/* * Freescale Three Speed Ethernet Controller driver * * This software may be used and distributed according to the * terms of the GNU Public License, Version 2, incorporated * herein by reference. * * Copyright 2004-2011 Freescale Semiconductor, Inc. * (C) Copyright 2003, Motorola, Inc. * author Andy Fleming * */ #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; #define TX_BUF_CNT 2 static uint rxIdx; /* index of the current RX buffer */ static uint txIdx; /* index of the current TX buffer */ typedef volatile struct rtxbd { txbd8_t txbd[TX_BUF_CNT]; rxbd8_t rxbd[PKTBUFSRX]; } RTXBD; #ifdef __GNUC__ static RTXBD rtx __attribute__ ((aligned(8))); #else #error "rtx must be 64-bit aligned" #endif static int tsec_send(struct eth_device *dev, void *packet, int length); /* Default initializations for TSEC controllers. */ static struct tsec_info_struct tsec_info[] = { #ifdef CONFIG_TSEC1 STD_TSEC_INFO(1), /* TSEC1 */ #endif #ifdef CONFIG_TSEC2 STD_TSEC_INFO(2), /* TSEC2 */ #endif #ifdef CONFIG_MPC85XX_FEC { .regs = (tsec_t *)(TSEC_BASE_ADDR + 0x2000), .devname = CONFIG_MPC85XX_FEC_NAME, .phyaddr = FEC_PHY_ADDR, .flags = FEC_FLAGS, .mii_devname = DEFAULT_MII_NAME }, /* FEC */ #endif #ifdef CONFIG_TSEC3 STD_TSEC_INFO(3), /* TSEC3 */ #endif #ifdef CONFIG_TSEC4 STD_TSEC_INFO(4), /* TSEC4 */ #endif }; #define TBIANA_SETTINGS ( \ TBIANA_ASYMMETRIC_PAUSE \ | TBIANA_SYMMETRIC_PAUSE \ | TBIANA_FULL_DUPLEX \ ) /* By default force the TBI PHY into 1000Mbps full duplex when in SGMII mode */ #ifndef CONFIG_TSEC_TBICR_SETTINGS #define CONFIG_TSEC_TBICR_SETTINGS ( \ TBICR_PHY_RESET \ | TBICR_ANEG_ENABLE \ | TBICR_FULL_DUPLEX \ | TBICR_SPEED1_SET \ ) #endif /* CONFIG_TSEC_TBICR_SETTINGS */ /* Configure the TBI for SGMII operation */ static void tsec_configure_serdes(struct tsec_private *priv) { /* Access TBI PHY registers at given TSEC register offset as opposed * to the register offset used for external PHY accesses */ tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_ANA, TBIANA_SETTINGS); tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_TBICON, TBICON_CLK_SELECT); tsec_local_mdio_write(priv->phyregs_sgmii, in_be32(&priv->regs->tbipa), 0, TBI_CR, CONFIG_TSEC_TBICR_SETTINGS); } #ifdef CONFIG_MCAST_TFTP /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */ /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is entry * 255. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the register holds * the entry. */ static int tsec_mcast_addr(struct eth_device *dev, const u8 *mcast_mac, u8 set) { struct tsec_private *priv = (struct tsec_private *)dev->priv; struct tsec __iomem *regs = priv->regs; u32 result, value; u8 whichbit, whichreg; result = ether_crc(MAC_ADDR_LEN, mcast_mac); whichbit = (result >> 24) & 0x1f; /* the 5 LSB = which bit to set */ whichreg = result >> 29; /* the 3 MSB = which reg to set it in */ value = 1 << (31-whichbit); if (set) setbits_be32(®s->hash.gaddr0 + whichreg, value); else clrbits_be32(®s->hash.gaddr0 + whichreg, value); return 0; } #endif /* Multicast TFTP ? */ /* Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, * choose a more appropriate value) */ static void init_registers(tsec_t *regs) { /* Clear IEVENT */ out_be32(®s->ievent, IEVENT_INIT_CLEAR); out_be32(®s->imask, IMASK_INIT_CLEAR); out_be32(®s->hash.iaddr0, 0); out_be32(®s->hash.iaddr1, 0); out_be32(®s->hash.iaddr2, 0); out_be32(®s->hash.iaddr3, 0); out_be32(®s->hash.iaddr4, 0); out_be32(®s->hash.iaddr5, 0); out_be32(®s->hash.iaddr6, 0); out_be32(®s->hash.iaddr7, 0); out_be32(®s->hash.gaddr0, 0); out_be32(®s->hash.gaddr1, 0); out_be32(®s->hash.gaddr2, 0); out_be32(®s->hash.gaddr3, 0); out_be32(®s->hash.gaddr4, 0); out_be32(®s->hash.gaddr5, 0); out_be32(®s->hash.gaddr6, 0); out_be32(®s->hash.gaddr7, 0); out_be32(®s->rctrl, 0x00000000); /* Init RMON mib registers */ memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t)); out_be32(®s->rmon.cam1, 0xffffffff); out_be32(®s->rmon.cam2, 0xffffffff); out_be32(®s->mrblr, MRBLR_INIT_SETTINGS); out_be32(®s->minflr, MINFLR_INIT_SETTINGS); out_be32(®s->attr, ATTR_INIT_SETTINGS); out_be32(®s->attreli, ATTRELI_INIT_SETTINGS); } /* Configure maccfg2 based on negotiated speed and duplex * reported by PHY handling code */ static void adjust_link(struct tsec_private *priv, struct phy_device *phydev) { tsec_t *regs = priv->regs; u32 ecntrl, maccfg2; if (!phydev->link) { printf("%s: No link.