/* dm9000.c: Version 1.2 12/15/2003 A Davicom DM9000 ISA NIC fast Ethernet driver for Linux. Copyright (C) 1997 Sten Wang This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. (C)Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. V0.11 06/20/2001 REG_0A bit3=1, default enable BP with DA match 06/22/2001 Support DM9801 progrmming E3: R25 = ((R24 + NF) & 0x00ff) | 0xf000 E4: R25 = ((R24 + NF) & 0x00ff) | 0xc200 R17 = (R17 & 0xfff0) | NF + 3 E5: R25 = ((R24 + NF - 3) & 0x00ff) | 0xc200 R17 = (R17 & 0xfff0) | NF v1.00 modify by simon 2001.9.5 change for kernel 2.4.x v1.1 11/09/2001 fix force mode bug v1.2 03/18/2003 Weilun Huang <weilun_huang@davicom.com.tw>: Fixed phy reset. Added tx/rx 32 bit mode. Cleaned up for kernel merge. -------------------------------------- 12/15/2003 Initial port to u-boot by Sascha Hauer <saschahauer@web.de> 06/03/2008 Remy Bohmer <linux@bohmer.net> - Fixed the driver to work with DM9000A. (check on ISR receive status bit before reading the FIFO as described in DM9000 programming guide and application notes) - Added autodetect of databus width. - Made debug code compile again. - Adapt eth_send such that it matches the DM9000* application notes. Needed to make it work properly for DM9000A. - Adapted reset procedure to match DM9000 application notes (i.e. double reset) - some minor code cleanups These changes are tested with DM9000{A,EP,E} together with a 200MHz Atmel AT91SAM92161 core TODO: external MII is not functional, only internal at the moment. */ #include <common.h> #include <command.h> #include <net.h> #include <asm/io.h> #include "dm9000x.h" /* Board/System/Debug information/definition ---------------- */ /* #define CONFIG_DM9000_DEBUG */ #ifdef CONFIG_DM9000_DEBUG #define DM9000_DBG(fmt,args...) printf(fmt, ##args) #define DM9000_DMP_PACKET(func,packet,length) \ do { \ int i; \ printf(func ": length: %d\n", length); \ for (i = 0; i < length; i++) { \ if (i % 8 == 0) \ printf("\n%s: %02x: ", func, i); \ printf("%02x ", ((unsigned char *) packet)[i]); \ } printf("\n"); \ } while(0) #else #define DM9000_DBG(fmt,args...) #define DM9000_DMP_PACKET(func,packet,length) #endif /* Structure/enum declaration ------------------------------- */ typedef struct board_info { u32 runt_length_counter; /* counter: RX length < 64byte */ u32 long_length_counter; /* counter: RX length > 1514byte */ u32 reset_counter; /* counter: RESET */ u32 reset_tx_timeout; /* RESET caused by TX Timeout */ u32 reset_rx_status; /* RESET caused by RX Statsus wrong */ u16 tx_pkt_cnt; u16 queue_start_addr; u16 dbug_cnt; u8 phy_addr; u8 device_wait_reset; /* device state */ unsigned char srom[128]; void (*outblk)(volatile void *data_ptr, int count); void (*inblk)(void *data_ptr, int count); void (*rx_status)(u16 *RxStatus, u16 *RxLen); } board_info_t; static board_info_t dm9000_info; /* function declaration ------------------------------------- */ int eth_init(bd_t * bd); int eth_send(volatile void *, int); int eth_rx(void); void eth_halt(void); static int dm9000_probe(void); static u16 phy_read(int); static void