/* * Freescale Three Speed Ethernet Controller driver * * This software may be used and distributed according to the * terms of the GNU Public License, Version 2, incorporated * herein by reference. * * Copyright 2004, 2007 Freescale Semiconductor, Inc. * (C) Copyright 2003, Motorola, Inc. * author Andy Fleming * */ #include #include #include #include #include #if defined(CONFIG_TSEC_ENET) #include "tsec.h" #include "miiphy.h" DECLARE_GLOBAL_DATA_PTR; #define TX_BUF_CNT 2 static uint rxIdx; /* index of the current RX buffer */ static uint txIdx; /* index of the current TX buffer */ typedef volatile struct rtxbd { txbd8_t txbd[TX_BUF_CNT]; rxbd8_t rxbd[PKTBUFSRX]; } RTXBD; struct tsec_info_struct { unsigned int phyaddr; u32 flags; unsigned int phyregidx; }; /* The tsec_info structure contains 3 values which the * driver uses to determine how to operate a given ethernet * device. The information needed is: * phyaddr - The address of the PHY which is attached to * the given device. * * flags - This variable indicates whether the device * supports gigabit speed ethernet, and whether it should be * in reduced mode. * * phyregidx - This variable specifies which ethernet device * controls the MII Management registers which are connected * to the PHY. For now, only TSEC1 (index 0) has * access to the PHYs, so all of the entries have "0". * * The values specified in the table are taken from the board's * config file in include/configs/. When implementing a new * board with ethernet capability, it is necessary to define: * TSECn_PHY_ADDR * TSECn_PHYIDX * * for n = 1,2,3, etc. And for FEC: * FEC_PHY_ADDR * FEC_PHYIDX */ static struct tsec_info_struct tsec_info[] = { #ifdef CONFIG_TSEC1 {TSEC1_PHY_ADDR, TSEC1_FLAGS, TSEC1_PHYIDX}, #else {0, 0, 0}, #endif #ifdef CONFIG_TSEC2 {TSEC2_PHY_ADDR, TSEC2_FLAGS, TSEC2_PHYIDX}, #else {0, 0, 0}, #endif #ifdef CONFIG_MPC85XX_FEC {FEC_PHY_ADDR, FEC_FLAGS, FEC_PHYIDX}, #else #ifdef CONFIG_TSEC3 {TSEC3_PHY_ADDR, TSEC3_FLAGS, TSEC3_PHYIDX}, #else {0, 0, 0}, #endif #ifdef CONFIG_TSEC4 {TSEC4_PHY_ADDR, TSEC4_FLAGS, TSEC4_PHYIDX}, #else {0, 0, 0}, #endif /* CONFIG_TSEC4 */ #endif /* CONFIG_MPC85XX_FEC */ }; #define MAXCONTROLLERS (4) static int relocated = 0; static struct tsec_private *privlist[MAXCONTROLLERS]; #ifdef __GNUC__ static RTXBD rtx __attribute__ ((aligned(8))); #else #error "rtx must be 64-bit aligned" #endif static int tsec_send(struct eth_device *dev, volatile void *packet, int length); static int tsec_recv(struct eth_device *dev); static int tsec_init(struct eth_device *dev, bd_t * bd); static void tsec_halt(struct eth_device *dev); static void init_registers(volatile tsec_t * regs); static void startup_tsec(struct eth_device *dev); static int init_phy(struct eth_device *dev); void write_phy_reg(struct tsec_private *priv, uint regnum, uint value); uint read_phy_reg(struct tsec_private *priv, uint regnum); struct phy_info *get_phy_info(struct eth_device *dev); void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd); static void adjust_link(struct eth_device *dev); static void relocate_cmds(void); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) static int tsec_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value); static int tsec_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value); #endif #ifdef CONFIG_MCAST_TFTP static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set); #endif /* Initialize device structure. Returns success if PHY * initialization succeeded (i.e. if it recognizes the PHY) */ int tsec_initialize(bd_t * bis, int index, char *devname) { struct eth_device *dev; int i; struct tsec_private *priv; dev = (struct eth_device *)malloc(sizeof *dev); if (NULL == dev) return 0; memset(dev, 0, sizeof *dev); priv = (struct tsec_private *)malloc(sizeof(*priv)); if (NULL == priv) return 0; privlist[index] = priv; priv->regs = (volatile tsec_t *)(TSEC_BASE_ADDR + index * TSEC_SIZE); priv->phyregs = (volatile tsec_t *)(TSEC_BASE_ADDR + tsec_info[index].phyregidx * TSEC_SIZE); priv->phyaddr = tsec_info[index].phyaddr; priv->flags = tsec_info[index].flags; sprintf(dev->name, devname); dev->iobase = 0; dev->priv = priv; dev->init = tsec_init; dev->halt = tsec_halt; dev->send = tsec_send; dev->recv = tsec_recv; #ifdef CONFIG_MCAST_TFTP dev->mcast = tsec_mcast_addr; #endif /* Tell u-boot to get the addr from the env */ for (i = 0; i < 6; i++) dev->enetaddr[i] = 0; eth_register(dev); /* Reset the MAC */ priv->regs->maccfg1 |= MACCFG1_SOFT_RESET; priv->regs->maccfg1 &= ~(MACCFG1_SOFT_RESET); #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) miiphy_register(dev->name, tsec_miiphy_read, tsec_miiphy_write); #endif /* Try to initialize PHY here, and return */ return init_phy(dev); } /* Initializes data structures and registers for the controller, * and brings the interface up. Returns the link status, meaning * that it returns success if the link is up, failure otherwise. * This allows u-boot to find the first active controller. */ int tsec_init(struct eth_device *dev, bd_t * bd) { uint tempval; char tmpbuf[MAC_ADDR_LEN]; int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Make sure the controller is stopped */ tsec_halt(dev); /* Init MACCFG2. Defaults to GMII */ regs->maccfg2 = MACCFG2_INIT_SETTINGS; /* Init ECNTRL */ regs->ecntrl = ECNTRL_INIT_SETTINGS; /* Copy the station address into the address registers. * Backwards, because little endian MACS are dumb */ for (i = 0; i < MAC_ADDR_LEN; i++) { tmpbuf[MAC_ADDR_LEN - 1 - i] = dev->enetaddr[i]; } regs->macstnaddr1 = *((uint *) (tmpbuf)); tempval = *((uint *) (tmpbuf + 4)); regs->macstnaddr2 = tempval; /* reset the indices to zero */ rxIdx = 0; txIdx = 0; /* Clear out (for the most part) the other registers */ init_registers(regs); /* Ready the device for tx/rx */ startup_tsec(dev); /* If there's no link, fail */ return (priv->link ? 0 : -1); } /* Write value to the device's PHY through the registers * specified in priv, modifying the register specified in regnum. * It will wait for the write to be done (or for a timeout to * expire) before exiting */ void write_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum, uint value) { volatile tsec_t *regbase = priv->phyregs; int timeout = 1000000; regbase->miimadd = (phyid << 8) | regnum; regbase->miimcon = value; asm("sync"); timeout = 1000000; while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ; } /* #define to provide old write_phy_reg functionality without duplicating code */ #define write_phy_reg(priv, regnum, value) write_any_phy_reg(priv,priv->phyaddr,regnum,value) /* Reads register regnum on the device's PHY through the * registers specified in priv. It lowers and raises the read * command, and waits for the data to become valid (miimind * notvalid bit cleared), and the bus to cease activity (miimind * busy bit cleared), and then returns the value */ uint read_any_phy_reg(struct tsec_private *priv, uint phyid, uint regnum) { uint value; volatile tsec_t *regbase = priv->phyregs; /* Put the address of the phy, and the register * number into MIIMADD */ regbase->miimadd = (phyid << 8) | regnum; /* Clear the command register, and wait */ regbase->miimcom = 0; asm("sync"); /* Initiate a read command, and wait */ regbase->miimcom = MIIM_READ_COMMAND; asm("sync"); /* Wait for the the indication that the read is done */ while ((regbase->miimind & (MIIMIND_NOTVALID | MIIMIND_BUSY))) ; /* Grab the value read from the PHY */ value = regbase->miimstat; return value; } /* #define to provide old read_phy_reg functionality without duplicating code */ #define read_phy_reg(priv,regnum) read_any_phy_reg(priv,priv->phyaddr,regnum) /* Discover which PHY is attached to the device, and configure it * properly. If the PHY is not recognized, then return 0 * (failure). Otherwise, return 1 */ static int init_phy(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; struct phy_info *curphy; volatile tsec_t *regs = (volatile tsec_t *)(TSEC_BASE_ADDR); /* Assign a Physical address to the TBI */ regs->tbipa = CFG_TBIPA_VALUE; regs = (volatile tsec_t *)(TSEC_BASE_ADDR + TSEC_SIZE); regs->tbipa = CFG_TBIPA_VALUE; asm("sync"); /* Reset MII (due to new addresses) */ priv->phyregs->miimcfg = MIIMCFG_RESET; asm("sync"); priv->phyregs->miimcfg = MIIMCFG_INIT_VALUE; asm("sync"); while (priv->phyregs->miimind & MIIMIND_BUSY) ; if (0 == relocated) relocate_cmds(); /* Get the cmd structure corresponding to the attached * PHY */ curphy = get_phy_info(dev); if (curphy == NULL) { priv->phyinfo = NULL; printf("%s: No PHY found\n", dev->name); return 0; } priv->phyinfo = curphy; phy_run_commands(priv, priv->phyinfo->config); return 1; } /* * Returns which value to write to the control register. * For 10/100, the value is slightly different */ uint mii_cr_init(uint mii_reg, struct tsec_private * priv) { if (priv->flags & TSEC_GIGABIT) return MIIM_CONTROL_INIT; else return MIIM_CR_INIT; } /* Parse the status register for link, and then do * auto-negotiation */ uint mii_parse_sr(uint mii_reg, struct tsec_private * priv) { /* * Wait if the link is up, and autonegotiation is in progress * (ie - we're capable and it's not done) */ mii_reg = read_phy_reg(priv, MIIM_STATUS); if ((mii_reg & MIIM_STATUS_LINK) && (mii_reg & PHY_BMSR_AUTN_ABLE) && !(mii_reg & PHY_BMSR_AUTN_COMP)) { int i = 0; puts("Waiting for PHY auto negotiation to complete"); while (!(mii_reg & PHY_BMSR_AUTN_COMP)) { /* * Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; return 0; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_STATUS); } puts(" done\n"); priv->link = 1; udelay(500000); /* another 500 ms (results in faster booting) */ } else { if (mii_reg & MIIM_STATUS_LINK) priv->link = 1; else priv->link = 0; } return 0; } /* Generic function which updates the speed and duplex. If * autonegotiation is enabled, it uses the AND of the link * partner's advertised capabilities and our advertised * capabilities. If autonegotiation is disabled, we use the * appropriate bits in the control register. * * Stolen from Linux's mii.c and phy_device.c */ uint mii_parse_link(uint mii_reg, struct tsec_private *priv) { /* We're using autonegotiation */ if (mii_reg & PHY_BMSR_AUTN_ABLE) { uint lpa = 0; uint gblpa = 0; /* Check for gigabit capability */ if (mii_reg & PHY_BMSR_EXT) { /* We want a list of states supported by * both PHYs in the link */ gblpa = read_phy_reg(priv, PHY_1000BTSR); gblpa &= read_phy_reg(priv, PHY_1000BTCR) << 2; } /* Set the baseline so we only have to set them * if they're different */ priv->speed = 10; priv->duplexity = 0; /* Check the gigabit fields */ if (gblpa & (PHY_1000BTSR_1000FD | PHY_1000BTSR_1000HD)) { priv->speed = 1000; if (gblpa & PHY_1000BTSR_1000FD) priv->duplexity = 1; /* We're done! */ return 0; } lpa = read_phy_reg(priv, PHY_ANAR); lpa &= read_phy_reg(priv, PHY_ANLPAR); if (lpa & (PHY_ANLPAR_TXFD | PHY_ANLPAR_TX)) { priv->speed = 100; if (lpa & PHY_ANLPAR_TXFD) priv->duplexity = 1; } else if (lpa & PHY_ANLPAR_10FD) priv->duplexity = 1; } else { uint bmcr = read_phy_reg(priv, PHY_BMCR); priv->speed = 10; priv->duplexity = 0; if (bmcr & PHY_BMCR_DPLX) priv->duplexity = 1; if (bmcr & PHY_BMCR_1000_MBPS) priv->speed = 1000; else if (bmcr & PHY_BMCR_100_MBPS) priv->speed = 100; } return 0; } /* * Parse the BCM54xx status register for speed and duplex information. * The linux sungem_phy has this information, but in a table format. */ uint mii_parse_BCM54xx_sr(uint mii_reg, struct tsec_private *priv) { switch((mii_reg & MIIM_BCM54xx_AUXSTATUS_LINKMODE_MASK) >> MIIM_BCM54xx_AUXSTATUS_LINKMODE_SHIFT){ case 1: printf("Enet starting in 10BT/HD\n"); priv->duplexity = 0; priv->speed = 10; break; case 2: printf("Enet starting in 10BT/FD\n"); priv->duplexity = 1; priv->speed = 10; break; case 3: printf("Enet starting in 100BT/HD\n"); priv->duplexity = 0; priv->speed = 100; break; case 5: printf("Enet starting in 100BT/FD\n"); priv->duplexity = 1; priv->speed = 100; break; case 6: printf("Enet starting in 1000BT/HD\n"); priv->duplexity = 0; priv->speed = 1000; break; case 7: printf("Enet starting in 1000BT/FD\n"); priv->duplexity = 1; priv->speed = 1000; break; default: printf("Auto-neg error, defaulting to 10BT/HD\n"); priv->duplexity = 0; priv->speed = 10; break; } return 0; } /* Parse the 88E1011's status register for speed and duplex * information */ uint mii_parse_88E1011_psr(uint mii_reg, struct tsec_private * priv) { uint speed; mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) && !