\n", phydev->dev->name); return; } /* clear all bits relative with interface mode */ ecntrl = in_be32(®s->ecntrl); ecntrl &= ~ECNTRL_R100; maccfg2 = in_be32(®s->maccfg2); maccfg2 &= ~(MACCFG2_IF | MACCFG2_FULL_DUPLEX); if (phydev->duplex) maccfg2 |= MACCFG2_FULL_DUPLEX; switch (phydev->speed) { case 1000: maccfg2 |= MACCFG2_GMII; break; case 100: case 10: maccfg2 |= MACCFG2_MII; /* Set R100 bit in all modes although * it is only used in RGMII mode */ if (phydev->speed == 100) ecntrl |= ECNTRL_R100; break; default: printf("%s: Speed was bad\n", phydev->dev->name); break; } out_be32(®s->ecntrl, ecntrl); out_be32(®s->maccfg2, maccfg2); printf("Speed: %d, %s duplex%s\n", phydev->speed, (phydev->duplex) ? "full" : "half", (phydev->port == PORT_FIBRE) ? ", fiber mode" : ""); } #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 /* * When MACCFG1[Rx_EN] is enabled during system boot as part * of the eTSEC port initialization sequence, * the eTSEC Rx logic may not be properly initialized. */ void redundant_init(struct eth_device *dev) { struct tsec_private *priv = dev->priv; tsec_t *regs = priv->regs; uint t, count = 0; int fail = 1; static const u8 pkt[] = { 0x00, 0x1e, 0x4f, 0x12, 0xcb, 0x2c, 0x00, 0x25, 0x64, 0xbb, 0xd1, 0xab, 0x08, 0x00, 0x45, 0x00, 0x00, 0x5c, 0xdd, 0x22, 0x00, 0x00, 0x80, 0x01, 0x1f, 0x71, 0x0a, 0xc1, 0x14, 0x22, 0x0a, 0xc1, 0x14, 0x6a, 0x08, 0x00, 0xef, 0x7e, 0x02, 0x00, 0x94, 0x05, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72}; /* Enable promiscuous mode */ setbits_be32(®s->rctrl, 0x8); /* Enable loopback mode */ setbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); /* Enable transmit and receive */ setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); out_be32(®s->tstat, TSTAT_CLEAR_THALT); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); do { tsec_send(dev, (void *)pkt, sizeof(pkt)); /* Wait for buffer to be received */ for (t = 0; rtx.rxbd[rxIdx].status & RXBD_EMPTY; t++) { if (t >= 10 * TOUT_LOOP) { printf("%s: tsec: rx error\n", dev->name); break; } } if (!memcmp(pkt, (void *)NetRxPackets[rxIdx], sizeof(pkt))) fail = 0; rtx.rxbd[rxIdx].length = 0; rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); rxIdx = (rxIdx + 1) % PKTBUFSRX; if (in_be32(®s->ievent) & IEVENT_BSY) { out_be32(®s->ievent, IEVENT_BSY); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); } if (fail) { printf("loopback recv packet error!\n"); clrbits_be32(®s->maccfg1, MACCFG1_RX_EN); udelay(1000); setbits_be32(®s->maccfg1, MACCFG1_RX_EN); } } while ((count++ < 4) && (fail == 1)); if (fail) panic("eTSEC init fail!\n"); /* Disable promiscuous mode */ clrbits_be32(®s->rctrl, 0x8); /* Disable loopback mode */ clrbits_be32(®s->maccfg1, MACCFG1_LOOPBACK); } #endif /* Set up the buffers and their descriptors, and bring up the * interface */ static void startup_tsec(struct eth_device *dev) { int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; /* reset the indices to zero */ rxIdx = 0; txIdx = 0; #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 uint svr; #endif /* Point to the buffer descriptors */ out_be32(®s->tbase, (unsigned int)(&rtx.txbd[txIdx])); out_be32(®s->rbase, (unsigned int)(&rtx.rxbd[rxIdx])); /* Initialize the Rx Buffer descriptors */ for (i = 0; i < PKTBUFSRX; i++) { rtx.rxbd[i].status = RXBD_EMPTY; rtx.rxbd[i].length = 0; rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i]; } rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP; /* Initialize the TX Buffer Descriptors */ for (i = 0; i < TX_BUF_CNT; i++) { rtx.txbd[i].status = 0; rtx.txbd[i].length = 0; rtx.txbd[i].bufPtr = 0; } rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP; #ifdef CONFIG_SYS_FSL_ERRATUM_NMG_ETSEC129 svr = get_svr(); if ((SVR_MAJ(svr) == 1) || IS_SVR_REV(svr, 2, 0)) redundant_init(dev); #endif /* Enable Transmit and Receive */ setbits_be32(®s->maccfg1, MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ setbits_be32(®s->dmactrl, DMACTRL_INIT_SETTINGS); out_be32(®s->tstat, TSTAT_CLEAR_THALT); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); } /* This returns the status bits of the device. The return value * is never checked, and this is what the 8260 driver did, so we * do the same. Presumably, this would be zero if there were no * errors */ static int tsec_send(struct eth_device *dev, void *packet, int length) { int i; int result = 0; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; /* Find an empty buffer descriptor */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx buffers full\n", dev->name); return result; } } rtx.txbd[txIdx].bufPtr = (uint) packet; rtx.txbd[txIdx].length = length; rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT); /* Tell the DMA to go */ out_be32(®s->tstat, TSTAT_CLEAR_THALT); /* Wait for buffer to be transmitted */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx error\n", dev->name); return result; } } txIdx = (txIdx + 1) % TX_BUF_CNT; result = rtx.txbd[txIdx].status & TXBD_STATS; return result; } static int tsec_recv(struct eth_device *dev) { int length; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) { length = rtx.rxbd[rxIdx].length; /* Send the packet up if there were no errors */ if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) { NetReceive(NetRxPackets[rxIdx], length - 4); } else { printf("Got error %x\n", (rtx.rxbd[rxIdx].status & RXBD_STATS)); } rtx.rxbd[rxIdx].length = 0; /* Set the wrap bit if this is the last element in the list */ rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); rxIdx = (rxIdx + 1) % PKTBUFSRX; } if (in_be32(®s->ievent) & IEVENT_BSY) { out_be32(®s->ievent, IEVENT_BSY); out_be32(®s->rstat, RSTAT_CLEAR_RHALT); } return -1; } /* Stop the interface */ static void tsec_halt(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; clrbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); setbits_be32(®s->dmactrl, DMACTRL_GRS | DMACTRL_GTS); while ((in_be32(®s->ievent) & (IEVENT_GRSC | IEVENT_GTSC)) != (IEVENT_GRSC | IEVENT_GTSC)) ; clrbits_be32(®s->maccfg1, MACCFG1_TX_EN | MACCFG1_RX_EN); /* Shut down the PHY, as needed */ phy_shutdown(priv->phydev); } /* Initializes data structures and registers for the controller, * and brings the interface up. Returns the link status, meaning * that it returns success if the link is up, failure otherwise. * This allows u-boot to find the first active controller. */ static int tsec_init(struct eth_device *dev, bd_t * bd) { uint tempval; char tmpbuf[MAC_ADDR_LEN]; int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; tsec_t *regs = priv->regs; int ret; /* Make sure the controller is stopped */ tsec_halt(dev); /* Init MACCFG2. Defaults to GMII */ out_be32(®s->maccfg2, MACCFG2_INIT_SETTINGS); /* Init ECNTRL */ out_be32(®s->ecntrl, ECNTRL_INIT_SETTINGS); /* Copy the station address into the address registers. * Backwards, because little endian MACS are dumb */ for (i = 0; i < MAC_ADDR_LEN; i++) tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i]; tempval = (tmpbuf[0] << 24) | (tmpbuf[1] << 16) | (tmpbuf[2] << 8) | tmpbuf[3]; out_be32(®s->macstnaddr1, tempval); tempval = *((uint *) (tmpbuf + 4)); out_be32(®s->macstnaddr2, tempval); /* Clear out (for the most part) the other registers */ init_registers(regs); /* Ready the device for tx/rx */ startup_tsec(dev); /* Start up the PHY */ ret = phy_startup(priv->phydev); if (ret) { printf("Could not initialize PHY %s\n", priv->phydev->dev->name); return ret; } adjust_link(priv, priv->phydev); /* If there's no link, fail */ return priv->phydev->link ? 