/* * rtl8169.c : U-Boot driver for the RealTek RTL8169 * * Masami Komiya (mkomiya@sonare.it) * * Most part is taken from r8169.c of etherboot * */ /************************************************************************** * r8169.c: Etherboot device driver for the RealTek RTL-8169 Gigabit * Written 2003 by Timothy Legge <tlegge@rogers.com> * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Portions of this code based on: * r8169.c: A RealTek RTL-8169 Gigabit Ethernet driver * for Linux kernel 2.4.x. * * Written 2002 ShuChen <shuchen@realtek.com.tw> * See Linux Driver for full information * * Linux Driver Version 1.27a, 10.02.2002 * * Thanks to: * Jean Chen of RealTek Semiconductor Corp. for * providing the evaluation NIC used to develop * this driver. RealTek's support for Etherboot * is appreciated. * * REVISION HISTORY: * ================ * * v1.0 11-26-2003 timlegge Initial port of Linux driver * v1.5 01-17-2004 timlegge Initial driver output cleanup * * Indent Options: indent -kr -i8 ***************************************************************************/ /* * 26 August 2006 Mihai Georgian <u-boot@linuxnotincluded.org.uk> * Modified to use le32_to_cpu and cpu_to_le32 properly */ #include <common.h> #include <malloc.h> #include <net.h> #include <netdev.h> #include <asm/io.h> #include <pci.h> #undef DEBUG_RTL8169 #undef DEBUG_RTL8169_TX #undef DEBUG_RTL8169_RX #define drv_version "v1.5" #define drv_date "01-17-2004" static u32 ioaddr; /* Condensed operations for readability. */ #define currticks() get_timer(0) /* media options */ #define MAX_UNITS 8 static int media[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; /* MAC address length*/ #define MAC_ADDR_LEN 6 /* max supported gigabit ethernet frame size -- must be at least (dev->mtu+14+4).*/ #define MAX_ETH_FRAME_SIZE 1536 #define TX_FIFO_THRESH 256 /* In bytes */ #define RX_FIFO_THRESH 7 /* 7 means NO threshold, Rx buffer level before first PCI xfer. */ #define RX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */ #define EarlyTxThld 0x3F /* 0x3F means NO early transmit */ #define RxPacketMaxSize 0x0800 /* Maximum size supported is 16K-1 */ #define InterFrameGap 0x03 /* 3 means InterFrameGap = the shortest one */ #define NUM_TX_DESC 1 /* Number of Tx descriptor registers */ #define NUM_RX_DESC 4 /* Number of Rx descriptor registers */ #define RX_BUF_SIZE 1536 /* Rx Buffer size */ #define RX_BUF_LEN 8192 #define RTL_MIN_IO_SIZE 0x80 #define TX_TIMEOUT (6*HZ) /* write/read MMIO register. Notice: {read,write}[wl] do the necessary swapping */ #define RTL_W8(reg, val8) writeb ((val8), ioaddr + (reg)) #define RTL_W16(reg, val16) writew ((val16), ioaddr + (reg)) #define RTL_W32(reg, val32) writel ((val32), ioaddr + (reg)) #define RTL_R8(reg) readb (ioaddr + (reg)) #define RTL_R16(reg) readw (ioaddr + (reg)) #define RTL_R32(reg) ((unsigned long) readl (ioaddr + (reg))) #define ETH_FRAME_LEN MAX_ETH_FRAME_SIZE #define ETH_ALEN MAC_ADDR_LEN #define ETH_ZLEN 60 #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, (pci_addr_t)a) #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, (phys_addr_t)a) enum