/* Gaisler.com GRETH 10/100/1000 Ethernet MAC driver * * Driver use polling mode (no Interrupt) * * (C) Copyright 2007 * Daniel Hellstrom, Gaisler Research, daniel@gaisler.com * * SPDX-License-Identifier: GPL-2.0+ */ /* #define DEBUG */ #include <common.h> #include <command.h> #include <net.h> #include <netdev.h> #include <malloc.h> #include <asm/processor.h> #include <ambapp.h> #include <asm/leon.h> #include "greth.h" /* Default to 3s timeout on autonegotiation */ #ifndef GRETH_PHY_TIMEOUT_MS #define GRETH_PHY_TIMEOUT_MS 3000 #endif /* Default to PHY adrress 0 not not specified */ #ifdef CONFIG_SYS_GRLIB_GRETH_PHYADDR #define GRETH_PHY_ADR_DEFAULT CONFIG_SYS_GRLIB_GRETH_PHYADDR #else #define GRETH_PHY_ADR_DEFAULT 0 #endif /* ByPass Cache when reading regs */ #define GRETH_REGLOAD(addr) SPARC_NOCACHE_READ(addr) /* Write-through cache ==> no bypassing needed on writes */ #define GRETH_REGSAVE(addr,data) (*(volatile unsigned int *)(addr) = (data)) #define GRETH_REGORIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)|data) #define GRETH_REGANDIN(addr,data) GRETH_REGSAVE(addr,GRETH_REGLOAD(addr)&data) #define GRETH_RXBD_CNT 4 #define GRETH_TXBD_CNT 1 #define GRETH_RXBUF_SIZE 1540 #define GRETH_BUF_ALIGN 4 #define GRETH_RXBUF_EFF_SIZE \ ( (GRETH_RXBUF_SIZE&~(GRETH_BUF_ALIGN-1))+GRETH_BUF_ALIGN ) typedef struct { greth_regs *regs; int irq; struct eth_device *dev; /* Hardware info */ unsigned char phyaddr; int gbit_mac; /* Current operating Mode */ int gb; /* GigaBit */ int fd; /* Full Duplex */ int sp; /* 10/100Mbps speed (1=100,0=10) */ int auto_neg; /* Auto negotiate done */ unsigned char hwaddr[6]; /* MAC Address */ /* Descriptors */ greth_bd *rxbd_base, *rxbd_max; greth_bd *txbd_base, *txbd_max; greth_bd *rxbd_curr; /* rx buffers in rx descriptors */ void *rxbuf_base; /* (GRETH_RXBUF_SIZE+ALIGNBYTES) * GRETH_RXBD_CNT */ /* unused for gbit_mac, temp buffer for sending packets with unligned * start. * Pointer to packet allocated with malloc. */ void *txbuf; struct { /* rx status */ unsigned int rx_packets, rx_crc_errors, rx_frame_errors, rx_length_errors, rx_errors; /* tx stats */ unsigned int tx_packets, tx_latecol_errors, tx_underrun_errors, tx_limit_errors, tx_errors; } stats; } greth_priv; /* Read MII register 'addr' from core 'regs' */ static int read_mii(int phyaddr, int regaddr, volatile greth_regs * regs) { while (GRETH_REGLOAD(®s->mdio) & GRETH_MII_BUSY) { } GRETH_REGSAVE(®s->mdio, ((phyaddr & 0x1F) << 11) | ((regaddr & 0x1F) << 6) | 2); while (GRETH_REGLOAD(®s->mdio) & GRETH_MII_BUSY) { } if (!(GRETH_REGLOAD(®s->mdio) & GRETH_MII_NVALID)) { return (GRETH_REGLOAD(®s->mdio) >> 16) & 0xFFFF; } else { return -1; } } static void write_mii(int phyaddr, int regaddr, int data, volatile greth_regs * regs) { while (GRETH_REGLOAD(®s->mdio) & GRETH_MII_BUSY) { } GRETH_REGSAVE(®s->mdio, ((data & 0xFFFF) << 16) | ((phyaddr & 0x1F) << 11) | ((regaddr & 0x1F) << 6) | 1); while (GRETH_REGLOAD(®s->mdio) & GRETH_MII_BUSY) { } } /* init/start hardware and allocate descriptor buffers for rx side * */ int greth_init(struct eth_device *dev, bd_t * bis) { int i; greth_priv *greth = dev->priv; greth_regs *regs = greth->regs; debug("greth_init\n"); /* Reset core */ GRETH_REGSAVE(®s->control, (GRETH_RESET | (greth->gb << 8) | (greth->sp << 7) | (greth->fd << 4))); /* Wait for Reset to complete */ while ( GRETH_REGLOAD(®s->control) & GRETH_RESET) ; GRETH_REGSAVE(®s->control, ((greth->gb << 8) | (greth->sp << 7) | (greth->fd << 4))); if (!greth->rxbd_base) { /* allocate descriptors */ greth->rxbd_base = (greth_bd *) memalign(0x1000, GRETH_RXBD_CNT * sizeof(greth_bd)); greth->txbd_base = (greth_bd *) memalign(0x1000, GRETH_TXBD_CNT * sizeof(greth_bd)); /* allocate buffers to all descriptors */ greth->rxbuf_base = malloc(GRETH_RXBUF_EFF_SIZE * GRETH_RXBD_CNT); } /* initate rx decriptors */ for (i = 0; i < GRETH_RXBD_CNT; i++) { greth->rxbd_base[i].addr = (unsigned int) greth->rxbuf_base + (GRETH_RXBUF_EFF_SIZE * i); /* enable desciptor & set wrap bit if last descriptor */ if (i >= (GRETH_RXBD_CNT - 1)) { greth->rxbd_base[i].stat = GRETH_BD_EN | GRETH_BD_WR; } else { greth->rxbd_base[i].stat = GRETH_BD_EN; } } /* initiate indexes */ greth->rxbd_curr = greth->rxbd_base; greth->rxbd_max = greth->rxbd_base + (GRETH_RXBD_CNT - 1); greth->txbd_max = greth->txbd_base + (GRETH_TXBD_CNT - 1); /* * greth->txbd_base->addr = 0; * greth->txbd_base->stat = GRETH_BD_WR; */ /* initate tx decriptors */ for (i = 0; i < GRETH_TXBD_CNT; i++) { greth->txbd_base[i].addr = 0; /* enable desciptor & set wrap bit if last descriptor */ if (i >= (GRETH_TXBD_CNT - 1)) { greth->txbd_base[i].stat = GRETH_BD_WR; } else { greth->txbd_base[i].stat = 0; } } /**** SET HARDWARE REGS ****/ /* Set pointer to tx/rx descriptor areas */ GRETH_REGSAVE(®s->rx_desc_p, (unsigned int)&greth->rxbd_base[0]); GRETH_REGSAVE(®s->tx_desc_p, (unsigned int)&greth->txbd_base[0]); /* Enable Transmitter, GRETH will now scan descriptors for packets * to transmitt */ debug("greth_init: enabling receiver\n"); GRETH_REGORIN(®s->control, GRETH_RXEN); return 0; } /* Initiate PHY to a relevant speed * return: * - 0 = success * - 1 = timeout/fail */ int greth_init_phy(greth_priv * dev, bd_t * bis) { greth_regs *regs = dev->regs; int tmp, tmp1, tmp2, i; unsigned int start, timeout; int phyaddr = GRETH_PHY_ADR_DEFAULT; #ifndef CONFIG_SYS_GRLIB_GRETH_PHYADDR /* If BSP doesn't provide a hardcoded PHY address the driver will * try to autodetect PHY address by stopping the search on the first * PHY address which has REG0 implemented. */ for (i=0; i<32; i++) { tmp = read_mii(i, 0, regs); if ( (tmp != 0) && (tmp != 0xffff) ) { phyaddr = i; break; } } #endif /* Save PHY Address */ dev->phyaddr = phyaddr; debug("GRETH PHY ADDRESS: %d\n", phyaddr); /* X msecs to ticks */ timeout = usec2ticks(GRETH_PHY_TIMEOUT_MS * 1000); /* Get system timer0 current value * Total timeout is 5s */ start = get_timer(0); /* get phy control register default values */ while ((tmp = read_mii(phyaddr, 0, regs)) & 0x8000) { if (get_timer(start) > timeout) { debug("greth_init_phy: PHY read 1 failed\n"); return 1; /* Fail */ } } /* reset PHY and wait for completion */ write_mii(phyaddr, 0, 0x8000 | tmp, regs); while (((tmp = read_mii(phyaddr, 0, regs))) & 0x8000) { if (get_timer(start) > timeout) { debug("greth_init_phy: PHY read 2 failed\n"); return 1; /* Fail */ } } /* Check if PHY is autoneg capable and then determine operating * mode, otherwise force it to 10 Mbit halfduplex */ dev->gb = 0; dev->fd = 0; dev->sp = 0; dev->auto_neg = 0; if (!