0 : -1; } static phy_interface_t tsec_get_interface(struct tsec_private *priv) { tsec_t *regs = priv->regs; u32 ecntrl; ecntrl = in_be32(®s->ecntrl); if (ecntrl & ECNTRL_SGMII_MODE) return PHY_INTERFACE_MODE_SGMII; if (ecntrl & ECNTRL_TBI_MODE) { if (ecntrl & ECNTRL_REDUCED_MODE) return PHY_INTERFACE_MODE_RTBI; else return PHY_INTERFACE_MODE_TBI; } if (ecntrl & ECNTRL_REDUCED_MODE) { if (ecntrl & ECNTRL_REDUCED_MII_MODE) return PHY_INTERFACE_MODE_RMII; else { phy_interface_t interface = priv->interface; /* * This isn't autodetected, so it must * be set by the platform code. */ if ((interface == PHY_INTERFACE_MODE_RGMII_ID) || (interface == PHY_INTERFACE_MODE_RGMII_TXID) || (interface == PHY_INTERFACE_MODE_RGMII_RXID)) return interface; return PHY_INTERFACE_MODE_RGMII; } } if (priv->flags & TSEC_GIGABIT) return PHY_INTERFACE_MODE_GMII; return PHY_INTERFACE_MODE_MII; } /* Discover which PHY is attached to the device, and configure it * properly. If the PHY is not recognized, then return 0 * (failure). Otherwise, return 1 */ static int init_phy(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; struct phy_device *phydev; tsec_t *regs = priv->regs; u32 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full); if (priv->flags & TSEC_GIGABIT) supported |= SUPPORTED_1000baseT_Full; /* Assign a Physical address to the TBI */ out_be32(®s->tbipa, CONFIG_SYS_TBIPA_VALUE); priv->interface = tsec_get_interface(priv); if (priv->interface == PHY_INTERFACE_MODE_SGMII) tsec_configure_serdes(priv); phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface); phydev->supported &= supported; phydev->advertising = phydev->supported; priv->phydev = phydev; phy_config(phydev); return 1; } /* Initialize device structure. Returns success if PHY * initialization succeeded (i.e. if it recognizes the PHY) */ static int tsec_initialize(bd_t *bis, struct tsec_info_struct *tsec_info) { struct eth_device *dev; int i; struct tsec_private *priv; dev = (struct eth_device *)malloc(sizeof *dev); if (NULL == dev) return 0; memset(dev, 0, sizeof *dev); priv = (struct tsec_private *)malloc(sizeof(*priv)); if (NULL == priv) return 0; priv->regs = tsec_info->regs; priv->phyregs_sgmii = tsec_info->miiregs_sgmii; priv->phyaddr = tsec_info->phyaddr; priv->flags = tsec_info->flags; sprintf(dev->name, tsec_info->devname); priv->interface = tsec_info->interface; priv->bus = miiphy_get_dev_by_name(tsec_info->mii_devname); dev->iobase = 0; dev->priv = priv; dev->init = tsec_init; dev->halt = tsec_halt; dev->send = tsec_send; dev->recv = tsec_recv; #ifdef CONFIG_MCAST_TFTP dev->mcast = tsec_mcast_addr; #endif /* Tell u-boot to get the addr from the env */ for (i = 0; i < 6; i++) dev->enetaddr[i] = 0; eth_register(dev); /* Reset the MAC */ setbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); udelay(2); /* Soft Reset must be asserted for 3 TX clocks */ clrbits_be32(&priv->regs->maccfg1, MACCFG1_SOFT_RESET); /* Try to initialize PHY here, and return */ return init_phy(dev); } /* * Initialize all the TSEC devices * * Returns the number of TSEC devices that were initialized */ int tsec_eth_init(bd_t *bis, struct tsec_info_struct *tsecs, int num) { int i; int ret, count = 0; for (i = 0; i < num; i++) { ret = tsec_initialize(bis, &tsecs[i]); if (ret > 0) count += ret; } return count; } int tsec_standard_init(bd_t *bis) { struct fsl_pq_mdio_info info; info.regs = (struct tsec_mii_mng *)CONFIG_SYS_MDIO_BASE_ADDR; info.name = DEFAULT_MII_NAME; fsl_pq_mdio_init(bis, &info); return tsec_eth_init(bis, tsec_info, ARRAY_SIZE(tsec_info)); }