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) { int i = 0; puts("Waiting for PHY realtime link"); while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) { /* Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; break; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_88E1011_PHY_STATUS); } puts(" done\n"); udelay(500000); /* another 500 ms (results in faster booting) */ } else { if (mii_reg & MIIM_88E1011_PHYSTAT_LINK) priv->link = 1; else priv->link = 0; } if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED); switch (speed) { case MIIM_88E1011_PHYSTAT_GBIT: priv->speed = 1000; break; case MIIM_88E1011_PHYSTAT_100: priv->speed = 100; break; default: priv->speed = 10; } return 0; } /* Parse the RTL8211B's status register for speed and duplex * information */ uint mii_parse_RTL8211B_sr(uint mii_reg, struct tsec_private * priv) { uint speed; mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS); if (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) { int i = 0; /* in case of timeout ->link is cleared */ priv->link = 1; puts("Waiting for PHY realtime link"); while (!(mii_reg & MIIM_RTL8211B_PHYSTAT_SPDDONE)) { /* Timeout reached ? */ if (i > PHY_AUTONEGOTIATE_TIMEOUT) { puts(" TIMEOUT !\n"); priv->link = 0; break; } if ((i++ % 1000) == 0) { putc('.'); } udelay(1000); /* 1 ms */ mii_reg = read_phy_reg(priv, MIIM_RTL8211B_PHY_STATUS); } puts(" done\n"); udelay(500000); /* another 500 ms (results in faster booting) */ } else { if (mii_reg & MIIM_RTL8211B_PHYSTAT_LINK) priv->link = 1; else priv->link = 0; } if (mii_reg & MIIM_RTL8211B_PHYSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = (mii_reg & MIIM_RTL8211B_PHYSTAT_SPEED); switch (speed) { case MIIM_RTL8211B_PHYSTAT_GBIT: priv->speed = 1000; break; case MIIM_RTL8211B_PHYSTAT_100: priv->speed = 100; break; default: priv->speed = 10; } return 0; } /* Parse the cis8201's status register for speed and duplex * information */ uint mii_parse_cis8201(uint mii_reg, struct tsec_private * priv) { uint speed; if (mii_reg & MIIM_CIS8201_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_CIS8201_AUXCONSTAT_SPEED; switch (speed) { case MIIM_CIS8201_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_CIS8201_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the vsc8244's status register for speed and duplex * information */ uint mii_parse_vsc8244(uint mii_reg, struct tsec_private * priv) { uint speed; if (mii_reg & MIIM_VSC8244_AUXCONSTAT_DUPLEX) priv->duplexity = 1; else priv->duplexity = 0; speed = mii_reg & MIIM_VSC8244_AUXCONSTAT_SPEED; switch (speed) { case MIIM_VSC8244_AUXCONSTAT_GBIT: priv->speed = 1000; break; case MIIM_VSC8244_AUXCONSTAT_100: priv->speed = 100; break; default: priv->speed = 10; break; } return 0; } /* Parse the DM9161's status register for speed and duplex * information */ uint mii_parse_dm9161_scsr(uint mii_reg, struct tsec_private * priv) { if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_100H)) priv->speed = 100; else priv->speed = 10; if (mii_reg & (MIIM_DM9161_SCSR_100F | MIIM_DM9161_SCSR_10F)) priv->duplexity = 1; else priv->duplexity = 0; return 0; } /* * Hack to write all 4 PHYs with the LED values */ uint mii_cis8204_fixled(uint mii_reg, struct tsec_private * priv) { uint phyid; volatile tsec_t *regbase = priv->phyregs; int timeout = 1000000; for (phyid = 0; phyid < 4; phyid++) { regbase->miimadd = (phyid << 8) | mii_reg; regbase->miimcon = MIIM_CIS8204_SLEDCON_INIT; asm("sync"); timeout = 1000000; while ((regbase->miimind & MIIMIND_BUSY) && timeout--) ; } return MIIM_CIS8204_SLEDCON_INIT; } uint mii_cis8204_setmode(uint mii_reg, struct tsec_private * priv) { if (priv->flags & TSEC_REDUCED) return MIIM_CIS8204_EPHYCON_INIT | MIIM_CIS8204_EPHYCON_RGMII; else return MIIM_CIS8204_EPHYCON_INIT; } uint mii_m88e1111s_setmode(uint mii_reg, struct tsec_private *priv) { uint mii_data = read_phy_reg(priv, mii_reg); if (priv->flags & TSEC_REDUCED) mii_data = (mii_data & 0xfff0) | 0x000b; return mii_data; } /* Initialized required registers to appropriate values, zeroing * those we don't care about (unless zero is bad, in which case, * choose a more appropriate value) */ static void init_registers(volatile tsec_t * regs) { /* Clear IEVENT */ regs->ievent = IEVENT_INIT_CLEAR; regs->imask = IMASK_INIT_CLEAR; regs->hash.iaddr0 = 0; regs->hash.iaddr1 = 0; regs->hash.iaddr2 = 0; regs->hash.iaddr3 = 0; regs->hash.iaddr4 = 0; regs->hash.iaddr5 = 0; regs->hash.iaddr6 = 0; regs->hash.iaddr7 = 0; regs->hash.gaddr0 = 0; regs->hash.gaddr1 = 0; regs->hash.gaddr2 = 0; regs->hash.gaddr3 = 0; regs->hash.gaddr4 = 0; regs->hash.gaddr5 = 0; regs->hash.gaddr6 = 0; regs->hash.gaddr7 = 0; regs->rctrl = 