/* * (C) Copyright 2009 Ilya Yanok, Emcraft Systems Ltd * (C) Copyright 2008,2009 Eric Jarrige * (C) Copyright 2008 Armadeus Systems nc * (C) Copyright 2007 Pengutronix, Sascha Hauer * (C) Copyright 2007 Pengutronix, Juergen Beisert * Copyright (C) 2016 Freescale Semiconductor, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include "fec_mxc.h" #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; /* * Timeout the transfer after 5 mS. This is usually a bit more, since * the code in the tightloops this timeout is used in adds some overhead. */ #define FEC_XFER_TIMEOUT 5000 /* * The standard 32-byte DMA alignment does not work on mx6solox, which requires * 64-byte alignment in the DMA RX FEC buffer. * Introduce the FEC_DMA_RX_MINALIGN which can cover mx6solox needs and also * satisfies the alignment on other SoCs (32-bytes) */ #define FEC_DMA_RX_MINALIGN 64 #ifndef CONFIG_MII #error "CONFIG_MII has to be defined!" #endif #ifndef CONFIG_FEC_XCV_TYPE #define CONFIG_FEC_XCV_TYPE MII100 #endif /* * The i.MX28 operates with packets in big endian. We need to swap them before * sending and after receiving. */ #ifdef CONFIG_MX28 #define CONFIG_FEC_MXC_SWAP_PACKET #endif #define RXDESC_PER_CACHELINE (ARCH_DMA_MINALIGN/sizeof(struct fec_bd)) /* Check various alignment issues at compile time */ #if ((ARCH_DMA_MINALIGN < 16) || (ARCH_DMA_MINALIGN % 16 != 0)) #error "ARCH_DMA_MINALIGN must be multiple of 16!" #endif #if ((PKTALIGN < ARCH_DMA_MINALIGN) || \ (PKTALIGN % ARCH_DMA_MINALIGN != 0)) #error "PKTALIGN must be multiple of ARCH_DMA_MINALIGN!" #endif #undef DEBUG #ifdef CONFIG_FEC_MXC_SWAP_PACKET static void swap_packet(uint32_t *packet, int length) { int i; for (i = 0; i < DIV_ROUND_UP(length, 4); i++) packet[i] = __swab32(packet[i]); } #endif /* MII-interface related functions */ static int fec_mdio_read(struct ethernet_regs *eth, uint8_t phyaddr, uint8_t regaddr) { uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint32_t start; int val; /* * reading from any PHY's register is done by properly * programming the FEC's MII data register. */ writel(FEC_IEVENT_MII, ð->ievent); reg = regaddr << FEC_MII_DATA_RA_SHIFT; phy = phyaddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_RD | FEC_MII_DATA_TA | phy | reg, ð->mii_data); /* wait for the related interrupt */ start = get_timer(0); while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { printf("Read MDIO failed...\n"); return -1; } } /* clear mii interrupt bit */ writel(FEC_IEVENT_MII, ð->ievent); /* it's now safe to read the PHY's register */ val = (unsigned short)readl(ð->mii_data); debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, regaddr, val); return val; } static void fec_mii_setspeed(struct ethernet_regs *eth) { /* * Set MII_SPEED = (1/(mii_speed * 2)) * System Clock * and do not drop the Preamble. * * The i.MX28 and i.MX6 types have another field in the MSCR (aka * MII_SPEED) register that defines the MDIO output hold time. Earlier * versions are RAZ there, so just ignore the difference and write the * register always. * The minimal hold time according to IEE802.3 (clause 22) is 10 ns. * HOLDTIME + 1 is the number of clk cycles the fec is holding the * output. * The HOLDTIME bitfield takes values between 0 and 7 (inclusive). * Given that ceil(clkrate / 5000000) <= 64, the calculation for * holdtime cannot result in a value greater than 3. */ u32 pclk = imx_get_fecclk(); u32 speed = DIV_ROUND_UP(pclk, 5000000); u32 hold = DIV_ROUND_UP(pclk, 100000000) - 1; #ifdef FEC_QUIRK_ENET_MAC speed--; #endif writel(speed << 1 | hold << 8, ð->mii_speed); debug("%s: mii_speed %08x\n", __func__, readl(ð->mii_speed)); } static int fec_mdio_write(struct ethernet_regs *eth, uint8_t phyaddr, uint8_t regaddr, uint16_t data) { uint32_t reg; /* convenient holder for the PHY register */ uint32_t phy; /* convenient holder for the PHY */ uint32_t start; reg = regaddr << FEC_MII_DATA_RA_SHIFT; phy = phyaddr << FEC_MII_DATA_PA_SHIFT; writel(FEC_MII_DATA_ST | FEC_MII_DATA_OP_WR | FEC_MII_DATA_TA | phy | reg | data, ð->mii_data); /* wait for the MII interrupt */ start = get_timer(0); while (!