phy_write(int, u16); u16 read_srom_word(int); static u8 DM9000_ior(int); static void DM9000_iow(int reg, u8 value); /* DM9000 network board routine ---------------------------- */ #define DM9000_outb(d,r) ( *(volatile u8 *)r = d ) #define DM9000_outw(d,r) ( *(volatile u16 *)r = d ) #define DM9000_outl(d,r) ( *(volatile u32 *)r = d ) #define DM9000_inb(r) (*(volatile u8 *)r) #define DM9000_inw(r) (*(volatile u16 *)r) #define DM9000_inl(r) (*(volatile u32 *)r) #ifdef CONFIG_DM9000_DEBUG static void dump_regs(void) { DM9000_DBG("\n"); DM9000_DBG("NCR (0x00): %02x\n", DM9000_ior(0)); DM9000_DBG("NSR (0x01): %02x\n", DM9000_ior(1)); DM9000_DBG("TCR (0x02): %02x\n", DM9000_ior(2)); DM9000_DBG("TSRI (0x03): %02x\n", DM9000_ior(3)); DM9000_DBG("TSRII (0x04): %02x\n", DM9000_ior(4)); DM9000_DBG("RCR (0x05): %02x\n", DM9000_ior(5)); DM9000_DBG("RSR (0x06): %02x\n", DM9000_ior(6)); DM9000_DBG("ISR (0xFE): %02x\n", DM9000_ior(DM9000_ISR)); DM9000_DBG("\n"); } #endif static void dm9000_outblk_8bit(volatile void *data_ptr, int count) { int i; for (i = 0; i < count; i++) DM9000_outb((((u8 *) data_ptr)[i] & 0xff), DM9000_DATA); } static void dm9000_outblk_16bit(volatile void *data_ptr, int count) { int i; u32 tmplen = (count + 1) / 2; for (i = 0; i < tmplen; i++) DM9000_outw(((u16 *) data_ptr)[i], DM9000_DATA); } static void dm9000_outblk_32bit(volatile void *data_ptr, int count) { int i; u32 tmplen = (count + 3) / 4; for (i = 0; i < tmplen; i++) DM9000_outl(((u32 *) data_ptr)[i], DM9000_DATA); } static void dm9000_inblk_8bit(void *data_ptr, int count) { int i; for (i = 0; i < count; i++) ((u8 *) data_ptr)[i] = DM9000_inb(DM9000_DATA); } static void dm9000_inblk_16bit(void *data_ptr, int count) { int i; u32 tmplen = (count + 1) / 2; for (i = 0; i < tmplen; i++) ((u16 *) data_ptr)[i] = DM9000_inw(DM9000_DATA); } static void dm9000_inblk_32bit(void *data_ptr, int count) { int i; u32 tmplen = (count + 3) / 4; for (i = 0; i < tmplen; i++) ((u32 *) data_ptr)[i] = DM9000_inl(DM9000_DATA); } static void dm9000_rx_status_32bit(u16 *RxStatus, u16 *RxLen) { u32 tmpdata; DM9000_outb(DM9000_MRCMD, DM9000_IO); tmpdata = DM9000_inl(DM9000_DATA); *RxStatus = __le16_to_cpu(tmpdata); *RxLen = __le16_to_cpu(tmpdata >> 16); } static void dm9000_rx_status_16bit(u16 *RxStatus, u16 *RxLen) { DM9000_outb(DM9000_MRCMD, DM9000_IO); *RxStatus = __le16_to_cpu(DM9000_inw(DM9000_DATA)); *RxLen = __le16_to_cpu(DM9000_inw(DM9000_DATA)); } static void dm9000_rx_status_8bit(u16 *RxStatus, u16 *RxLen) { DM9000_outb(DM9000_MRCMD, DM9000_IO); *RxStatus = __le16_to_cpu(DM9000_inb(DM9000_DATA) + (DM9000_inb(DM9000_DATA) << 8)); *RxLen = __le16_to_cpu(DM9000_inb(DM9000_DATA) + (DM9000_inb(DM9000_DATA) << 8)); } /* Search DM9000 board, allocate space and register it */ int dm9000_probe(void) { u32 id_val; id_val = DM9000_ior(DM9000_VIDL); id_val |= DM9000_ior(DM9000_VIDH) << 8; id_val |= DM9000_ior(DM9000_PIDL) << 16; id_val |= DM9000_ior(DM9000_PIDH) << 24; if (id_val == DM9000_ID) { printf("dm9000 i/o: 0x%x, id: 0x%x \n", CONFIG_DM9000_BASE, id_val); return 0; } else { printf("dm9000 not