RTL8169_registers { MAC0 = 0, /* Ethernet hardware address. */ MAR0 = 8, /* Multicast filter. */ TxDescStartAddrLow = 0x20, TxDescStartAddrHigh = 0x24, TxHDescStartAddrLow = 0x28, TxHDescStartAddrHigh = 0x2c, FLASH = 0x30, ERSR = 0x36, ChipCmd = 0x37, TxPoll = 0x38, IntrMask = 0x3C, IntrStatus = 0x3E, TxConfig = 0x40, RxConfig = 0x44, RxMissed = 0x4C, Cfg9346 = 0x50, Config0 = 0x51, Config1 = 0x52, Config2 = 0x53, Config3 = 0x54, Config4 = 0x55, Config5 = 0x56, MultiIntr = 0x5C, PHYAR = 0x60, TBICSR = 0x64, TBI_ANAR = 0x68, TBI_LPAR = 0x6A, PHYstatus = 0x6C, RxMaxSize = 0xDA, CPlusCmd = 0xE0, RxDescStartAddrLow = 0xE4, RxDescStartAddrHigh = 0xE8, EarlyTxThres = 0xEC, FuncEvent = 0xF0, FuncEventMask = 0xF4, FuncPresetState = 0xF8, FuncForceEvent = 0xFC, }; enum RTL8169_register_content { /*InterruptStatusBits */ SYSErr = 0x8000, PCSTimeout = 0x4000, SWInt = 0x0100, TxDescUnavail = 0x80, RxFIFOOver = 0x40, RxUnderrun = 0x20, RxOverflow = 0x10, TxErr = 0x08, TxOK = 0x04, RxErr = 0x02, RxOK = 0x01, /*RxStatusDesc */ RxRES = 0x00200000, RxCRC = 0x00080000, RxRUNT = 0x00100000, RxRWT = 0x00400000, /*ChipCmdBits */ CmdReset = 0x10, CmdRxEnb = 0x08, CmdTxEnb = 0x04, RxBufEmpty = 0x01, /*Cfg9346Bits */ Cfg9346_Lock = 0x00, Cfg9346_Unlock = 0xC0, /*rx_mode_bits */ AcceptErr = 0x20, AcceptRunt = 0x10, AcceptBroadcast = 0x08, AcceptMulticast = 0x04, AcceptMyPhys = 0x02, AcceptAllPhys = 0x01, /*RxConfigBits */ RxCfgFIFOShift = 13, RxCfgDMAShift = 8, /*TxConfigBits */ TxInterFrameGapShift = 24, TxDMAShift = 8, /* DMA burst value (0-7) is shift this many bits */ /*rtl8169_PHYstatus */ TBI_Enable = 0x80, TxFlowCtrl = 0x40, RxFlowCtrl = 0x20, _1000bpsF = 0x10, _100bps = 0x08, _10bps = 0x04, LinkStatus = 0x02, FullDup = 0x01, /*GIGABIT_PHY_registers */ PHY_CTRL_REG = 0, PHY_STAT_REG = 1, PHY_AUTO_NEGO_REG = 4, PHY_1000_CTRL_REG = 9, /*GIGABIT_PHY_REG_BIT */ PHY_Restart_Auto_Nego = 0x0200, PHY_Enable_Auto_Nego = 0x1000, /* PHY_STAT_REG = 1; */ PHY_Auto_Nego_Comp = 0x0020, /* PHY_AUTO_NEGO_REG = 4; */ PHY_Cap_10_Half = 0x0020, PHY_Cap_10_Full = 0x0040, PHY_Cap_100_Half = 0x0080, PHY_Cap_100_Full = 0x0100, /* PHY_1000_CTRL_REG = 9; */ PHY_Cap_1000_Full = 0x0200, PHY_Cap_Null = 0x0, /*_MediaType*/ _10_Half = 0x01, _10_Full = 0x02, _100_Half = 0x04, _100_Full = 0x08, _1000_Full = 0x10, /*_TBICSRBit*/ TBILinkOK = 0x02000000, }; static struct { const char *name; u8 version; /* depend on RTL8169 docs */ u32 RxConfigMask; /* should clear the bits supported by this chip */ } rtl_chip_info[] = { {"RTL-8169", 0x00, 0xff7e1880,}, {"RTL-8169", 0x04, 0xff7e1880,}, {"RTL-8169", 0x00, 0xff7e1880,}, {"RTL-8169s/8110s", 0x02, 0xff7e1880,}, {"RTL-8169s/8110s", 0x04, 0xff7e1880,}, {"RTL-8169sb/8110sb", 0x10, 0xff7e1880,}, {"RTL-8169sc/8110sc", 0x18, 0xff7e1880,}, {"RTL-8168b/8111sb", 0x30, 0xff7e1880,}, {"RTL-8168b/8111sb", 0x38, 0xff7e1880,}, {"RTL-8101e", 0x34, 0xff7e1880,}, {"RTL-8100e", 0x32, 0xff7e1880,}, }; enum _DescStatusBit { OWNbit = 0x80000000, EORbit = 0x40000000, FSbit = 0x20000000, LSbit = 0x10000000, }; struct TxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; struct RxDesc { u32 status; u32 vlan_tag; u32 buf_addr; u32 buf_Haddr; }; /* Define the TX Descriptor */ static u8 tx_ring[NUM_TX_DESC * sizeof(struct TxDesc) + 256]; /* __attribute__ ((aligned(256))); */ /* Create a static buffer of size RX_BUF_SZ for each TX Descriptor. All descriptors point to a part of this buffer */ static unsigned char txb[NUM_TX_DESC * RX_BUF_SIZE]; /* Define the RX Descriptor */ static u8 rx_ring[NUM_RX_DESC * sizeof(struct TxDesc) + 256]; /* __attribute__ ((aligned(256))); */ /* Create a static buffer of size RX_BUF_SZ for each RX Descriptor All descriptors point to a part of this buffer */ static unsigned char rxb[NUM_RX_DESC * RX_BUF_SIZE]; struct rtl8169_private { void *mmio_addr; /* memory map physical address */ int chipset; unsigned long cur_rx; /* Index into the Rx descriptor buffer of next Rx pkt. */ unsigned long cur_tx; /* Index into the Tx descriptor buffer of next Rx pkt. */ unsigned long dirty_tx; unsigned char *TxDescArrays; /* Index of Tx Descriptor buffer */ unsigned char *RxDescArrays; /* Index of Rx Descriptor buffer */ struct TxDesc *TxDescArray; /* Index of 256-alignment Tx Descriptor buffer */ struct RxDesc *RxDescArray; /* Index of 256-alignment Rx Descriptor buffer */ unsigned char *RxBufferRings; /* Index of Rx Buffer */ unsigned char *RxBufferRing[NUM_RX_DESC]; /* Index of Rx Buffer array */ unsigned char *Tx_skbuff[NUM_TX_DESC]; } tpx; static struct rtl8169_private *tpc; static const u16 rtl8169_intr_mask = SYSErr | PCSTimeout | RxUnderrun | RxOverflow | RxFIFOOver | TxErr | TxOK | RxErr | RxOK; static const unsigned int rtl8169_rx_config = (RX_FIFO_THRESH << RxCfgFIFOShift) | (RX_DMA_BURST << RxCfgDMAShift); static struct pci_device_id supported[] = { {PCI_VENDOR_ID_REALTEK, 0x8167}, {PCI_VENDOR_ID_REALTEK, 0x8169}, {} }; void mdio_write(int RegAddr, int value) { int i; RTL_W32(PHYAR, 0x80000000 | (RegAddr & 0xFF) << 16 | value); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed writing to the specified MII register */ if (!(RTL_R32(PHYAR) & 0x80000000)) { break; } else { udelay(100); } } } int mdio_read(int RegAddr) { int i, value = -1; RTL_W32(PHYAR, 0x0 | (RegAddr & 0xFF) << 16); udelay(1000); for (i = 2000; i > 0; i--) { /* Check if the RTL8169 has completed retrieving data from the specified MII register */ if (RTL_R32(PHYAR) & 0x80000000) { value = (int) (RTL_R32(PHYAR) & 0xFFFF); break; } else { udelay(100); } } return value; } static int rtl8169_init_board(struct eth_device *dev) { int i; u32 tmp; #ifdef DEBUG_RTL8169 printf ("%s\n", __FUNCTION__); #endif ioaddr = dev->iobase; /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); /* identify chip attached to board */ tmp = RTL_R32(TxConfig); tmp = ((tmp & 0x7c000000) + ((tmp & 0x00800000) << 2)) >> 24; for (i = ARRAY_SIZE(rtl_chip_info) - 1; i >= 0; i--){ if (tmp == rtl_chip_info[i].version) { tpc->chipset = i; goto match; } } /* if unknown chip, assume array element #0, original