0x00000000; /* Init RMON mib registers */ memset((void *)&(regs->rmon), 0, sizeof(rmon_mib_t)); regs->rmon.cam1 = 0xffffffff; regs->rmon.cam2 = 0xffffffff; regs->mrblr = MRBLR_INIT_SETTINGS; regs->minflr = MINFLR_INIT_SETTINGS; regs->attr = ATTR_INIT_SETTINGS; regs->attreli = ATTRELI_INIT_SETTINGS; } /* Configure maccfg2 based on negotiated speed and duplex * reported by PHY handling code */ static void adjust_link(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; if (priv->link) { if (priv->duplexity != 0) regs->maccfg2 |= MACCFG2_FULL_DUPLEX; else regs->maccfg2 &= ~(MACCFG2_FULL_DUPLEX); switch (priv->speed) { case 1000: regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF)) | MACCFG2_GMII); break; case 100: case 10: regs->maccfg2 = ((regs->maccfg2 & ~(MACCFG2_IF)) | MACCFG2_MII); /* Set R100 bit in all modes although * it is only used in RGMII mode */ if (priv->speed == 100) regs->ecntrl |= ECNTRL_R100; else regs->ecntrl &= ~(ECNTRL_R100); break; default: printf("%s: Speed was bad\n", dev->name); break; } printf("Speed: %d, %s duplex\n", priv->speed, (priv->duplexity) ? "full" : "half"); } else { printf("%s: No link.\n", dev->name); } } /* Set up the buffers and their descriptors, and bring up the * interface */ static void startup_tsec(struct eth_device *dev) { int i; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Point to the buffer descriptors */ regs->tbase = (unsigned int)(&rtx.txbd[txIdx]); regs->rbase = (unsigned int)(&rtx.rxbd[rxIdx]); /* Initialize the Rx Buffer descriptors */ for (i = 0; i < PKTBUFSRX; i++) { rtx.rxbd[i].status = RXBD_EMPTY; rtx.rxbd[i].length = 0; rtx.rxbd[i].bufPtr = (uint) NetRxPackets[i]; } rtx.rxbd[PKTBUFSRX - 1].status |= RXBD_WRAP; /* Initialize the TX Buffer Descriptors */ for (i = 0; i < TX_BUF_CNT; i++) { rtx.txbd[i].status = 0; rtx.txbd[i].length = 0; rtx.txbd[i].bufPtr = 0; } rtx.txbd[TX_BUF_CNT - 1].status |= TXBD_WRAP; /* Start up the PHY */ if(priv->phyinfo) phy_run_commands(priv, priv->phyinfo->startup); adjust_link(dev); /* Enable Transmit and Receive */ regs->maccfg1 |= (MACCFG1_RX_EN | MACCFG1_TX_EN); /* Tell the DMA it is clear to go */ regs->dmactrl |= DMACTRL_INIT_SETTINGS; regs->tstat = TSTAT_CLEAR_THALT; regs->rstat = RSTAT_CLEAR_RHALT; regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); } /* This returns the status bits of the device. The return value * is never checked, and this is what the 8260 driver did, so we * do the same. Presumably, this would be zero if there were no * errors */ static int tsec_send(struct eth_device *dev, volatile void *packet, int length) { int i; int result = 0; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; /* Find an empty buffer descriptor */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx buffers full\n", dev->name); return result; } } rtx.txbd[txIdx].bufPtr = (uint) packet; rtx.txbd[txIdx].length = length; rtx.txbd[txIdx].status |= (TXBD_READY | TXBD_LAST | TXBD_CRC | TXBD_INTERRUPT); /* Tell the DMA to go */ regs->tstat = TSTAT_CLEAR_THALT; /* Wait for buffer to be transmitted */ for (i = 0; rtx.txbd[txIdx].status & TXBD_READY; i++) { if (i >= TOUT_LOOP) { debug("%s: tsec: tx error\n", dev->name); return result; } } txIdx = (txIdx + 1) % TX_BUF_CNT; result = rtx.txbd[txIdx].status & TXBD_STATS; return result; } static int tsec_recv(struct eth_device *dev) { int length; struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; while (!(rtx.rxbd[rxIdx].status & RXBD_EMPTY)) { length = rtx.rxbd[rxIdx].length; /* Send the packet up if there were no errors */ if (!(rtx.rxbd[rxIdx].status & RXBD_STATS)) { NetReceive(NetRxPackets[rxIdx], length - 4); } else { printf("Got error %x\n", (rtx.rxbd[rxIdx].status & RXBD_STATS)); } rtx.rxbd[rxIdx].length = 0; /* Set the wrap bit if this is the last element in the list */ rtx.rxbd[rxIdx].status = RXBD_EMPTY | (((rxIdx + 1) == PKTBUFSRX) ? RXBD_WRAP : 0); rxIdx = (rxIdx + 1) % PKTBUFSRX; } if (regs->ievent & IEVENT_BSY) { regs->ievent = IEVENT_BSY; regs->rstat = RSTAT_CLEAR_RHALT; } return -1; } /* Stop the interface */ static void tsec_halt(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; volatile tsec_t *regs = priv->regs; regs->dmactrl &= ~(DMACTRL_GRS | DMACTRL_GTS); regs->dmactrl |= (DMACTRL_GRS | DMACTRL_GTS); while (!