((tmp >> 12) & 1)) { write_mii(phyaddr, 0, 0, regs); } else { /* wait for auto negotiation to complete and then check operating mode */ dev->auto_neg = 1; i = 0; while (!(((tmp = read_mii(phyaddr, 1, regs)) >> 5) & 1)) { if (get_timer(start) > timeout) { printf("Auto negotiation timed out. " "Selecting default config\n"); tmp = read_mii(phyaddr, 0, regs); dev->gb = ((tmp >> 6) & 1) && !((tmp >> 13) & 1); dev->sp = !((tmp >> 6) & 1) && ((tmp >> 13) & 1); dev->fd = (tmp >> 8) & 1; goto auto_neg_done; } } if ((tmp >> 8) & 1) { tmp1 = read_mii(phyaddr, 9, regs); tmp2 = read_mii(phyaddr, 10, regs); if ((tmp1 & GRETH_MII_EXTADV_1000FD) && (tmp2 & GRETH_MII_EXTPRT_1000FD)) { dev->gb = 1; dev->fd = 1; } if ((tmp1 & GRETH_MII_EXTADV_1000HD) && (tmp2 & GRETH_MII_EXTPRT_1000HD)) { dev->gb = 1; dev->fd = 0; } } if ((dev->gb == 0) || ((dev->gb == 1) && (dev->gbit_mac == 0))) { tmp1 = read_mii(phyaddr, 4, regs); tmp2 = read_mii(phyaddr, 5, regs); if ((tmp1 & GRETH_MII_100TXFD) && (tmp2 & GRETH_MII_100TXFD)) { dev->sp = 1; dev->fd = 1; } if ((tmp1 & GRETH_MII_100TXHD) && (tmp2 & GRETH_MII_100TXHD)) { dev->sp = 1; dev->fd = 0; } if ((tmp1 & GRETH_MII_10FD) && (tmp2 & GRETH_MII_10FD)) { dev->fd = 1; } if ((dev->gb == 1) && (dev->gbit_mac == 0)) { dev->gb = 0; dev->fd = 0; write_mii(phyaddr, 0, dev->sp << 13, regs); } } } auto_neg_done: debug("%s GRETH Ethermac at [0x%x] irq %d. Running \ %d Mbps %s duplex\n", dev->gbit_mac ? "10/100/1000" : "10/100", (unsigned int)(regs), (unsigned int)(dev->irq), dev->gb ? 1000 : (dev->sp ? 100 : 10), dev->fd ? "full" : "half"); /* Read out PHY info if extended registers are available */ if (tmp & 1) { tmp1 = read_mii(phyaddr, 2, regs); tmp2 = read_mii(phyaddr, 3, regs); tmp1 = (tmp1 << 6) | ((tmp2 >> 10) & 0x3F); tmp = tmp2 & 0xF; tmp2 = (tmp2 >> 4) & 0x3F; debug("PHY: Vendor %x Device %x Revision %d\n", tmp1, tmp2, tmp); } else { printf("PHY info not available\n"); } /* set speed and duplex bits in control register */ GRETH_REGORIN(®s->control, (dev->gb << 8) | (dev->sp << 7) | (dev->fd << 4)); return 0; } void greth_halt(struct eth_device *dev) { greth_priv *greth; greth_regs *regs; int i; debug("greth_halt\n"); if (!dev || !dev->priv) return; greth = dev->priv; regs = greth->regs; if (!regs) return; /* disable receiver/transmitter by clearing the enable bits */ GRETH_REGANDIN(®s->control, ~(GRETH_RXEN | GRETH_TXEN)); /* reset rx/tx descriptors */ if (greth->rxbd_base) { for (i = 0; i < GRETH_RXBD_CNT; i++) { greth->rxbd_base[i].stat = (i >= (GRETH_RXBD_CNT - 1)) ? GRETH_BD_WR : 0; } } if (greth->txbd_base) { for (i = 0; i < GRETH_TXBD_CNT; i++) { greth->txbd_base[i].stat = (i >= (GRETH_TXBD_CNT - 1)) ? GRETH_BD_WR : 0; } } } int greth_send(struct eth_device *dev, void *eth_data, int data_length) { greth_priv *greth = dev->priv; greth_regs *regs = greth->regs; greth_bd *txbd; void *txbuf; unsigned int status; debug("greth_send\n"); /* send data, wait for data to be sent, then return */ if (((unsigned int)eth_data & (GRETH_BUF_ALIGN - 1)) && !greth->gbit_mac) { /* data not aligned as needed by GRETH 10/100, solve this by allocating 4 byte aligned buffer * and copy data to before giving it to GRETH. */ if (!greth->txbuf) { greth->txbuf = malloc(GRETH_RXBUF_SIZE); } txbuf = greth->txbuf; /* copy data info buffer */ memcpy((char *)txbuf, (char *)eth_data, data_length); /* keep buffer to next time */ } else { txbuf = (void *)eth_data; } /* get descriptor to use, only 1 supported... hehe easy */ txbd = greth->txbd_base; /* setup descriptor to wrap around to it self */ txbd->addr = (unsigned int)txbuf; txbd->stat = GRETH_BD_EN | GRETH_BD_WR | data_length; /* Remind Core which descriptor to use when sending */ GRETH_REGSAVE(®s->tx_desc_p, (unsigned int)txbd); /* initate send by enabling transmitter */ GRETH_REGORIN(®s->control, GRETH_TXEN); /* Wait for data to be sent */ while ((status = GRETH_REGLOAD(&txbd->stat)) & GRETH_BD_EN) { ; } /* was the packet transmitted succesfully? */ if (status & GRETH_TXBD_ERR_AL) { greth->stats.tx_limit_errors++; } if (status & GRETH_TXBD_ERR_UE) { greth->stats.tx_underrun_errors++; } if (status & GRETH_TXBD_ERR_LC) { greth->stats.tx_latecol_errors++; } if (status & (GRETH_TXBD_ERR_LC | GRETH_TXBD_ERR_UE | GRETH_TXBD_ERR_AL)) { /* any error */ greth->stats.tx_errors++; return -1; } /* bump tx packet counter */ greth->stats.tx_packets++; /* return succefully */ return 0; } int greth_recv(struct eth_device *dev) { greth_priv *greth = dev->priv; greth_regs *regs = greth->regs; greth_bd *rxbd; unsigned int status, len = 0, bad; char *d; int enable = 0; int i; /* Receive One packet only, but clear as many error packets as there are * available. */ { /* current receive descriptor */ rxbd = greth->rxbd_curr; /* get status of next received packet */ status = GRETH_REGLOAD(&rxbd->stat); bad = 0; /* stop if no more packets received */ if (status & GRETH_BD_EN) { goto done; } debug("greth_recv: packet 0x%x, 0x%x, len: %d\n", (unsigned int)rxbd, status, status & GRETH_BD_LEN); /* Check status for errors. */ if (status & GRETH_RXBD_ERR_FT) { greth->stats.rx_length_errors++; bad = 1; } if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { greth->stats.rx_frame_errors++; bad = 1; } if (status & GRETH_RXBD_ERR_CRC) { greth->stats.rx_crc_errors++; bad = 1; } if (bad) { greth->stats.rx_errors++; printf ("greth_recv: Bad packet (%d, %d, %d, 0x%08x, %d)\n", greth->stats.rx_length_errors, greth->stats.rx_frame_errors, greth->stats.rx_crc_errors, status, greth->stats.rx_packets); /* print all rx descriptors */ for (i = 0; i < GRETH_RXBD_CNT; i++) { printf("[%d]: Stat=0x%lx, Addr=0x%lx\n", i, GRETH_REGLOAD(&greth->rxbd_base[i].stat), GRETH_REGLOAD(&greth->rxbd_base[i].addr)); } } else { /* Process the incoming packet. */ len = status & GRETH_BD_LEN; d = (char *)rxbd->addr; debug ("greth_recv: new packet, length: %d. data: %x %x %x %x %x %x %x %x\n", len, d[0], d[1], d[2], d[3], d[4], d[5], d[6], d[7]); /* flush all data cache to make sure we're not reading old packet data */ sparc_dcache_flush_all(); /* pass packet on to network subsystem */ NetReceive((void *)d, len); /* bump stats counters */ greth->stats.rx_packets++; /* bad is now 0 ==> will stop loop */ } /* reenable descriptor to receive more packet with this descriptor, wrap around if needed */ rxbd->stat = GRETH_BD_EN | (((unsigned int)greth->rxbd_curr >= (unsigned int)greth->rxbd_max) ? GRETH_BD_WR : 0); enable = 1; /* increase