RTL-8169 in this case */ printf("PCI device %s: unknown chip version, assuming RTL-8169\n", dev->name); printf("PCI device: TxConfig = 0x%lX\n", (unsigned long) RTL_R32(TxConfig)); tpc->chipset = 0; match: return 0; } /************************************************************************** RECV - Receive a frame ***************************************************************************/ static int rtl_recv(struct eth_device *dev) { /* return true if there's an ethernet packet ready to read */ /* nic->packet should contain data on return */ /* nic->packetlen should contain length of data */ int cur_rx; int length = 0; #ifdef DEBUG_RTL8169_RX printf ("%s\n", __FUNCTION__); #endif ioaddr = dev->iobase; cur_rx = tpc->cur_rx; flush_cache((unsigned long)&tpc->RxDescArray[cur_rx], sizeof(struct RxDesc)); if ((le32_to_cpu(tpc->RxDescArray[cur_rx].status) & OWNbit) == 0) { if (!(le32_to_cpu(tpc->RxDescArray[cur_rx].status) & RxRES)) { unsigned char rxdata[RX_BUF_LEN]; length = (int) (le32_to_cpu(tpc->RxDescArray[cur_rx]. status) & 0x00001FFF) - 4; memcpy(rxdata, tpc->RxBufferRing[cur_rx], length); NetReceive(rxdata, length); if (cur_rx == NUM_RX_DESC - 1) tpc->RxDescArray[cur_rx].status = cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE); else tpc->RxDescArray[cur_rx].status = cpu_to_le32(OWNbit + RX_BUF_SIZE); tpc->RxDescArray[cur_rx].buf_addr = cpu_to_le32(bus_to_phys(tpc->RxBufferRing[cur_rx])); flush_cache((unsigned long)tpc->RxBufferRing[cur_rx], RX_BUF_SIZE); } else { puts("Error Rx"); } cur_rx = (cur_rx + 1) % NUM_RX_DESC; tpc->cur_rx = cur_rx; return 1; } else { ushort sts = RTL_R8(IntrStatus); RTL_W8(IntrStatus, sts & ~(TxErr | RxErr | SYSErr)); udelay(100); /* wait */ } tpc->cur_rx = cur_rx; return (0); /* initially as this is called to flush the input */ } #define HZ 1000 /************************************************************************** SEND - Transmit a frame ***************************************************************************/ static int rtl_send(struct eth_device *dev, void *packet, int length) { /* send the packet to destination */ u32 to; u8 *ptxb; int entry = tpc->cur_tx % NUM_TX_DESC; u32 len = length; int ret; #ifdef DEBUG_RTL8169_TX int stime = currticks(); printf ("%s\n", __FUNCTION__); printf("sending %d bytes\n", len); #endif ioaddr = dev->iobase; /* point to the current txb incase multiple tx_rings are used */ ptxb = tpc->Tx_skbuff[entry * MAX_ETH_FRAME_SIZE]; memcpy(ptxb, (char *)packet, (int)length); flush_cache((unsigned long)ptxb, length); while (len < ETH_ZLEN) ptxb[len++] = '\0'; tpc->TxDescArray[entry].buf_Haddr = 0; tpc->TxDescArray[entry].buf_addr = cpu_to_le32(bus_to_phys(ptxb)); if (entry != (NUM_TX_DESC - 1)) { tpc->TxDescArray[entry].status = cpu_to_le32((OWNbit | FSbit | LSbit) | ((len > ETH_ZLEN) ? len : ETH_ZLEN)); } else { tpc->TxDescArray[entry].status = cpu_to_le32((OWNbit | EORbit | FSbit | LSbit) | ((len > ETH_ZLEN) ? len : ETH_ZLEN)); } RTL_W8(TxPoll, 0x40); /* set polling bit */ tpc->cur_tx++; to = currticks() + TX_TIMEOUT; do { flush_cache((unsigned