(regs->ievent & (IEVENT_GRSC | IEVENT_GTSC))) ; regs->maccfg1 &= ~(MACCFG1_TX_EN | MACCFG1_RX_EN); /* Shut down the PHY, as needed */ if(priv->phyinfo) phy_run_commands(priv, priv->phyinfo->shutdown); } struct phy_info phy_info_M88E1149S = { 0x1410ca, "Marvell 88E1149S", 4, (struct phy_cmd[]){ /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; /* The 5411 id is 0x206070, the 5421 is 0x2060e0 */ struct phy_info phy_info_BCM5461S = { 0x02060c1, /* 5461 ID */ "Broadcom BCM5461S", 0, /* not clear to me what minor revisions we can shift away */ (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_BCM5464S = { 0x02060b1, /* 5464 ID */ "Broadcom BCM5464S", 0, /* not clear to me what minor revisions we can shift away */ (struct phy_cmd[]) { /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_BCM54xx_AUXSTATUS, miim_read, &mii_parse_BCM54xx_sr}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_M88E1011S = { 0x01410c6, "Marvell 88E1011S", 4, (struct phy_cmd[]){ /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1d, 0x1f, NULL}, {0x1e, 0x200c, NULL}, {0x1d, 0x5, NULL}, {0x1e, 0x0, NULL}, {0x1e, 0x100, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_M88E1111S = { 0x01410cc, "Marvell 88E1111S", 4, (struct phy_cmd[]){ /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {0x1b, 0x848f, &mii_m88e1111s_setmode}, {0x14, 0x0cd2, NULL}, /* Delay RGMII TX and RX */ {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; static unsigned int m88e1145_setmode(uint mii_reg, struct tsec_private *priv) { uint mii_data = read_phy_reg(priv, mii_reg); /* Setting MIIM_88E1145_PHY_EXT_CR */ if (priv->flags & TSEC_REDUCED) return mii_data | MIIM_M88E1145_RGMII_RX_DELAY | MIIM_M88E1145_RGMII_TX_DELAY; else return mii_data; } static struct phy_info phy_info_M88E1145 = { 0x01410cd, "Marvell 88E1145", 4, (struct phy_cmd[]){ /* config */ /* Reset the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, /* Errata E0, E1 */ {29, 0x001b, NULL}, {30, 0x418f, NULL}, {29, 0x0016, NULL}, {30, 0xa2da, NULL}, /* Configure the PHY */ {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_88E1011_PHY_SCR, MIIM_88E1011_PHY_MDI_X_AUTO, NULL}, {MIIM_88E1145_PHY_EXT_CR, 0, &m88e1145_setmode}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_88E1111_PHY_LED_CONTROL, MIIM_88E1111_PHY_LED_DIRECT, NULL}, /* Read the Status */ {MIIM_88E1011_PHY_STATUS, miim_read, &mii_parse_88E1011_psr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_cis8204 = { 0x3f11, "Cicada Cis8204", 6, (struct phy_cmd[]){ /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {MIIM_CIS8204_SLED_CON, MIIM_CIS8204_SLEDCON_INIT, &mii_cis8204_fixled}, {MIIM_CIS8204_EPHY_CON, MIIM_CIS8204_EPHYCON_INIT, &mii_cis8204_setmode}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; /* Cicada 8201 */ struct phy_info phy_info_cis8201 = { 0xfc41, "CIS8201", 4, (struct phy_cmd[]){ /* config */ /* Override PHY config settings */ {MIIM_CIS8201_AUX_CONSTAT, MIIM_CIS8201_AUXCONSTAT_INIT, NULL}, /* Set up the interface mode */ {MIIM_CIS8201_EXT_CON1, MIIM_CIS8201_EXTCON1_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_CIS8201_AUX_CONSTAT, miim_read, &mii_parse_cis8201}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_VSC8244 = { 0x3f1b, "Vitesse VSC8244", 6, (struct phy_cmd[]){ /* config */ /* Override PHY config settings */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_VSC8601 = { 0x00007042, "Vitesse VSC8601", 4, (struct phy_cmd[]){ /* config */ /* Override PHY config settings */ /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, #ifdef CFG_VSC8601_SKEWFIX {MIIM_VSC8601_EPHY_CON,MIIM_VSC8601_EPHY_CON_INIT_SKEW,NULL}, if defined(CFG_VSC8601_SKEW_TX) && defined(CFG_VSC8601_SKEW_RX) {MIIM_EXT_PAGE_ACCESS,1,NULL}, #define VSC8101_SKEW (CFG_VSC8601_SKEW_TX<<14)|(CFG_VSC8601_SKEW_RX<<12) {MIIM_VSC8601_SKEW_CTRL,VSC8101_SKEW,NULL}, {MIIM_EXT_PAGE_ACCESS,0,NULL}, #endif #endif {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Read the Status (2x to make sure link is right) */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_VSC8244_AUX_CONSTAT, miim_read, &mii_parse_vsc8244}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_dm9161 = { 0x0181b88, "Davicom DM9161E", 4, (struct phy_cmd[]){ /* config */ {MIIM_CONTROL, MIIM_DM9161_CR_STOP, NULL}, /* Do not bypass the