found at 0x%08x id: 0x%08x\n", CONFIG_DM9000_BASE, id_val); return -1; } } /* General Purpose dm9000 reset routine */ static void dm9000_reset(void) { DM9000_DBG("resetting DM9000\n"); /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 */ /* DEBUG: Make all GPIO0 outputs, all others inputs */ DM9000_iow(DM9000_GPCR, GPCR_GPIO0_OUT); /* Step 1: Power internal PHY by writing 0 to GPIO0 pin */ DM9000_iow(DM9000_GPR, 0); /* Step 2: Software reset */ DM9000_iow(DM9000_NCR, (NCR_LBK_INT_MAC | NCR_RST)); do { DM9000_DBG("resetting the DM9000, 1st reset\n"); udelay(25); /* Wait at least 20 us */ } while (DM9000_ior(DM9000_NCR) & 1); DM9000_iow(DM9000_NCR, 0); DM9000_iow(DM9000_NCR, (NCR_LBK_INT_MAC | NCR_RST)); /* Issue a second reset */ do { DM9000_DBG("resetting the DM9000, 2nd reset\n"); udelay(25); /* Wait at least 20 us */ } while (DM9000_ior(DM9000_NCR) & 1); /* Check whether the ethernet controller is present */ if ((DM9000_ior(DM9000_PIDL) != 0x0) || (DM9000_ior(DM9000_PIDH) != 0x90)) printf("ERROR: resetting DM9000 -> not responding\n"); } /* Initilize dm9000 board */ int eth_init(bd_t * bd) { int i, oft, lnk; u8 io_mode; struct board_info *db = &dm9000_info; DM9000_DBG("eth_init()\n"); /* RESET device */ dm9000_reset(); if (dm9000_probe() < 0) return -1; /* Auto-detect 8/16/32 bit mode, ISR Bit 6+7 indicate bus width */ io_mode = DM9000_ior(DM9000_ISR) >> 6; switch (io_mode) { case 0x0: /* 16-bit mode */ printf("DM9000: running in 16 bit mode\n"); db->outblk = dm9000_outblk_16bit; db->inblk = dm9000_inblk_16bit; db->rx_status = dm9000_rx_status_16bit; break; case 0x01: /* 32-bit mode */ printf("DM9000: running in 32 bit mode\n"); db->outblk = dm9000_outblk_32bit; db->inblk = dm9000_inblk_32bit; db->rx_status = dm9000_rx_status_32bit; break; case 0x02: /* 8 bit mode */ printf("DM9000: running in 8 bit mode\n"); db->outblk = dm9000_outblk_8bit; db->inblk = dm9000_inblk_8bit; db->rx_status = dm9000_rx_status_8bit; break; default: /* Assume 8 bit mode, will probably not work anyway */ printf("DM9000: Undefined IO-mode:0x%x\n", io_mode); db->outblk = dm9000_outblk_8bit; db->inblk = dm9000_inblk_8bit; db->rx_status = dm9000_rx_status_8bit; break; } /* Program operating register, only internal phy supported */ DM9000_iow(DM9000_NCR, 0x0); /* TX Polling clear */ DM9000_iow(DM9000_TCR, 0); /* Less 3Kb, 200us */ DM9000_iow(DM9000_BPTR, BPTR_BPHW(3) | BPTR_JPT_600US); /* Flow Control : High/Low Water */ DM9000_iow(DM9000_FCTR, FCTR_HWOT(3) | FCTR_LWOT(8)); /* SH FIXME: This looks strange! Flow Control */ DM9000_iow(DM9000_FCR, 0x0); /* Special Mode */ DM9000_iow(DM9000_SMCR, 0); /* clear TX status */ DM9000_iow(DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); /* Clear interrupt status */ DM9000_iow(DM9000_ISR, ISR_ROOS | ISR_ROS | ISR_PTS | ISR_PRS); /* Set Node address */ #if !defined(CONFIG_AT91SAM9261EK) for (i = 0; i < 6; i++) ((u16 *) bd->bi_enetaddr)[i] = read_srom_word(i); #endif if (is_zero_ether_addr(bd->bi_enetaddr) || is_multicast_ether_addr(bd->bi_enetaddr)) { /* try reading from environment */ u8 i; char *s, *e; s = getenv ("ethaddr"); for (i = 0; i < 6; ++i) { bd->bi_enetaddr[i] = s ? simple_strtoul (s, &e, 16) : 0; if (s) s = (*e) ? e + 1 : e; } } printf("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", bd->bi_enetaddr[0], bd->bi_enetaddr[1], bd->bi_enetaddr[2], bd->bi_enetaddr[3], bd->bi_enetaddr[4], bd->bi_enetaddr[5]); /* fill device MAC address registers */ for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) DM9000_iow(oft, bd->bi_enetaddr[i]); for (i = 0, oft = 0x16; i < 8; i++, oft++) DM9000_iow(oft, 0xff); /* read back mac, just to be sure */ for (i = 0, oft = 0x10; i < 6; i++, oft++) DM9000_DBG("%02x:", DM9000_ior(oft)); DM9000_DBG("\n"); /* Activate DM9000 */ /* RX enable */ DM9000_iow(DM9000_RCR, RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN); /* Enable TX/RX interrupt mask */ DM9000_iow(DM9000_IMR, IMR_PAR); i = 0; while (!(phy_read(1) & 0x20)) { /* autonegation complete bit */ udelay(1000); i++; if (i == 10000) { printf("could not establish link\n"); return 0; } } /* see what we've got */ lnk = phy_read(17) >> 12; printf("operating at "); switch (lnk) { case 1: printf("10M half duplex "); break; case 2: printf("10M full duplex "); break; case 4: printf("100M half duplex "); break; case 8: printf("100M full duplex "); break; default: printf("unknown: %d ", lnk); break; } printf("mode\n"); return 0; } /* Hardware start transmission. Send a packet to media from the upper layer. */ int eth_send(volatile void *packet, int length) { int tmo; struct board_info *db = &dm9000_info; DM9000_DMP_PACKET("eth_send", packet, length); DM9000_iow(DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */ /* Move data to DM9000 TX RAM */ DM9000_outb(DM9000_MWCMD, DM9000_IO); /* Prepare for TX-data */ /* push the data to the TX-fifo */ (db->outblk)(packet, length); /* Set TX length to DM9000 */ DM9000_iow(DM9000_TXPLL, length & 0xff); DM9000_iow(DM9000_TXPLH, (length >> 8) & 0xff); /* Issue TX polling command */ DM9000_iow(DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ /* wait for end of transmission */ tmo = get_timer(0) + 5 * CONFIG_SYS_HZ; while ( !(DM9000_ior(DM9000_NSR) & (NSR_TX1END | NSR_TX2END)) || !(DM9000_ior(DM9000_ISR) & IMR_PTM) ) { if (get_timer(0) >= tmo) { printf("transmission timeout\n"); break; } } DM9000_iow(DM9000_ISR, IMR_PTM); /* Clear Tx bit in ISR */ DM9000_DBG("transmit done\n\n"); return 0; } /* Stop the interface. The interface is stopped when it is brought. */ void eth_halt(void) { DM9000_DBG("eth_halt\n"); /* RESET devie */ phy_write(0, 0x8000); /* PHY RESET */ DM9000_iow(DM9000_GPR, 0x01); /* Power-Down PHY */ DM9000_iow(DM9000_IMR, 0x80); /* Disable all interrupt */ DM9000_iow(DM9000_RCR, 0x00); /* Disable RX */ } /* Received a packet and pass to upper layer */ int eth_rx(void) { u8 rxbyte, *rdptr = (u8 *) NetRxPackets[0]; u16 RxStatus, RxLen = 0; struct board_info *db = &dm9000_info; /* Check packet ready or not, we must check the ISR status first for DM9000A */ if (!