long)&tpc->TxDescArray[entry], sizeof(struct TxDesc)); } while ((le32_to_cpu(tpc->TxDescArray[entry].status) & OWNbit) && (currticks() < to)); /* wait */ if (currticks() >= to) { #ifdef DEBUG_RTL8169_TX puts ("tx timeout/error\n"); printf ("%s elapsed time : %d\n", __FUNCTION__, currticks()-stime); #endif ret = 0; } else { #ifdef DEBUG_RTL8169_TX puts("tx done\n"); #endif ret = length; } /* Delay to make net console (nc) work properly */ udelay(20); return ret; } static void rtl8169_set_rx_mode(struct eth_device *dev) { u32 mc_filter[2]; /* Multicast hash filter */ int rx_mode; u32 tmp = 0; #ifdef DEBUG_RTL8169 printf ("%s\n", __FUNCTION__); #endif /* IFF_ALLMULTI */ /* Too many to filter perfectly -- accept all multicasts. */ rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; mc_filter[1] = mc_filter[0] = 0xffffffff; tmp = rtl8169_rx_config | rx_mode | (RTL_R32(RxConfig) & rtl_chip_info[tpc->chipset].RxConfigMask); RTL_W32(RxConfig, tmp); RTL_W32(MAR0 + 0, mc_filter[0]); RTL_W32(MAR0 + 4, mc_filter[1]); } static void rtl8169_hw_start(struct eth_device *dev) { u32 i; #ifdef DEBUG_RTL8169 int stime = currticks(); printf ("%s\n", __FUNCTION__); #endif #if 0 /* Soft reset the chip. */ RTL_W8(ChipCmd, CmdReset); /* Check that the chip has finished the reset. */ for (i = 1000; i > 0; i--) { if ((RTL_R8(ChipCmd) & CmdReset) == 0) break; else udelay(10); } #endif RTL_W8(Cfg9346, Cfg9346_Unlock); /* RTL-8169sb/8110sb or previous version */ if (tpc->chipset <= 5) RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(EarlyTxThres, EarlyTxThld); /* For gigabit rtl8169 */ RTL_W16(RxMaxSize, RxPacketMaxSize); /* Set Rx Config register */ i = rtl8169_rx_config | (RTL_R32(RxConfig) & rtl_chip_info[tpc->chipset].RxConfigMask); RTL_W32(RxConfig, i); /* Set DMA burst size and Interframe Gap Time */ RTL_W32(TxConfig, (TX_DMA_BURST << TxDMAShift) | (InterFrameGap << TxInterFrameGapShift)); tpc->cur_rx = 0; RTL_W32(TxDescStartAddrLow, bus_to_phys(tpc->TxDescArray)); RTL_W32(TxDescStartAddrHigh, (unsigned long)0); RTL_W32(RxDescStartAddrLow, bus_to_phys(tpc->RxDescArray)); RTL_W32(RxDescStartAddrHigh, (unsigned long)0); /* RTL-8169sc/8110sc or later version */ if (tpc->chipset > 5) RTL_W8(ChipCmd, CmdTxEnb | CmdRxEnb); RTL_W8(Cfg9346, Cfg9346_Lock); udelay(10); RTL_W32(RxMissed, 0); rtl8169_set_rx_mode(dev); /* no early-rx interrupts */ RTL_W16(MultiIntr, RTL_R16(MultiIntr) & 0xF000); #ifdef DEBUG_RTL8169 printf ("%s elapsed time : %d\n", __FUNCTION__, currticks()-stime); #endif } static void rtl8169_init_ring(struct eth_device *dev) { int i; #ifdef DEBUG_RTL8169 int stime = currticks(); printf ("%s\n", __FUNCTION__); #endif tpc->cur_rx = 0; tpc->cur_tx = 0; tpc->dirty_tx = 0; memset(tpc->TxDescArray, 0x0, NUM_TX_DESC * sizeof(struct TxDesc)); memset(tpc->RxDescArray, 0x0, NUM_RX_DESC * sizeof(struct RxDesc)); for (i = 0; i < NUM_TX_DESC; i++) { tpc->Tx_skbuff[i] = &txb[i]; } for (i = 0; i < NUM_RX_DESC; i++) { if (i == (NUM_RX_DESC - 1)) tpc->RxDescArray[i].status = cpu_to_le32((OWNbit | EORbit) + RX_BUF_SIZE); else