/* * Freescale i.MX28 NAND flash driver * * Copyright (C) 2011 Marek Vasut * on behalf of DENX Software Engineering GmbH * * Based on code from LTIB: * Freescale GPMI NFC NAND Flash Driver * * Copyright (C) 2010-2016 Freescale Semiconductor, Inc. * Copyright (C) 2008 Embedded Alley Solutions, Inc. * * SPDX-License-Identifier: GPL-2.0+ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 #if (defined(CONFIG_MX6) || defined(CONFIG_MX7)) #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 2 #else #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT 0 #endif #define MXS_NAND_METADATA_SIZE 10 #define MXS_NAND_BITS_PER_ECC_LEVEL 13 #define MXS_NAND_COMMAND_BUFFER_SIZE 32 #define MXS_NAND_BCH_TIMEOUT 10000 int bbm_chunk; int ecc_strength; bool large_oob_flag; bool ecc_for_meta; struct mxs_nand_info { int cur_chip; uint32_t cmd_queue_len; uint32_t data_buf_size; uint8_t *cmd_buf; uint8_t *data_buf; uint8_t *oob_buf; uint8_t marking_block_bad; uint8_t raw_oob_mode; /* Functions with altered behaviour */ int (*hooked_read_oob)(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); int (*hooked_write_oob)(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); int (*hooked_block_markbad)(struct mtd_info *mtd, loff_t ofs); /* DMA descriptors */ struct mxs_dma_desc **desc; uint32_t desc_index; }; struct nand_ecclayout fake_ecc_layout; static int chunk_data_size = MXS_NAND_CHUNK_DATA_CHUNK_SIZE; static int galois_field = 13; /* * Cache management functions */ #ifndef CONFIG_SYS_DCACHE_OFF static void mxs_nand_flush_data_buf(struct mxs_nand_info *info) { uint32_t addr = (uint32_t)info->data_buf; flush_dcache_range(addr, addr + info->data_buf_size); } static void mxs_nand_inval_data_buf(struct mxs_nand_info *info) { uint32_t addr = (uint32_t)info->data_buf; invalidate_dcache_range(addr, addr + info->data_buf_size); } static void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) { uint32_t addr = (uint32_t)info->cmd_buf; flush_dcache_range(addr, addr + MXS_NAND_COMMAND_BUFFER_SIZE); } #else static inline void mxs_nand_flush_data_buf(struct mxs_nand_info *info) {} static inline void mxs_nand_inval_data_buf(struct mxs_nand_info *info) {} static inline void mxs_nand_flush_cmd_buf(struct mxs_nand_info *info) {} #endif static struct mxs_dma_desc *mxs_nand_get_dma_desc(struct mxs_nand_info *info) { struct mxs_dma_desc *desc; if (info->desc_index >= MXS_NAND_DMA_DESCRIPTOR_COUNT) { printf("MXS NAND: Too many DMA descriptors requested\n"); return NULL; } desc = info->desc[info->desc_index]; info->desc_index++; return desc; } static void mxs_nand_return_dma_descs(struct mxs_nand_info *info) { int i; struct mxs_dma_desc *desc; for (i = 0; i < info->desc_index; i++) { desc = info->desc[i]; memset(desc, 0, sizeof(struct mxs_dma_desc)); desc->address = (dma_addr_t)desc; } info->desc_index = 0; } static uint32_t mxs_nand_ecc_chunk_cnt(uint32_t page_data_size) { int tmp = page_data_size / chunk_data_size; return ecc_for_meta ? tmp + 1 : tmp; } static uint32_t mxs_nand_ecc_size_in_bits(uint32_t ecc_strength) { return ecc_strength * galois_field; } static uint32_t mxs_nand_aux_status_offset(void) { return (MXS_NAND_METADATA_SIZE + 0x3) & ~0x3; } /* * For some large oob NAND chip( the oob larger than data chunk), combined meta * with chunk0 style bch layout might override the bbm with ecc data. The * function checked if bbm can be in the data chunk. If it is true, chunk_num * indicate the chunk number that bbm located. * */ static bool mxs_nand_bbm_in_data_chunk(struct mtd_info *mtd, int gf_len, int *chunk_num) { int i, j; int meta = MXS_NAND_METADATA_SIZE; i = (mtd->writesize * 8 - meta * 8) / (gf_len * ecc_strength + chunk_data_size * 8); j = (mtd->writesize * 8 - meta * 8) % (gf_len * ecc_strength + chunk_data_size * 8); if (j < chunk_data_size * 8) { *chunk_num = i+1; return true; } return false; } /* * the work flow about how to set the ecc layout * * 1. if ecc_strength_ds>max_soc_ecc, quit * 2. if ecc_strength_ds>0 and ecc_stride_ds>0, * if ecc_stride_ds > oob, go to large_oob branch * else go to normal branch * 3. if either ecc_stride_ds<=0 or ecc_stride_ds<=0, quit * */ static int mxs_nand_get_ecc_strength(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; uint32_t page_oob_size = mtd->oobsize; int meta = MXS_NAND_METADATA_SIZE; int max_ecc_strength_supported; /* Refer to Chapter 17 for i.MX6DQ, Chapter 18 for i.MX6SX */ if (is_cpu_type(MXC_CPU_MX6SX) || is_soc_type(MXC_SOC_MX7)) max_ecc_strength_supported = 62; else max_ecc_strength_supported = 40; if (chip->ecc_strength_ds > max_ecc_strength_supported) { printf("cannot support the NAND, ecc too weak\n"); return -EINVAL; } if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0) && !