(DM9000_ior(DM9000_ISR) & 0x01)) /* Rx-ISR bit must be set. */ return 0; DM9000_iow(DM9000_ISR, 0x01); /* clear PR status latched in bit 0 */ /* There is _at least_ 1 package in the fifo, read them all */ for (;;) { DM9000_ior(DM9000_MRCMDX); /* Dummy read */ /* Get most updated data, only look at bits 0:1, See application notes DM9000 */ rxbyte = DM9000_inb(DM9000_DATA) & 0x03; /* Status check: this byte must be 0 or 1 */ if (rxbyte > DM9000_PKT_RDY) { DM9000_iow(DM9000_RCR, 0x00); /* Stop Device */ DM9000_iow(DM9000_ISR, 0x80); /* Stop INT request */ printf("DM9000 error: status check fail: 0x%x\n", rxbyte); return 0; } if (rxbyte != DM9000_PKT_RDY) return 0; /* No packet received, ignore */ DM9000_DBG("receiving packet\n"); /* A packet ready now & Get status/length */ (db->rx_status)(&RxStatus, &RxLen); DM9000_DBG("rx status: 0x%04x rx len: %d\n", RxStatus, RxLen); /* Move data from DM9000 */ /* Read received packet from RX SRAM */ (db->inblk)(rdptr, RxLen); if ((RxStatus & 0xbf00) || (RxLen < 0x40) || (RxLen > DM9000_PKT_MAX)) { if (RxStatus & 0x100) { printf("rx fifo error\n"); } if (RxStatus & 0x200) { printf("rx crc error\n"); } if (RxStatus & 0x8000) { printf("rx length error\n"); } if (RxLen > DM9000_PKT_MAX) { printf("rx length too big\n"); dm9000_reset(); } } else { DM9000_DMP_PACKET("eth_rx", rdptr, RxLen); DM9000_DBG("passing packet to upper layer\n"); NetReceive(NetRxPackets[0], RxLen); } } return 0; } /* Read a word data from SROM */ u16 read_srom_word(int offset) { DM9000_iow(DM9000_EPAR, offset); DM9000_iow(DM9000_EPCR, 0x4); udelay(8000); DM9000_iow(DM9000_EPCR, 0x0); return (DM9000_ior(DM9000_EPDRL) + (DM9000_ior(DM9000_EPDRH) << 8)); } void write_srom_word(int offset, u16 val) { DM9000_iow(DM9000_EPAR, offset); DM9000_iow(DM9000_EPDRH, ((val >> 8) & 0xff)); DM9000_iow(DM9000_EPDRL, (val & 0xff)); DM9000_iow(DM9000_EPCR, 0x12); udelay(8000); DM9000_iow(DM9000_EPCR, 0); } /* Read a byte from I/O port */ static u8 DM9000_ior(int reg) { DM9000_outb(reg, DM9000_IO); return DM9000_inb(DM9000_DATA); } /* Write a byte to I/O port */ static void DM9000_iow(int reg, u8 value) { DM9000_outb(reg, DM9000_IO); DM9000_outb(value, DM9000_DATA); } /* Read a word from phyxcer */ static u16 phy_read(int reg) { u16 val; /* Fill the phyxcer register into REG_0C */ DM9000_iow(DM9000_EPAR, DM9000_PHY | reg); DM9000_iow(DM9000_EPCR, 0xc); /* Issue phyxcer read command */ udelay(100); /* Wait read complete */ DM9000_iow(DM9000_EPCR, 0x0); /* Clear phyxcer read command */ val = (DM9000_ior(DM9000_EPDRH) << 8) | DM9000_ior(DM9000_EPDRL); /* The read data keeps on REG_0D & REG_0E */ DM9000_DBG("phy_read(0x%x): 0x%x\n", reg, val); return val; } /* Write a word to phyxcer */ static void phy_write(int reg, u16 value) { /* Fill the phyxcer register into REG_0C */ DM9000_iow(DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ DM9000_iow(DM9000_EPDRL, (value & 0xff)); DM9000_iow(DM9000_EPDRH, ((value >> 8) & 0xff)); DM9000_iow(DM9000_EPCR, 0xa); /* Issue phyxcer write command */ udelay(500); /* Wait write complete */ DM9000_iow(DM9000_EPCR, 0x0); /* Clear phyxcer write command */ DM9000_DBG("phy_write(reg:0x%x, value:0x%x)\n", reg, value); }