tpc->RxDescArray[i].status = cpu_to_le32(OWNbit + RX_BUF_SIZE); tpc->RxBufferRing[i] = &rxb[i * RX_BUF_SIZE]; tpc->RxDescArray[i].buf_addr = cpu_to_le32(bus_to_phys(tpc->RxBufferRing[i])); flush_cache((unsigned long)tpc->RxBufferRing[i], RX_BUF_SIZE); } #ifdef DEBUG_RTL8169 printf ("%s elapsed time : %d\n", __FUNCTION__, currticks()-stime); #endif } /************************************************************************** RESET - Finish setting up the ethernet interface ***************************************************************************/ static int rtl_reset(struct eth_device *dev, bd_t *bis) { int i; #ifdef DEBUG_RTL8169 int stime = currticks(); printf ("%s\n", __FUNCTION__); #endif tpc->TxDescArrays = tx_ring; /* Tx Desscriptor needs 256 bytes alignment; */ tpc->TxDescArray = (struct TxDesc *) ((unsigned long)(tpc->TxDescArrays + 255) & ~255); tpc->RxDescArrays = rx_ring; /* Rx Desscriptor needs 256 bytes alignment; */ tpc->RxDescArray = (struct RxDesc *) ((unsigned long)(tpc->RxDescArrays + 255) & ~255); rtl8169_init_ring(dev); rtl8169_hw_start(dev); /* Construct a perfect filter frame with the mac address as first match * and broadcast for all others */ for (i = 0; i < 192; i++) txb[i] = 0xFF; txb[0] = dev->enetaddr[0]; txb[1] = dev->enetaddr[1]; txb[2] = dev->enetaddr[2]; txb[3] = dev->enetaddr[3]; txb[4] = dev->enetaddr[4]; txb[5] = dev->enetaddr[5]; #ifdef DEBUG_RTL8169 printf ("%s elapsed time : %d\n", __FUNCTION__, currticks()-stime); #endif return 0; } /************************************************************************** HALT - Turn off ethernet interface ***************************************************************************/ static void rtl_halt(struct eth_device *dev) { int i; #ifdef DEBUG_RTL8169 printf ("%s\n", __FUNCTION__); #endif ioaddr = dev->iobase; /* Stop the chip's Tx and Rx DMA processes. */ RTL_W8(ChipCmd, 0x00); /* Disable interrupts by clearing the interrupt mask. */ RTL_W16(IntrMask, 0x0000); RTL_W32(RxMissed, 0); tpc->TxDescArrays = NULL; tpc->RxDescArrays = NULL; tpc->TxDescArray = NULL; tpc->RxDescArray = NULL; for (i = 0; i < NUM_RX_DESC; i++) { tpc->RxBufferRing[i] = NULL; } } /************************************************************************** INIT - Look for an adapter, this routine's visible to the outside ***************************************************************************/ #define board_found 1 #define valid_link 0 static int rtl_init(struct eth_device *dev, bd_t *bis) { static int board_idx = -1; int i, rc; int option = -1, Cap10_100 = 0, Cap1000 = 0; #ifdef DEBUG_RTL8169 printf ("%s\n", __FUNCTION__); #endif ioaddr = dev->iobase; board_idx++; /* point to private storage */ tpc = &tpx; rc = rtl8169_init_board(dev); if (rc) return rc; /* Get MAC address. FIXME: read EEPROM */ for (i = 0; i < MAC_ADDR_LEN; i++) dev->enetaddr[i] = RTL_R8(MAC0 + i); #ifdef DEBUG_RTL8169 printf("chipset = %d\n", tpc->chipset); printf("MAC Address"); for (i = 0; i < MAC_ADDR_LEN; i++) printf(":%02x", dev->enetaddr[i]); putc('\n'); #endif #ifdef DEBUG_RTL8169 /* Print out some hardware info */ printf("%s: at ioaddr 0x%x\n", dev->name, ioaddr); #endif /* if TBI is not endbled */ if (!