index */ greth->rxbd_curr = ((unsigned int)greth->rxbd_curr >= (unsigned int)greth->rxbd_max) ? greth-> rxbd_base : (greth->rxbd_curr + 1); } if (enable) { GRETH_REGORIN(®s->control, GRETH_RXEN); } done: /* return positive length of packet or 0 if non received */ return len; } void greth_set_hwaddr(greth_priv * greth, unsigned char *mac) { /* save new MAC address */ greth->dev->enetaddr[0] = greth->hwaddr[0] = mac[0]; greth->dev->enetaddr[1] = greth->hwaddr[1] = mac[1]; greth->dev->enetaddr[2] = greth->hwaddr[2] = mac[2]; greth->dev->enetaddr[3] = greth->hwaddr[3] = mac[3]; greth->dev->enetaddr[4] = greth->hwaddr[4] = mac[4]; greth->dev->enetaddr[5] = greth->hwaddr[5] = mac[5]; greth->regs->esa_msb = (mac[0] << 8) | mac[1]; greth->regs->esa_lsb = (mac[2] << 24) | (mac[3] << 16) | (mac[4] << 8) | mac[5]; debug("GRETH: New MAC address: %02x:%02x:%02x:%02x:%02x:%02x\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]); } int greth_initialize(bd_t * bis) { greth_priv *greth; ambapp_apbdev apbdev; struct eth_device *dev; int i; char *addr_str, *end; unsigned char addr[6]; debug("Scanning for GRETH\n"); /* Find Device & IRQ via AMBA Plug&Play information */ if (ambapp_apb_first(VENDOR_GAISLER, GAISLER_ETHMAC, &apbdev) != 1) { return -1; /* GRETH not found */ } greth = (greth_priv *) malloc(sizeof(greth_priv)); dev = (struct eth_device *)malloc(sizeof(struct eth_device)); memset(dev, 0, sizeof(struct eth_device)); memset(greth, 0, sizeof(greth_priv)); greth->regs = (greth_regs *) apbdev.address; greth->irq = apbdev.irq; debug("Found GRETH at %p, irq %d\n", greth->regs, greth->irq); dev->priv = (void *)greth; dev->iobase = (unsigned int)greth->regs; dev->init = greth_init; dev->halt = greth_halt; dev->send = greth_send; dev->recv = greth_recv; greth->dev = dev; /* Reset Core */ GRETH_REGSAVE(&greth->regs->control, GRETH_RESET); /* Wait for core to finish reset cycle */ while (GRETH_REGLOAD(&greth->regs->control) & GRETH_RESET) ; /* Get the phy address which assumed to have been set correctly with the reset value in hardware */ greth->phyaddr = (GRETH_REGLOAD(&greth->regs->mdio) >> 11) & 0x1F; /* Check if mac is gigabit capable */ greth->gbit_mac = (GRETH_REGLOAD(&greth->regs->control) >> 27) & 1; /* Make descriptor string */ if (greth->gbit_mac) { sprintf(dev->name, "GRETH_10/100/GB"); } else { sprintf(dev->name, "GRETH_10/100"); } /* initiate PHY, select speed/duplex depending on connected PHY */ if (greth_init_phy(greth, bis)) { /* Failed to init PHY (timedout) */ debug("GRETH[%p]: Failed to init PHY\n", greth->regs); return -1; } /* Register Device to EtherNet subsystem */ eth_register(dev); /* Get MAC address */ if ((addr_str = getenv("ethaddr")) != NULL) { for (i = 0; i < 6; i++) { addr[i] = addr_str ? simple_strtoul(addr_str, &end, 16) : 0; if (addr_str) { addr_str = (*end) ? end + 1 : end; } } } else { /* HW Address not found in environment, Set default HW address */ addr[0] = GRETH_HWADDR_0; /* MSB */ addr[1] = GRETH_HWADDR_1; addr[2] = GRETH_HWADDR_2; addr[3] = GRETH_HWADDR_3; addr[4] = GRETH_HWADDR_4; addr[5] = GRETH_HWADDR_5; /* LSB */ } /* set and remember MAC address */ greth_set_hwaddr(greth, addr); debug("GRETH[%p]: Initialized successfully\n", greth->regs); return 0; }