(readl(ð->ievent) & FEC_IEVENT_MII)) { if (get_timer(start) > (CONFIG_SYS_HZ / 1000)) { printf("Write MDIO failed...\n"); return -1; } } /* clear MII interrupt bit */ writel(FEC_IEVENT_MII, ð->ievent); debug("%s: phy: %02x reg:%02x val:%#x\n", __func__, phyaddr, regaddr, data); return 0; } static int fec_phy_read(struct mii_dev *bus, int phyaddr, int dev_addr, int regaddr) { return fec_mdio_read(bus->priv, phyaddr, regaddr); } static int fec_phy_write(struct mii_dev *bus, int phyaddr, int dev_addr, int regaddr, u16 data) { return fec_mdio_write(bus->priv, phyaddr, regaddr, data); } #ifndef CONFIG_PHYLIB static int miiphy_restart_aneg(struct eth_device *dev) { int ret = 0; #if !defined(CONFIG_FEC_MXC_NO_ANEG) struct fec_priv *fec = (struct fec_priv *)dev->priv; struct ethernet_regs *eth = fec->bus->priv; /* * Wake up from sleep if necessary * Reset PHY, then delay 300ns */ #ifdef CONFIG_MX27 fec_mdio_write(eth, fec->phy_id, MII_DCOUNTER, 0x00FF); #endif fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_RESET); udelay(1000); /* Set the auto-negotiation advertisement register bits */ fec_mdio_write(eth, fec->phy_id, MII_ADVERTISE, LPA_100FULL | LPA_100HALF | LPA_10FULL | LPA_10HALF | PHY_ANLPAR_PSB_802_3); fec_mdio_write(eth, fec->phy_id, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART); if (fec->mii_postcall) ret = fec->mii_postcall(fec->phy_id); #endif return ret; } #ifndef CONFIG_FEC_FIXED_SPEED static int miiphy_wait_aneg(struct eth_device *dev) { uint32_t start; int status; struct fec_priv *fec = (struct fec_priv *)dev->priv; struct ethernet_regs *eth = fec->bus->priv; /* Wait for AN completion */ start = get_timer(0); do { if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { printf("%s: Autonegotiation timeout\n", dev->name); return -1; } status = fec_mdio_read(eth, fec->phy_id, MII_BMSR); if (status < 0) { printf("%s: Autonegotiation failed. status: %d\n", dev->name, status); return -1; } } while (!(status & BMSR_LSTATUS)); return 0; } #endif /* CONFIG_FEC_FIXED_SPEED */ #endif static int fec_rx_task_enable(struct fec_priv *fec) { writel(FEC_R_DES_ACTIVE_RDAR, &fec->eth->r_des_active); return 0; } static int fec_rx_task_disable(struct fec_priv *fec) { return 0; } static int fec_tx_task_enable(struct fec_priv *fec) { writel(FEC_X_DES_ACTIVE_TDAR, &fec->eth->x_des_active); return 0; } static int fec_tx_task_disable(struct fec_priv *fec) { return 0; } /** * Initialize receive task's buffer descriptors * @param[in] fec all we know about the device yet * @param[in] count receive buffer count to be allocated * @param[in] dsize desired size of each receive buffer * @return 0 on success * * Init all RX descriptors to default values. */ static void fec_rbd_init(struct fec_priv *fec, int count, int dsize) { uint32_t size; uint8_t *data; int i; /* * Reload the RX descriptors with default values and wipe * the RX buffers. */ size = roundup(dsize, ARCH_DMA_MINALIGN); for (i = 0; i < count; i++) { data = (uint8_t *)fec->rbd_base[i].data_pointer; memset(data, 0, dsize); flush_dcache_range((uint32_t)data, (uint32_t)data + size); fec->rbd_base[i].status = FEC_RBD_EMPTY; fec->rbd_base[i].data_length = 0; } /* Mark the last RBD to close the ring. */ fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; fec->rbd_index = 0; flush_dcache_range((unsigned)fec->rbd_base, (unsigned)fec->rbd_base + size); } /** * Initialize transmit task's buffer descriptors * @param[in] fec all we know about the device yet * * Transmit buffers are created externally. We only have to init the BDs here.