scrambler/descrambler */ {MIIM_DM9161_SCR, MIIM_DM9161_SCR_INIT, NULL}, /* Clear 10BTCSR to default */ {MIIM_DM9161_10BTCSR, MIIM_DM9161_10BTCSR_INIT, NULL}, /* Configure some basic stuff */ {MIIM_CONTROL, MIIM_CR_INIT, NULL}, /* Restart Auto Negotiation */ {MIIM_CONTROL, MIIM_DM9161_CR_RSTAN, NULL}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_DM9161_SCSR, miim_read, &mii_parse_dm9161_scsr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; /* a generic flavor. */ struct phy_info phy_info_generic = { 0, "Unknown/Generic PHY", 32, (struct phy_cmd[]) { /* config */ {PHY_BMCR, PHY_BMCR_RESET, NULL}, {PHY_BMCR, PHY_BMCR_AUTON|PHY_BMCR_RST_NEG, NULL}, {miim_end,} }, (struct phy_cmd[]) { /* startup */ {PHY_BMSR, miim_read, NULL}, {PHY_BMSR, miim_read, &mii_parse_sr}, {PHY_BMSR, miim_read, &mii_parse_link}, {miim_end,} }, (struct phy_cmd[]) { /* shutdown */ {miim_end,} } }; uint mii_parse_lxt971_sr2(uint mii_reg, struct tsec_private *priv) { unsigned int speed; if (priv->link) { speed = mii_reg & MIIM_LXT971_SR2_SPEED_MASK; switch (speed) { case MIIM_LXT971_SR2_10HDX: priv->speed = 10; priv->duplexity = 0; break; case MIIM_LXT971_SR2_10FDX: priv->speed = 10; priv->duplexity = 1; break; case MIIM_LXT971_SR2_100HDX: priv->speed = 100; priv->duplexity = 0; break; default: priv->speed = 100; priv->duplexity = 1; } } else { priv->speed = 0; priv->duplexity = 0; } return 0; } static struct phy_info phy_info_lxt971 = { 0x0001378e, "LXT971", 4, (struct phy_cmd[]){ /* config */ {MIIM_CR, MIIM_CR_INIT, mii_cr_init}, /* autonegotiate */ {miim_end,} }, (struct phy_cmd[]){ /* startup - enable interrupts */ /* { 0x12, 0x00f2, NULL }, */ {MIIM_STATUS, miim_read, NULL}, {MIIM_STATUS, miim_read, &mii_parse_sr}, {MIIM_LXT971_SR2, miim_read, &mii_parse_lxt971_sr2}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown - disable interrupts */ {miim_end,} }, }; /* Parse the DP83865's link and auto-neg status register for speed and duplex * information */ uint mii_parse_dp83865_lanr(uint mii_reg, struct tsec_private *priv) { switch (mii_reg & MIIM_DP83865_SPD_MASK) { case MIIM_DP83865_SPD_1000: priv->speed = 1000; break; case MIIM_DP83865_SPD_100: priv->speed = 100; break; default: priv->speed = 10; break; } if (mii_reg & MIIM_DP83865_DPX_FULL) priv->duplexity = 1; else priv->duplexity = 0; return 0; } struct phy_info phy_info_dp83865 = { 0x20005c7, "NatSemi DP83865", 4, (struct phy_cmd[]){ /* config */ {MIIM_CONTROL, MIIM_DP83865_CR_INIT, NULL}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the link and auto-neg status */ {MIIM_DP83865_LANR, miim_read, &mii_parse_dp83865_lanr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info phy_info_rtl8211b = { 0x001cc91, "RealTek RTL8211B", 4, (struct phy_cmd[]){ /* config */ /* Reset and configure the PHY */ {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL}, {MIIM_ANAR, MIIM_ANAR_INIT, NULL}, {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL}, {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init}, {miim_end,} }, (struct phy_cmd[]){ /* startup */ /* Status is read once to clear old link state */ {MIIM_STATUS, miim_read, NULL}, /* Auto-negotiate */ {MIIM_STATUS, miim_read, &mii_parse_sr}, /* Read the status */ {MIIM_RTL8211B_PHY_STATUS, miim_read, &mii_parse_RTL8211B_sr}, {miim_end,} }, (struct phy_cmd[]){ /* shutdown */ {miim_end,} }, }; struct phy_info *phy_info[] = { &phy_info_cis8204, &phy_info_cis8201, &phy_info_BCM5461S, &phy_info_BCM5464S, &phy_info_M88E1011S, &phy_info_M88E1111S, &phy_info_M88E1145, &phy_info_M88E1149S, &phy_info_dm9161, &phy_info_lxt971, &phy_info_VSC8244, &phy_info_VSC8601, &phy_info_dp83865, &phy_info_rtl8211b, &phy_info_generic, NULL }; /* Grab the identifier of the device's PHY, and search through * all of the known PHYs to see if one matches. If so, return * it, if not, return NULL */ struct phy_info *get_phy_info(struct eth_device *dev) { struct tsec_private *priv = (struct tsec_private *)dev->priv; uint phy_reg, phy_ID; int i; struct phy_info *theInfo = NULL; /* Grab the bits from PHYIR1, and put them in the upper half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR1); phy_ID = (phy_reg & 0xffff) << 16; /* Grab the bits from PHYIR2, and put them in the lower half */ phy_reg = read_phy_reg(priv, MIIM_PHYIR2); phy_ID |= (phy_reg & 0xffff); /* loop through all the known PHY types, and find one that */ /* matches the ID we read from the PHY. */ for (i = 0; phy_info[i]; i++) { if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) { theInfo = phy_info[i]; break; } } if (theInfo == NULL) { printf("%s: PHY id %x is not supported!