfg2 = in_be32(®s->maccfg2); maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX); if (priv->duplexity) maccfg2 |= MACCFG2_FULL_DUPLEX; switch (priv->speed) { case 1000: maccfg2 |= MACCFG2_GMII; break; case 100: case 10: maccfg2 |= MACCFG2_MII; /* Set R100 bit in all modes although * it is only used in RGMII mode */ if (priv->speed == 100) ecntrl |= ECNTRL_R100; break; default: printf("%s: Speed was bad\n", dev->name); break; } out_be32(®s->ecntrl, ecntrl); out_be32(®s->maccfg2, maccfg2); printf("Speed: %d, %s duplex%s\n", priv->speed, (priv->duplexity) ? "full" : "half", (priv->flags & TSEC_FIBER) ? ", fiber mode" : ""); } /* Set up the buffers and their descriptors, and bring up the * interface */ static void startup_tsec(struct eth_device *dev) { int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; /* Point to the buffer descriptors */ out_be32(®s->tbase, (unsigned int)(&rtx.txbd[txIdx])); out_be32(®s->rbase, (unsigned int)(&rtx.rxbd[rxIdx])); /* Initialize the Rx Buffer descriptors */ for (i = 0; i < PKTBUFSRX; i++) { rtx.rxbd[i].status = RXBD_EMPTY; rtx.rxbd[i].length = 0; rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i]; } rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP; /* Initialize the TX Buffer Descriptors */ for (i = 0; i < TX_BUF_CNT; i++) { rtx.txbd[i].status = 0; rtx.txbd[i].length = 0; rtx.txbd[i].bufPtr = 0; } rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP; /* Start up the PHY */ if (priv->phyinfo) phy_run_commands(priv, priv->phyinfo->startup); adjust_link(dev); /* Enable Transmit and Receive */ setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); out_be32(®s->tstat, TSTAT_CLEAR_THALT); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); } /* This returns the status bits of the device. The return value * is never checked, and this is what the 8260 driver did, so we * do the same. Presumably, this would be zero if there were no * errors */ static int tsec_send(struct eth_device *dev, volatile void *packet, int length) { int i; int result = 0; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; /* Find an empty buffer descriptor */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx buffers full\n", dev->name); return result; } } rtx.txbd[txIdx].bufPtr = (uint) packet; rtx.txbd[txIdx].length = length; rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT); /* Tell the DMA to go */ out_be32(®s->tstat, TSTAT_CLEAR_THALT); /* Wait for buffer to be transmitted */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx error\n", dev->name); return result; } } txIdx = (txIdx + 1) % TX_BUF_CNT; result = rtx.txbd[txIdx].status & TXBD_STATS; return result; } static int tsec_recv(struct eth_device *dev) { int length; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) { length = rtx.rxbd[rxIdx].length; /* Send the packet up if there were no errors */ if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) { NetReceive(NetRxPackets[rxIdx], length - 4); } else { printf("Got error %x\n", (rtx.rxbd[rxIdx].status & RXBD_STATS)); } rtx.rxbd[rxIdx].length = 0; /* Set the wrap bit if this is the last element in the list */ rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); rxIdx = (rxIdx + 1) % PKTBUFSRX; } if (in_be32(®s->ievent) & IEVENT_BSY) { out_be32(®s->ievent, IEVENT_BSY); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); } return -1; } /* Stop the interface */ static void tsec_halt(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); setbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); while ((in_be32(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC)) != (IEVENT_GRSC | IEVENT_GTSC)) ; clrbits_be32(®s->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN); /* Shut down the PHY, as needed */ if (priv->phyinfo) phy_run_commands(priv, priv->phyinfo->shutdown); } /* Initializes data structures and registers for the controller, * and brings the interface up. Returns the link status, meaning * that it returns success if the link is up, failure otherwise. * This allows u-boot to find the first active controller. */ static int tsec_init(struct eth_device *dev, bd_t * bd) { uint tempval; char tmpbuf[MAC_ADDR_LEN]; int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; /* Make sure the controller is stopped */ tsec_halt(dev); /* Init MACCFG2. Defaults to GMII */ out_be32(®s->maccfg2, MACCFG2_INIT_SETTINGS); /* Init ECNTRL */ out_be32(®s->ecntrl, ECNTRL_INIT_SETTINGS); /* Copy the station address into the address registers. * Backwards, because little endian MACS are dumb */ for (i = 0; i < MAC_ADDR_LEN; i++) tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i]; tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) | tmpbuf[3]; out_be32(®s->macstnaddr1, tempval); tempval = *((uint *) (tmpbuf + 4)); out_be32(®s->macstnaddr2, tempval); /* reset the indices to zero */ rxIdx = 0; txIdx = 0; /* Clear out (for the most part) the other registers */ init_registers(regs); /* Ready the device for tx/rx */ startup_tsec(dev); /* If there's no link, fail */ return priv->link ? 0 : -1; } /* Discover which PHY is attached to the device, and configure it * properly. If the PHY is not recognized, then return 0 * (failure). Otherwise, return 1 */ static int init_phy(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; struct phy_info *curphy; tsec_t *regs = priv->regs; /* Assign a Physical address to the TBI */ out_be32(®s->tbipa, CONFIG_SYS_TBIPA_VALUE); /* Reset MII (due to new addresses) */ out_be32(&priv->phyregs->miimcfg, MIIMCFG_RESET); out_be32(&priv->phyregs->miimcfg, MIIMCFG_INIT_VALUE); while (in_be32(&priv->phyregs->miimind) & MIIMIND_BUSY) ; /* Get the cmd structure corresponding to the attached * PHY */ curphy = get_phy_info(dev); if (curphy == NULL) { priv->phyinfo = NULL; printf("%s: No PHY found\n", dev->name); return 0; } if (in_be32(®s->ecntrl) & ECNTRL_SGMII_MODE) tsec_configure_serdes(priv); priv->phyinfo = curphy; phy_run_commands(priv, priv->phyinfo->config); return 1; } /* Initialize device structure. Returns success if PHY * initialization succeeded (i.e. if it recognizes the PHY) */ static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info) { struct eth_device *dev; int i; struct tsec_private *priv; dev = (struct eth_device *)malloc(sizeof *dev); if (NULL == dev) return 0; memset(dev, 0, sizeof *dev); priv = (struct tsec_private *)malloc(sizeof(*priv)); if (NULL == priv) return 0; privlist[num_tsecs++] = priv; priv->regs = tsec_info->regs; priv->phyregs = tsec_info->miiregs; priv->phyregs_sgmii = tsec_info->miiregs_sgmii; priv->phyaddr = tsec_info->phyaddr; priv->flags = tsec_info->flags; sprintf(dev->name, tsec_info->devname); dev->iobase = 0; dev->priv = priv; dev->init = tsec_init; dev->halt = tsec_halt; dev->send = tsec_send; dev->recv = tsec_recv; #ifdef CONFIG_MCAST_TFTP dev->mcast = tsec_mcast_addr; #endif /* Tell u-boot to get the addr from the env */ for (i = 0; i < 6; i++) dev->enetaddr[i] = 0; eth_register(dev); /* Reset the MAC */ setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); udelay(2); /* Soft Reset must be asserted for 3 TX clocks */ clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write); #endif /* Try to initialize PHY here, and return */ return init_phy(dev); } /* * Initialize all the TSEC devices * * Returns the number of TSEC devices that were initialized */ int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num) { int i; int ret, count = 0; for (i = 0; i < num; i++) { ret = tsec_initialize(bis, &tsecs[i]); if (ret > 0) count += ret; } return count; } int tsec_standard_init(bd_t *bis) { return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info)); }