(RTL_R8(PHYstatus) & TBI_Enable)) { int val = mdio_read(PHY_AUTO_NEGO_REG); option = (board_idx >= MAX_UNITS) ? 0 : media[board_idx]; /* Force RTL8169 in 10/100/1000 Full/Half mode. */ if (option > 0) { #ifdef DEBUG_RTL8169 printf("%s: Force-mode Enabled.\n", dev->name); #endif Cap10_100 = 0, Cap1000 = 0; switch (option) { case _10_Half: Cap10_100 = PHY_Cap_10_Half; Cap1000 = PHY_Cap_Null; break; case _10_Full: Cap10_100 = PHY_Cap_10_Full; Cap1000 = PHY_Cap_Null; break; case _100_Half: Cap10_100 = PHY_Cap_100_Half; Cap1000 = PHY_Cap_Null; break; case _100_Full: Cap10_100 = PHY_Cap_100_Full; Cap1000 = PHY_Cap_Null; break; case _1000_Full: Cap10_100 = PHY_Cap_Null; Cap1000 = PHY_Cap_1000_Full; break; default: break; } mdio_write(PHY_AUTO_NEGO_REG, Cap10_100 | (val & 0x1F)); /* leave PHY_AUTO_NEGO_REG bit4:0 unchanged */ mdio_write(PHY_1000_CTRL_REG, Cap1000); } else { #ifdef DEBUG_RTL8169 printf("%s: Auto-negotiation Enabled.\n", dev->name); #endif /* enable 10/100 Full/Half Mode, leave PHY_AUTO_NEGO_REG bit4:0 unchanged */ mdio_write(PHY_AUTO_NEGO_REG, PHY_Cap_10_Half | PHY_Cap_10_Full | PHY_Cap_100_Half | PHY_Cap_100_Full | (val & 0x1F)); /* enable 1000 Full Mode */ mdio_write(PHY_1000_CTRL_REG, PHY_Cap_1000_Full); } /* Enable auto-negotiation and restart auto-nigotiation */ mdio_write(PHY_CTRL_REG, PHY_Enable_Auto_Nego | PHY_Restart_Auto_Nego); udelay(100); /* wait for auto-negotiation process */ for (i = 10000; i > 0; i--) { /* check if auto-negotiation complete */ if (mdio_read(PHY_STAT_REG) & PHY_Auto_Nego_Comp) { udelay(100); option = RTL_R8(PHYstatus); if (option & _1000bpsF) { #ifdef DEBUG_RTL8169 printf("%s: 1000Mbps Full-duplex operation.\n", dev->name); #endif } else { #ifdef DEBUG_RTL8169 printf("%s: %sMbps %s-duplex operation.\n", dev->name, (option & _100bps) ? "100" : "10", (option & FullDup) ? "Full" : "Half"); #endif } break; } else { udelay(100); } } /* end for-loop to wait for auto-negotiation process */ } else { udelay(100); #ifdef DEBUG_RTL8169 printf ("%s: 1000Mbps Full-duplex operation, TBI Link %s!\n", dev->name, (RTL_R32(TBICSR) & TBILinkOK) ? "OK" : "Failed"); #endif } return 1; } int rtl8169_initialize(bd_t *bis) { pci_dev_t devno; int card_number = 0; struct eth_device *dev; u32 iobase; int idx=0; while(1){ /* Find RTL8169 */ if ((devno = pci_find_devices(supported, idx++)) < 0) break; pci_read_config_dword(devno, PCI_BASE_ADDRESS_1, &iobase); iobase &= ~0xf; debug ("rtl8169: REALTEK RTL8169 @0x%x\n", iobase); dev = (struct eth_device *)malloc(sizeof *dev); if (!dev) { printf("Can not allocate memory of rtl8169\n"); break; } memset(dev, 0, sizeof(*dev)); sprintf (dev->name, "RTL8169#%d", card_number); dev->priv = (void *) devno; dev->iobase = (int)pci_mem_to_phys(devno, iobase); dev->init = rtl_reset; dev->halt = rtl_halt; dev->send = rtl_send; dev->recv = rtl_recv; eth_register (dev); rtl_init(dev, bis); card_number++; } return card_number; }