\n", dev->name, phy_ID); return NULL; } else { debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID); } return theInfo; } /* Execute the given series of commands on the given device's * PHY, running functions as necessary */ void phy_run_commands(struct tsec_private *priv, struct phy_cmd *cmd) { int i; uint result; volatile tsec_t *phyregs = priv->phyregs; phyregs->miimcfg = MIIMCFG_RESET; phyregs->miimcfg = MIIMCFG_INIT_VALUE; while (phyregs->miimind & MIIMIND_BUSY) ; for (i = 0; cmd->mii_reg != miim_end; i++) { if (cmd->mii_data == miim_read) { result = read_phy_reg(priv, cmd->mii_reg); if (cmd->funct != NULL) (*(cmd->funct)) (result, priv); } else { if (cmd->funct != NULL) result = (*(cmd->funct)) (cmd->mii_reg, priv); else result = cmd->mii_data; write_phy_reg(priv, cmd->mii_reg, result); } cmd++; } } /* Relocate the function pointers in the phy cmd lists */ static void relocate_cmds(void) { struct phy_cmd **cmdlistptr; struct phy_cmd *cmd; int i, j, k; for (i = 0; phy_info[i]; i++) { /* First thing's first: relocate the pointers to the * PHY command structures (the structs were done) */ phy_info[i] = (struct phy_info *)((uint) phy_info[i] + gd->reloc_off); phy_info[i]->name += gd->reloc_off; phy_info[i]->config = (struct phy_cmd *)((uint) phy_info[i]->config + gd->reloc_off); phy_info[i]->startup = (struct phy_cmd *)((uint) phy_info[i]->startup + gd->reloc_off); phy_info[i]->shutdown = (struct phy_cmd *)((uint) phy_info[i]->shutdown + gd->reloc_off); cmdlistptr = &phy_info[i]->config; j = 0; for (; cmdlistptr <= &phy_info[i]->shutdown; cmdlistptr++) { k = 0; for (cmd = *cmdlistptr; cmd->mii_reg != miim_end; cmd++) { /* Only relocate non-NULL pointers */ if (cmd->funct) cmd->funct += gd->reloc_off; k++; } j++; } } relocated = 1; } #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) \ && !defined(BITBANGMII) /* * Read a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_read(char *devname, unsigned char addr, unsigned char reg, unsigned short *value) { unsigned short ret; struct tsec_private *priv = privlist[0]; if (NULL == priv) { printf("Can't read PHY at address %d\n", addr); return -1; } ret = (unsigned short)read_any_phy_reg(priv, addr, reg); *value = ret; return 0; } /* * Write a MII PHY register. * * Returns: * 0 on success */ static int tsec_miiphy_write(char *devname, unsigned char addr, unsigned char reg, unsigned short value) { struct tsec_private *priv = privlist[0]; if (NULL == priv) { printf("Can't write PHY at address %d\n", addr); return -1; } write_any_phy_reg(priv, addr, reg, value); return 0; } #endif #ifdef CONFIG_MCAST_TFTP /* CREDITS: linux gianfar driver, slightly adjusted... thanx. */ /* Set the appropriate hash bit for the given addr */ /* The algorithm works like so: * 1) Take the Destination Address (ie the multicast address), and * do a CRC on it (little endian), and reverse the bits of the * result. * 2) Use the 8 most significant bits as a hash into a 256-entry * table. The table is controlled through 8 32-bit registers: * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is * gaddr7. This means that the 3 most significant bits in the * hash index which gaddr register to use, and the 5 other bits * indicate which bit (assuming an IBM numbering scheme, which * for PowerPC (tm) is usually the case) in the tregister holds * the entry. */ static int tsec_mcast_addr (struct eth_device *dev, u8 mcast_mac, u8 set) { struct tsec_private *priv = privlist[1]; volatile tsec_t *regs = priv->regs; volatile u32 *reg_array, value; u8 result, whichbit, whichreg; result = (u8)((ether_crc(MAC_ADDR_LEN,mcast_mac) >> 24) & 0xff); whichbit = result & 0x1f; /* the 5 LSB = which bit to set */ whichreg = result >> 5; /* the 3 MSB = which reg to set it in */ value = (1 << (31-whichbit)); reg_array = &(regs->hash.gaddr0); if (set) { reg_array[whichreg] |= value; } else { reg_array[whichreg] &= ~value; } return 0; } #endif /* Multicast TFTP ? */ #endif /* CONFIG_TSEC_ENET */