\n * Note: There is a race condition in the hardware. When only one BD is in * use it must be marked with the WRAP bit to use it for every transmitt. * This bit in combination with the READY bit results into double transmit * of each data buffer. It seems the state machine checks READY earlier then * resetting it after the first transfer. * Using two BDs solves this issue. */ static void fec_tbd_init(struct fec_priv *fec) { unsigned addr = (unsigned)fec->tbd_base; unsigned size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); memset(fec->tbd_base, 0, size); fec->tbd_base[0].status = 0; fec->tbd_base[1].status = FEC_TBD_WRAP; fec->tbd_index = 0; flush_dcache_range(addr, addr + size); } /** * Mark the given read buffer descriptor as free * @param[in] last 1 if this is the last buffer descriptor in the chain, else 0 * @param[in] prbd buffer descriptor to mark free again */ static void fec_rbd_clean(int last, struct fec_bd *prbd) { unsigned short flags = FEC_RBD_EMPTY; if (last) flags |= FEC_RBD_WRAP; writew(flags, &prbd->status); writew(0, &prbd->data_length); } static int fec_get_hwaddr(int dev_id, unsigned char *mac) { imx_get_mac_from_fuse(dev_id, mac); return !is_valid_ethaddr(mac); } #ifdef CONFIG_DM_ETH static int fecmxc_set_hwaddr(struct udevice *dev) #else static int fec_set_hwaddr(struct eth_device *dev) #endif { #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_platdata(dev); uchar *mac = pdata->enetaddr; #else uchar *mac = dev->enetaddr; struct fec_priv *fec = (struct fec_priv *)dev->priv; #endif writel(0, &fec->eth->iaddr1); writel(0, &fec->eth->iaddr2); writel(0, &fec->eth->gaddr1); writel(0, &fec->eth->gaddr2); /* Set physical address */ writel((mac[0] << 24) + (mac[1] << 16) + (mac[2] << 8) + mac[3], &fec->eth->paddr1); writel((mac[4] << 24) + (mac[5] << 16) + 0x8808, &fec->eth->paddr2); return 0; } /* Do initial configuration of the FEC registers */ static void fec_reg_setup(struct fec_priv *fec) { uint32_t rcntrl; /* Set interrupt mask register */ writel(0x00000000, &fec->eth->imask); /* Clear FEC-Lite interrupt event register(IEVENT) */ writel(0xffffffff, &fec->eth->ievent); /* Set FEC-Lite receive control register(R_CNTRL): */ /* Start with frame length = 1518, common for all modes. */ rcntrl = PKTSIZE << FEC_RCNTRL_MAX_FL_SHIFT; if (fec->xcv_type != SEVENWIRE) /* xMII modes */ rcntrl |= FEC_RCNTRL_FCE | FEC_RCNTRL_MII_MODE; if (fec->xcv_type == RGMII) rcntrl |= FEC_RCNTRL_RGMII; else if (fec->xcv_type == RMII) rcntrl |= FEC_RCNTRL_RMII; writel(rcntrl, &fec->eth->r_cntrl); } /** * Start the FEC engine * @param[in] dev Our device to handle */ #ifdef CONFIG_DM_ETH static int fec_open(struct udevice *dev) #else static int fec_open(struct eth_device *edev) #endif { #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); #else struct fec_priv *fec = (struct fec_priv *)edev->priv; #endif int speed; uint32_t addr, size; int i; debug("fec_open: fec_open(dev)\n"); /* full-duplex, heartbeat disabled */ writel(1 << 2, &fec->eth->x_cntrl); fec->rbd_index = 0; /* Invalidate all descriptors */ for (i = 0; i < FEC_RBD_NUM - 1; i++) fec_rbd_clean(0, &fec->rbd_base[i]); fec_rbd_clean(1, &fec->rbd_base[i]); /* Flush the descriptors into RAM */ size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); addr = (uint32_t)fec->rbd_base; flush_dcache_range(addr, addr + size); #ifdef FEC_QUIRK_ENET_MAC /* Enable ENET HW endian SWAP */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_DBSWAP, &fec->eth->ecntrl); /* Enable ENET store and forward mode */ writel(readl(&fec->eth->x_wmrk) | FEC_X_WMRK_STRFWD, &fec->eth->x_wmrk); #endif /* Enable FEC-Lite controller */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl); #if defined(CONFIG_MX25) || defined(CONFIG_MX53) || defined(CONFIG_MX6SL) udelay(100); /* setup the MII gasket for RMII mode */ /* disable the gasket */ writew(0, &fec->eth->miigsk_enr); /* wait for the gasket to be disabled */ while (readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) udelay(2); /* configure gasket for RMII, 50 MHz, no loopback, and no echo */ writew(MIIGSK_CFGR_IF_MODE_RMII, &fec->eth->miigsk_cfgr); /* re-enable the gasket */ writew(MIIGSK_ENR_EN, &fec->eth->miigsk_enr); /* wait until MII gasket is ready */ int max_loops = 10; while ((readw(&fec->eth->miigsk_enr) & MIIGSK_ENR_READY) == 0) { if (--max_loops <= 0) { printf("WAIT for MII Gasket ready timed out\n"); break; } } #endif #ifdef CONFIG_PHYLIB { /* Start up the PHY */ int ret = phy_startup(fec->phydev); if (ret) { printf("Could not initialize PHY %s\n", fec->phydev->dev->name); return ret; } speed = fec->phydev->speed; } #elif CONFIG_FEC_FIXED_SPEED speed = CONFIG_FEC_FIXED_SPEED; #else miiphy_wait_aneg(edev); speed = miiphy_speed(edev->name, fec->phy_id); miiphy_duplex(edev->name, fec->phy_id); #endif #ifdef FEC_QUIRK_ENET_MAC { u32 ecr = readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_SPEED; u32 rcr = readl(&fec->eth->r_cntrl) & ~FEC_RCNTRL_RMII_10T; if (speed == _1000BASET) ecr |= FEC_ECNTRL_SPEED; else if (speed != _100BASET) rcr |= FEC_RCNTRL_RMII_10T; writel(ecr, &fec->eth->ecntrl); writel(rcr, &fec->eth->r_cntrl); } #endif debug("%s:Speed=%i\n", __func__, speed); /* Enable SmartDMA receive task */ fec_rx_task_enable(fec); udelay(100000); return 0; } #ifdef CONFIG_DM_ETH static int fecmxc_init(struct udevice *dev) #else static int fec_init(struct eth_device *dev, bd_t *bd) #endif { #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); #else struct fec_priv *fec = (struct fec_priv *)dev->priv; #endif uint32_t mib_ptr = (uint32_t)&fec->eth->rmon_t_drop; int i; /* Initialize MAC address */ #ifdef CONFIG_DM_ETH fecmxc_set_hwaddr(dev); #else fec_set_hwaddr(dev); #endif /* Setup transmit descriptors, there are two in total. */ fec_tbd_init(fec); /* Setup receive descriptors. */ fec_rbd_init(fec, FEC_RBD_NUM, FEC_MAX_PKT_SIZE); fec_reg_setup(fec); if (fec->xcv_type != SEVENWIRE) fec_mii_setspeed(fec->bus->priv); /* Set Opcode/Pause Duration Register */ writel(0x00010020, &fec->eth->op_pause); /* FIXME 0xffff0020; */ writel(0x2, &fec->eth->x_wmrk); /* Set multicast address filter */ writel(0x00000000, &fec->eth->gaddr1); writel(0x00000000, &fec->eth->gaddr2); /* Do not access reserved register for i.MX6UL */ if (!is_mx6ul() && !is_mx6ull()) { /* clear MIB RAM */ for (i = mib_ptr; i <= mib_ptr + 0xfc; i += 4) writel(0, i); /* FIFO receive start register */ writel(0x520, &fec->eth->r_fstart); } /* size and address of each buffer */ writel(FEC_MAX_PKT_SIZE, &fec->eth->emrbr); writel((uint32_t)fec->tbd_base, &fec->eth->etdsr); writel((uint32_t)fec->rbd_base, &fec->eth->erdsr); #ifndef CONFIG_PHYLIB if (fec->xcv_type != SEVENWIRE) miiphy_restart_aneg(dev); #endif fec_open(dev); return 0; } /** * Halt the FEC engine * @param[in] dev Our device to handle */ #ifdef CONFIG_DM_ETH static void fecmxc_halt(struct udevice *dev) #else static void fec_halt(struct eth_device *dev) #endif { #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); #else struct fec_priv *fec = (struct fec_priv *)dev->priv; #endif int counter = 0xffff; /* issue graceful stop command to the FEC transmitter if necessary */ writel(FEC_TCNTRL_GTS | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); debug("eth_halt: wait for stop regs\n"); /* wait for graceful stop to register */ while ((counter--) && (!(readl(&fec->eth->ievent) & FEC_IEVENT_GRA))) udelay(1); /* Disable SmartDMA tasks */ fec_tx_task_disable(fec); fec_rx_task_disable(fec); /* * Disable the Ethernet Controller * Note: this will also reset the BD index counter! */ writel(readl(&fec->eth->ecntrl) & ~FEC_ECNTRL_ETHER_EN, &fec->eth->ecntrl); fec->rbd_index = 0; fec->tbd_index = 0; debug("eth_halt: done\n"); } /** * Transmit one frame * @param[in] dev Our ethernet device to handle * @param[in] packet Pointer to the data to be transmitted * @param[in] length Data count in bytes * @return 0 on success */ #ifdef CONFIG_DM_ETH static int fecmxc_send(struct udevice *dev, void *packet, int length) #else static int fec_send(struct eth_device *dev, void *packet, int length) #endif { unsigned int status; uint32_t size, end; uint32_t addr; int timeout = FEC_XFER_TIMEOUT; int ret = 0; /* * This routine transmits one frame. This routine only accepts * 6-byte Ethernet addresses. */ #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); #else struct fec_priv *fec = (struct fec_priv *)dev->priv; #endif /* * Check for valid length of data. */ if ((length > 1500) || (length <= 0)) { printf("Payload (%d) too large\n", length); return -1; } /* * Setup the transmit buffer. We are always using the first buffer for * transmission, the second will be empty and only used to stop the DMA * engine. We also flush the packet to RAM here to avoid cache trouble. */ #ifdef CONFIG_FEC_MXC_SWAP_PACKET swap_packet((uint32_t *)packet, length); #endif addr = (uint32_t)packet; end = roundup(addr + length, ARCH_DMA_MINALIGN); addr &= ~(ARCH_DMA_MINALIGN - 1); flush_dcache_range(addr, end); writew(length, &fec->tbd_base[fec->tbd_index].data_length); writel(addr, &fec->tbd_base[fec->tbd_index].data_pointer); /* * update BD's status now * This block: * - is always the last in a chain (means no chain) * - should transmitt the CRC * - might be the last BD in the list, so the address counter should * wrap (-> keep the WRAP flag) */ status = readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_WRAP; status |= FEC_TBD_LAST | FEC_TBD_TC | FEC_TBD_READY; writew(status, &fec->tbd_base[fec->tbd_index].status); /* * Flush data cache. This code flushes both TX descriptors to RAM. * After this code, the descriptors will be safely in RAM and we * can start DMA. */ size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); addr = (uint32_t)fec->tbd_base; flush_dcache_range(addr, addr + size); /* * Below we read the DMA descriptor's last four bytes back from the * DRAM. This is important in order to make sure that all WRITE * operations on the bus that were triggered by previous cache FLUSH * have completed. * * Otherwise, on MX28, it is possible to observe a corruption of the * DMA descriptors. Please refer to schematic "Figure 1-2" in MX28RM * for the bus structure of MX28. The scenario is as follows: * * 1) ARM core triggers a series of WRITEs on the AHB_ARB2 bus going * to DRAM due to flush_dcache_range() * 2) ARM core writes the FEC registers via AHB_ARB2 * 3) FEC DMA starts reading/writing from/to DRAM via AHB_ARB3 * * Note that 2) does sometimes finish before 1) due to reordering of * WRITE accesses on the AHB bus, therefore triggering 3) before the * DMA descriptor is fully written into DRAM. This results in occasional * corruption of the DMA descriptor. */ readl(addr + size - 4); /* Enable SmartDMA transmit task */ fec_tx_task_enable(fec); /* * Wait until frame is sent. On each turn of the wait cycle, we must * invalidate data cache to see what's really in RAM. Also, we need * barrier here. */ while (--timeout) { if (!(readl(&fec->eth->x_des_active) & FEC_X_DES_ACTIVE_TDAR)) break; } if (!timeout) { ret = -EINVAL; goto out; } /* * The TDAR bit is cleared when the descriptors are all out from TX * but on mx6solox we noticed that the READY bit is still not cleared * right after TDAR. * These are two distinct signals, and in IC simulation, we found that * TDAR always gets cleared prior than the READY bit of last BD becomes * cleared. * In mx6solox, we use a later version of FEC IP. It looks like that * this intrinsic behaviour of TDAR bit has changed in this newer FEC * version. * * Fix this by polling the READY bit of BD after the TDAR polling, * which covers the mx6solox case and does not harm the other SoCs. */ timeout = FEC_XFER_TIMEOUT; while (--timeout) { invalidate_dcache_range(addr, addr + size); if (!(readw(&fec->tbd_base[fec->tbd_index].status) & FEC_TBD_READY)) break; } if (!timeout) ret = -EINVAL; out: debug("fec_send: status 0x%x index %d ret %i\n", readw(&fec->tbd_base[fec->tbd_index].status), fec->tbd_index, ret); /* for next transmission use the other buffer */ if (fec->tbd_index) fec->tbd_index = 0; else fec->tbd_index = 1; return ret; } /** * Pull one frame from the card * @param[in] dev Our ethernet device to handle * @return Length of packet read */ #ifdef CONFIG_DM_ETH static int fecmxc_recv(struct udevice *dev, int flags, uchar **packetp) #else static int fec_recv(struct eth_device *dev) #endif { #ifdef CONFIG_DM_ETH struct fec_priv *fec = dev_get_priv(dev); #else struct fec_priv *fec = (struct fec_priv *)dev->priv; #endif struct fec_bd *rbd = &fec->rbd_base[fec->rbd_index]; unsigned long ievent; int frame_length, len = 0; uint16_t bd_status; uint32_t addr, size, end; int i; ALLOC_CACHE_ALIGN_BUFFER(uchar, buff, FEC_MAX_PKT_SIZE); /* Check if any critical events have happened */ ievent = readl(&fec->eth->ievent); writel(ievent, &fec->eth->ievent); debug("fec_recv: ievent 0x%lx\n", ievent); if (ievent & FEC_IEVENT_BABR) { #ifdef CONFIG_DM_ETH fecmxc_halt(dev); fecmxc_init(dev); #else fec_halt(dev); fec_init(dev, fec->bd); #endif printf("some error: 0x%08lx\n", ievent); return 0; } if (ievent & FEC_IEVENT_HBERR) { /* Heartbeat error */ writel(0x00000001 | readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); } if (ievent & FEC_IEVENT_GRA) { /* Graceful stop complete */ if (readl(&fec->eth->x_cntrl) & 0x00000001) { #ifdef CONFIG_DM_ETH fecmxc_halt(dev); #else fec_halt(dev); #endif writel(~0x00000001 & readl(&fec->eth->x_cntrl), &fec->eth->x_cntrl); #ifdef CONFIG_DM_ETH fecmxc_init(dev); #else fec_init(dev, fec->bd); #endif } } /* * Read the buffer status. Before the status can be read, the data cache * must be invalidated, because the data in RAM might have been changed * by DMA. The descriptors are properly aligned to cachelines so there's * no need to worry they'd overlap. * * WARNING: By invalidating the descriptor here, we also invalidate * the descriptors surrounding this one. Therefore we can NOT change the * contents of this descriptor nor the surrounding ones. The problem is * that in order to mark the descriptor as processed, we need to change * the descriptor. The solution is to mark the whole cache line when all * descriptors in the cache line are processed. */ addr = (uint32_t)rbd; addr &= ~(ARCH_DMA_MINALIGN - 1); size = roundup(sizeof(struct fec_bd), ARCH_DMA_MINALIGN); invalidate_dcache_range(addr, addr + size); bd_status = readw(&rbd->status); debug("fec_recv: status 0x%x\n", bd_status); if (!(bd_status & FEC_RBD_EMPTY)) { if ((bd_status & FEC_RBD_LAST) && !(bd_status & FEC_RBD_ERR) && ((readw(&rbd->data_length) - 4) > 14)) { /* Get buffer address and size */ addr = readl(&rbd->data_pointer); frame_length = readw(&rbd->data_length) - 4; /* Invalidate data cache over the buffer */ end = roundup(addr + frame_length, ARCH_DMA_MINALIGN); addr &= ~(ARCH_DMA_MINALIGN - 1); invalidate_dcache_range(addr, end); /* Fill the buffer and pass it to upper layers */ #ifdef CONFIG_FEC_MXC_SWAP_PACKET swap_packet((uint32_t *)addr, frame_length); #endif memcpy(buff, (char *)addr, frame_length); net_process_received_packet(buff, frame_length); len = frame_length; } else { if (bd_status & FEC_RBD_ERR) printf("error frame: 0x%08x 0x%08x\n", addr, bd_status); } /* * Free the current buffer, restart the engine and move forward * to the next buffer. Here we check if the whole cacheline of * descriptors was already processed and if so, we mark it free * as whole. */ size = RXDESC_PER_CACHELINE - 1; if ((fec->rbd_index & size) == size) { i = fec->rbd_index - size; addr = (uint32_t)&fec->rbd_base[i]; for (; i <= fec->rbd_index ; i++) { fec_rbd_clean(i == (FEC_RBD_NUM - 1), &fec->rbd_base[i]); } flush_dcache_range(addr, addr + ARCH_DMA_MINALIGN); } fec_rx_task_enable(fec); fec->rbd_index = (fec->rbd_index + 1) % FEC_RBD_NUM; } debug("fec_recv: stop\n"); return len; } static void fec_set_dev_name(char *dest, int dev_id) { sprintf(dest, (dev_id == -1) ? "FEC" : "FEC%i", dev_id); } static int fec_alloc_descs(struct fec_priv *fec) { unsigned int size; int i; uint8_t *data; /* Allocate TX descriptors. */ size = roundup(2 * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); fec->tbd_base = memalign(ARCH_DMA_MINALIGN, size); if (!fec->tbd_base) goto err_tx; /* Allocate RX descriptors. */ size = roundup(FEC_RBD_NUM * sizeof(struct fec_bd), ARCH_DMA_MINALIGN); fec->rbd_base = memalign(ARCH_DMA_MINALIGN, size); if (!fec->rbd_base) goto err_rx; memset(fec->rbd_base, 0, size); /* Allocate RX buffers. */ /* Maximum RX buffer size. */ size = roundup(FEC_MAX_PKT_SIZE, FEC_DMA_RX_MINALIGN); for (i = 0; i < FEC_RBD_NUM; i++) { data = memalign(FEC_DMA_RX_MINALIGN, size); if (!data) { printf("%s: error allocating rxbuf %d\n", __func__, i); goto err_ring; } memset(data, 0, size); fec->rbd_base[i].data_pointer = (uint32_t)data; fec->rbd_base[i].status = FEC_RBD_EMPTY; fec->rbd_base[i].data_length = 0; /* Flush the buffer to memory. */ flush_dcache_range((uint32_t)data, (uint32_t)data + size); } /* Mark the last RBD to close the ring. */ fec->rbd_base[i - 1].status = FEC_RBD_WRAP | FEC_RBD_EMPTY; fec->rbd_index = 0; fec->tbd_index = 0; return 0; err_ring: for (; i >= 0; i--) free((void *)fec->rbd_base[i].data_pointer); free(fec->rbd_base); err_rx: free(fec->tbd_base); err_tx: return -ENOMEM; } static void fec_free_descs(struct fec_priv *fec) { int i; for (i = 0; i < FEC_RBD_NUM; i++) free((void *)fec->rbd_base[i].data_pointer); free(fec->rbd_base); free(fec->tbd_base); } struct mii_dev *fec_get_miibus(uint32_t base_addr, int dev_id) { struct ethernet_regs *eth = (struct ethernet_regs *)base_addr; struct mii_dev *bus; int ret; bus = mdio_alloc(); if (!bus) { printf("mdio_alloc failed\n"); return NULL; } bus->read = fec_phy_read; bus->write = fec_phy_write; bus->priv = eth; fec_set_dev_name(bus->name, dev_id); ret = mdio_register(bus); if (ret) { printf("mdio_register failed\n"); free(bus); return NULL; } fec_mii_setspeed(eth); return bus; } #ifndef CONFIG_DM_ETH #ifdef CONFIG_PHYLIB int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, struct mii_dev *bus, struct phy_device *phydev) #else static int fec_probe(bd_t *bd, int dev_id, uint32_t base_addr, struct mii_dev *bus, int phy_id) #endif { struct eth_device *edev; struct fec_priv *fec; unsigned char ethaddr[6]; char mac[16]; uint32_t start; int ret = 0; /* create and fill edev struct */ edev = (struct eth_device *)malloc(sizeof(struct eth_device)); if (!edev) { puts("fec_mxc: not enough malloc memory for eth_device\n"); ret = -ENOMEM; goto err1; } fec = (struct fec_priv *)malloc(sizeof(struct fec_priv)); if (!fec) { puts("fec_mxc: not enough malloc memory for fec_priv\n"); ret = -ENOMEM; goto err2; } memset(edev, 0, sizeof(*edev)); memset(fec, 0, sizeof(*fec)); ret = fec_alloc_descs(fec); if (ret) goto err3; edev->priv = fec; edev->init = fec_init; edev->send = fec_send; edev->recv = fec_recv; edev->halt = fec_halt; edev->write_hwaddr = fec_set_hwaddr; fec->eth = (struct ethernet_regs *)base_addr; fec->bd = bd; fec->xcv_type = CONFIG_FEC_XCV_TYPE; /* Reset chip. */ writel(readl(&fec->eth->ecntrl) | FEC_ECNTRL_RESET, &fec->eth->ecntrl); start = get_timer(0); while (readl(&fec->eth->ecntrl) & FEC_ECNTRL_RESET) { if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { printf("FEC MXC: Timeout resetting chip\n"); goto err4; } udelay(10); } fec_reg_setup(fec); fec_set_dev_name(edev->name, dev_id); fec->dev_id = (dev_id == -1) ? 0 : dev_id; fec->bus = bus; fec_mii_setspeed(bus->priv); #ifdef CONFIG_PHYLIB fec->phydev = phydev; phy_connect_dev(phydev, edev); /* Configure phy */ phy_config(phydev); #else fec->phy_id = phy_id; #endif eth_register(edev); /* only support one eth device, the index number pointed by dev_id */ edev->index = fec->dev_id; if (fec_get_hwaddr(fec->dev_id, ethaddr) == 0) { debug("got MAC%d address from fuse: %pM\n", fec->dev_id, ethaddr); memcpy(edev->enetaddr, ethaddr, 6); if (fec->dev_id) sprintf(mac, "eth%daddr", fec->dev_id); else strcpy(mac, "ethaddr"); if (!getenv(mac)) eth_setenv_enetaddr(mac, ethaddr); } return ret; err4: fec_free_descs(fec); err3: free(fec); err2: free(edev); err1: return ret; } int fecmxc_initialize_multi(bd_t *bd, int dev_id, int phy_id, uint32_t addr) { uint32_t base_mii; struct mii_dev *bus = NULL; #ifdef CONFIG_PHYLIB struct phy_device *phydev = NULL; #endif int ret; #ifdef CONFIG_MX6 if (mx6_enet_fused(addr)) { printf("Ethernet@0x%x is fused, disable it\n", addr); return -2; } #endif #ifdef CONFIG_MX28 /* * The i.MX28 has two ethernet interfaces, but they are not equal. * Only the first one can access the MDIO bus. */ base_mii = MXS_ENET0_BASE; #else #ifdef CONFIG_FEC_MXC_MDIO_BASE base_mii = CONFIG_FEC_MXC_MDIO_BASE; #else base_mii = addr; #endif #endif debug("eth_init: fec_probe(bd, %i, %i) @ %08x\n", dev_id, phy_id, addr); bus = fec_get_miibus(base_mii, dev_id); if (!bus) return -ENOMEM; #ifdef CONFIG_PHYLIB phydev = phy_find_by_mask(bus, 1 << phy_id, PHY_INTERFACE_MODE_RGMII); if (!phydev) { mdio_unregister(bus); free(bus); return -ENOMEM; } ret = fec_probe(bd, dev_id, addr, bus, phydev); #else ret = fec_probe(bd, dev_id, addr, bus, phy_id); #endif if (ret) { #ifdef CONFIG_PHYLIB free(phydev); #endif mdio_unregister(bus); free(bus); } return ret; } #ifdef CONFIG_FEC_MXC_PHYADDR int fecmxc_initialize(bd_t *bd) { return fecmxc_initialize_multi(bd, -1, CONFIG_FEC_MXC_PHYADDR, IMX_FEC_BASE); } #endif #ifndef CONFIG_PHYLIB int fecmxc_register_mii_postcall(struct eth_device *dev, int (*cb)(int)) { struct fec_priv *fec = (struct fec_priv *)dev->priv; fec->mii_postcall = cb; return 0; } #endif #else static int fecmxc_read_rom_hwaddr(struct udevice *dev) { struct fec_priv *priv = dev_get_priv(dev); struct eth_pdata *pdata = dev_get_platdata(dev); return fec_get_hwaddr(priv->dev_id, pdata->enetaddr); } static const struct eth_ops fecmxc_ops = { .start = fecmxc_init, .send = fecmxc_send, .recv = fecmxc_recv, .stop = fecmxc_halt, .write_hwaddr = fecmxc_set_hwaddr, .read_rom_hwaddr = fecmxc_read_rom_hwaddr, }; static int fec_phy_init(struct fec_priv *priv, struct udevice *dev) { struct phy_device *phydev; int mask = 0xffffffff; #ifdef CONFIG_PHYLIB mask = 1 << CONFIG_FEC_MXC_PHYADDR; #endif phydev = phy_find_by_mask(priv->bus, mask, priv->interface); if (!phydev) return -ENODEV; phy_connect_dev(phydev, dev); priv->phydev = phydev; phy_config(phydev); return 0; } static int fecmxc_probe(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct fec_priv *priv = dev_get_priv(dev); struct mii_dev *bus = NULL; static int dev_id = 0; uint32_t start; int ret; #ifdef CONFIG_MX6 if (mx6_enet_fused((uint32_t)priv->eth)) { printf("Ethernet@0x%x is fused, disable it\n", (uint32_t)priv->eth); return -ENODEV; } #endif ret = fec_alloc_descs(priv); if (ret) return ret; #ifdef CONFIG_FEC_MXC_MDIO_BASE bus = fec_get_miibus((uint32_t)CONFIG_FEC_MXC_MDIO_BASE, dev_id); #else bus = fec_get_miibus((uint32_t)priv->eth, dev_id); #endif if (!bus) goto err_mii; priv->bus = bus; priv->xcv_type = CONFIG_FEC_XCV_TYPE; priv->interface = pdata->phy_interface; ret = fec_phy_init(priv, dev); if (ret) goto err_phy; /* Reset chip. */ writel(readl(&priv->eth->ecntrl) | FEC_ECNTRL_RESET, &priv->eth->ecntrl); start = get_timer(0); while (readl(&priv->eth->ecntrl) & FEC_ECNTRL_RESET) { if (get_timer(start) > (CONFIG_SYS_HZ * 5)) { printf("FEC MXC: Timeout reseting chip\n"); goto err_timeout; } udelay(10); } fec_reg_setup(priv); priv->dev_id = (dev_id == -1) ? 0 : dev_id; dev_id++; return 0; err_timeout: free(priv->phydev); err_phy: mdio_unregister(bus); free(bus); err_mii: fec_free_descs(priv); return ret; } static int fecmxc_remove(struct udevice *dev) { struct fec_priv *priv = dev_get_priv(dev); free(priv->phydev); fec_free_descs(priv); mdio_unregister(priv->bus); mdio_free(priv->bus); return 0; } static int fecmxc_ofdata_to_platdata(struct udevice *dev) { struct eth_pdata *pdata = dev_get_platdata(dev); struct fec_priv *priv = dev_get_priv(dev); const char *phy_mode; pdata->iobase = (phys_addr_t)dev_get_addr(dev); priv->eth = (struct ethernet_regs *)pdata->iobase; pdata->phy_interface = -1; phy_mode = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "phy-mode", NULL); if (phy_mode) pdata->phy_interface = phy_get_interface_by_name(phy_mode); if (pdata->phy_interface == -1) { debug("%s: Invalid PHY interface '%s'\n", __func__, phy_mode); return -EINVAL; } /* TODO * Need to get the reset-gpio and related properties from DT * and implemet the enet reset code on .probe call */ return 0; } static const struct udevice_id fecmxc_ids[] = { { .compatible = "fsl,imx6q-fec" }, { .compatible = "fsl,imx6sx-fec" }, { .compatible = "fsl,imx7d-fec" }, { } }; U_BOOT_DRIVER(fecmxc_gem) = { .name = "fecmxc", .id = UCLASS_ETH, .of_match = fecmxc_ids, .ofdata_to_platdata = fecmxc_ofdata_to_platdata, .probe = fecmxc_probe, .remove = fecmxc_remove, .ops = &fecmxc_ops, .priv_auto_alloc_size = sizeof(struct fec_priv), .platdata_auto_alloc_size = sizeof(struct eth_pdata), }; #endif