(page_oob_size > 1024)) { printf("cannot support the NAND, missing necessary info\n"); return -EINVAL; } /* set some parameters according to NAND chip parameters */ chunk_data_size = chip->ecc_step_ds; if (1024 == chunk_data_size) galois_field = 14; if (chunk_data_size < page_oob_size) large_oob_flag = true; if (large_oob_flag) { /* start from the minimum ecc NAND chips required */ ecc_strength = chip->ecc_strength_ds; while (!(ecc_strength > max_ecc_strength_supported)) { if (mxs_nand_bbm_in_data_chunk(mtd, galois_field, &bbm_chunk)) break; ecc_strength += 2; } /* * if all supported ecc cannot satisfy the bbm * requirement, change * the ecc layout to meta * with ecc type. * */ if (ecc_strength > max_ecc_strength_supported) { ecc_strength = chip->ecc_strength_ds; ecc_for_meta = true; /* calculate in which chunk bbm located */ bbm_chunk = (mtd->writesize * 8 - meta * 8 - galois_field * ecc_strength) / (galois_field * ecc_strength + chunk_data_size * 8) + 1; } } else { ecc_strength = chip->ecc_strength_ds; ecc_strength += ecc_strength & 1; } return 0; }; static inline uint32_t mxs_nand_get_mark_offset(uint32_t page_data_size, uint32_t ecc_strength) { uint32_t chunk_data_size_in_bits; uint32_t chunk_ecc_size_in_bits; uint32_t chunk_total_size_in_bits; uint32_t block_mark_chunk_number; uint32_t block_mark_chunk_bit_offset; uint32_t block_mark_bit_offset; chunk_data_size_in_bits = chunk_data_size * 8; chunk_ecc_size_in_bits = mxs_nand_ecc_size_in_bits(ecc_strength); chunk_total_size_in_bits = chunk_data_size_in_bits + chunk_ecc_size_in_bits; /* Compute the bit offset of the block mark within the physical page. */ block_mark_bit_offset = page_data_size * 8; if (ecc_for_meta) /* Subtract the metadata bits and ecc bits. */ block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8 + chunk_ecc_size_in_bits; else /* Subtract the metadata bits. */ block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; /* * Compute the chunk number (starting at zero) in which the block mark * appears. */ block_mark_chunk_number = block_mark_bit_offset / chunk_total_size_in_bits; /* * Compute the bit offset of the block mark within its chunk, and * validate it. */ block_mark_chunk_bit_offset = block_mark_bit_offset - (block_mark_chunk_number * chunk_total_size_in_bits); if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) return 1; /* * Now that we know the chunk number in which the block mark appears, * we can subtract all the ECC bits that appear before it. */ block_mark_bit_offset -= block_mark_chunk_number * chunk_ecc_size_in_bits; return block_mark_bit_offset; } static uint32_t mxs_nand_mark_byte_offset(struct mtd_info *mtd) { return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) >> 3; } static uint32_t mxs_nand_mark_bit_offset(struct mtd_info *mtd) { return mxs_nand_get_mark_offset(mtd->writesize, ecc_strength) & 0x7; } /* * Wait for BCH complete IRQ and clear the IRQ */ static int mxs_nand_wait_for_bch_complete(void) { struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; int timeout = MXS_NAND_BCH_TIMEOUT; int ret; ret = mxs_wait_mask_set(&bch_regs->hw_bch_ctrl_reg, BCH_CTRL_COMPLETE_IRQ, timeout); writel(BCH_CTRL_COMPLETE_IRQ, &bch_regs->hw_bch_ctrl_clr); return ret; } /* * This is the function that we install in the cmd_ctrl function pointer of the * owning struct nand_chip. The only functions in the reference implementation * that use these functions pointers are cmdfunc and select_chip. * * In this driver, we implement our own select_chip, so this function will only * be called by the reference implementation's cmdfunc. For this reason, we can * ignore the chip enable bit and concentrate only on sending bytes to the NAND * Flash. */ static void mxs_nand_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) { struct nand_chip *nand = mtd->priv; struct mxs_nand_info *nand_info = nand->priv; struct mxs_dma_desc *d; uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; int ret; /* * If this condition is true, something is _VERY_ wrong in MTD * subsystem! */ if (nand_info->cmd_queue_len == MXS_NAND_COMMAND_BUFFER_SIZE) { printf("MXS NAND: Command queue too long\n"); return; } /* * Every operation begins with a command byte and a series of zero or * more address bytes. These are distinguished by either the Address * Latch Enable (ALE) or Command Latch Enable (CLE) signals being * asserted. When MTD is ready to execute the command, it will * deasert both latch enables. * * Rather than run a separate DMA operation for every single byte, we * queue them up and run a single DMA operation for the entire series * of command and data bytes. */ if (ctrl & (NAND_ALE | NAND_CLE)) { if (data != NAND_CMD_NONE) nand_info->cmd_buf[nand_info->cmd_queue_len++] = data; return; } /* * If control arrives here, MTD has deasserted both the ALE and CLE, * which means it's ready to run an operation. Check if we have any * bytes to send. */ if (nand_info->cmd_queue_len == 0) return; /* Compile the DMA descriptor -- a descriptor that sends command. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | (nand_info->cmd_queue_len << MXS_DMA_DESC_BYTES_OFFSET); d->cmd.address = (dma_addr_t)nand_info->cmd_buf; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WRITE | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_CLE | GPMI_CTRL0_ADDRESS_INCREMENT | nand_info->cmd_queue_len; mxs_dma_desc_append(channel, d); /* Flush caches */ mxs_nand_flush_cmd_buf(nand_info); /* Execute the DMA chain. */ ret = mxs_dma_go(channel); if (ret) printf("MXS NAND: Error sending command\n"); mxs_nand_return_dma_descs(nand_info); /* Reset the command queue. */ nand_info->cmd_queue_len = 0; } /* * Test if the NAND flash is ready. */ static int mxs_nand_device_ready(struct mtd_info *mtd) { struct nand_chip *chip = mtd->priv; struct mxs_nand_info *nand_info = chip->priv; struct mxs_gpmi_regs *gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; uint32_t tmp; tmp = readl(&gpmi_regs->hw_gpmi_stat); tmp >>= (GPMI_STAT_READY_BUSY_OFFSET + nand_info->cur_chip); return tmp & 1; } /* * Select the NAND chip. */ static void mxs_nand_select_chip(struct mtd_info *mtd, int chip) { struct nand_chip *nand = mtd->priv; struct mxs_nand_info *nand_info = nand->priv; nand_info->cur_chip = chip; } /* * Handle block mark swapping. * * Note that, when this function is called, it doesn't know whether it's * swapping the block mark, or swapping it *back* -- but it doesn't matter * because the the operation is the same. */ static void mxs_nand_swap_block_mark(struct mtd_info *mtd, uint8_t *data_buf, uint8_t *oob_buf) { uint32_t bit_offset; uint32_t buf_offset; uint32_t src; uint32_t dst; bit_offset = mxs_nand_mark_bit_offset(mtd); buf_offset = mxs_nand_mark_byte_offset(mtd); /* * Get the byte from the data area that overlays the block mark. Since * the ECC engine applies its own view to the bits in the page, the * physical block mark won't (in general) appear on a byte boundary in * the data. */ src = data_buf[buf_offset] >> bit_offset; src |= data_buf[buf_offset + 1] << (8 - bit_offset); dst = oob_buf[0]; oob_buf[0] = src; data_buf[buf_offset] &= ~(0xff << bit_offset); data_buf[buf_offset + 1] &= 0xff << bit_offset; data_buf[buf_offset] |= dst << bit_offset; data_buf[buf_offset + 1] |= dst >> (8 - bit_offset); } /* * Read data from NAND. */ static void mxs_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int length) { struct nand_chip *nand = mtd->priv; struct mxs_nand_info *nand_info = nand->priv; struct mxs_dma_desc *d; uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; int ret; if (length > NAND_MAX_PAGESIZE) { printf("MXS NAND: DMA buffer too big\n"); return; } if (!buf) { printf("MXS NAND: DMA buffer is NULL\n"); return; } /* Compile the DMA descriptor - a descriptor that reads data. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | (length << MXS_DMA_DESC_BYTES_OFFSET); d->cmd.address = (dma_addr_t)nand_info->data_buf; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_READ | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA | length; mxs_dma_desc_append(channel, d); /* * A DMA descriptor that waits for the command to end and the chip to * become ready. * * I think we actually should *not* be waiting for the chip to become * ready because, after all, we don't care. I think the original code * did that and no one has re-thought it yet. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); d->cmd.address = 0; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA; mxs_dma_desc_append(channel, d); /* Invalidate caches */ mxs_nand_inval_data_buf(nand_info); /* Execute the DMA chain. */ ret = mxs_dma_go(channel); if (ret) { printf("MXS NAND: DMA read error\n"); goto rtn; } /* Invalidate caches */ mxs_nand_inval_data_buf(nand_info); memcpy(buf, nand_info->data_buf, length); rtn: mxs_nand_return_dma_descs(nand_info); } /* * Write data to NAND. */ static void mxs_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int length) { struct nand_chip *nand = mtd->priv; struct mxs_nand_info *nand_info = nand->priv; struct mxs_dma_desc *d; uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; int ret; if (length > NAND_MAX_PAGESIZE) { printf("MXS NAND: DMA buffer too big\n"); return; } if (!buf) { printf("MXS NAND: DMA buffer is NULL\n"); return; } memcpy(nand_info->data_buf, buf, length); /* Compile the DMA descriptor - a descriptor that writes data. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET) | (length << MXS_DMA_DESC_BYTES_OFFSET); d->cmd.address = (dma_addr_t)nand_info->data_buf; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WRITE | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA | length; mxs_dma_desc_append(channel, d); /* Flush caches */ mxs_nand_flush_data_buf(nand_info); /* Execute the DMA chain. */ ret = mxs_dma_go(channel); if (ret) printf("MXS NAND: DMA write error\n"); mxs_nand_return_dma_descs(nand_info); } /* * Read a single byte from NAND. */ static uint8_t mxs_nand_read_byte(struct mtd_info *mtd) { uint8_t buf; mxs_nand_read_buf(mtd, &buf, 1); return buf; } /* * Read a page from NAND. */ static int mxs_nand_ecc_read_page(struct mtd_info *mtd, struct nand_chip *nand, uint8_t *buf, int oob_required, int page) { struct mxs_nand_info *nand_info = nand->priv; struct mxs_dma_desc *d; uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; uint32_t corrected = 0, failed = 0; uint8_t *status; int i, ret; /* Compile the DMA descriptor - wait for ready. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | (1 << MXS_DMA_DESC_PIO_WORDS_OFFSET); d->cmd.address = 0; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA; mxs_dma_desc_append(channel, d); /* Compile the DMA descriptor - enable the BCH block and read. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); d->cmd.address = 0; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_READ | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA | (mtd->writesize + mtd->oobsize); d->cmd.pio_words[1] = 0; d->cmd.pio_words[2] = GPMI_ECCCTRL_ENABLE_ECC | GPMI_ECCCTRL_ECC_CMD_DECODE | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; d->cmd.pio_words[3] = mtd->writesize + mtd->oobsize; d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; mxs_dma_desc_append(channel, d); /* Compile the DMA descriptor - disable the BCH block. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_CHAIN | MXS_DMA_DESC_NAND_WAIT_4_READY | MXS_DMA_DESC_WAIT4END | (3 << MXS_DMA_DESC_PIO_WORDS_OFFSET); d->cmd.address = 0; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WAIT_FOR_READY | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA | (mtd->writesize + mtd->oobsize); d->cmd.pio_words[1] = 0; d->cmd.pio_words[2] = 0; mxs_dma_desc_append(channel, d); /* Compile the DMA descriptor - deassert the NAND lock and interrupt. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM; d->cmd.address = 0; mxs_dma_desc_append(channel, d); /* Invalidate caches */ mxs_nand_inval_data_buf(nand_info); /* Execute the DMA chain. */ ret = mxs_dma_go(channel); if (ret) { printf("MXS NAND: DMA read error\n"); goto rtn; } ret = mxs_nand_wait_for_bch_complete(); if (ret) { printf("MXS NAND: BCH read timeout\n"); goto rtn; } /* Invalidate caches */ mxs_nand_inval_data_buf(nand_info); /* Read DMA completed, now do the mark swapping. */ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); /* Loop over status bytes, accumulating ECC status. */ status = nand_info->oob_buf + mxs_nand_aux_status_offset(); for (i = 0; i < mxs_nand_ecc_chunk_cnt(mtd->writesize); i++) { if (status[i] == 0x00) continue; if (status[i] == 0xff) continue; if (status[i] == 0xfe) { failed++; continue; } corrected += status[i]; } /* Propagate ECC status to the owning MTD. */ mtd->ecc_stats.failed += failed; mtd->ecc_stats.corrected += corrected; /* * It's time to deliver the OOB bytes. See mxs_nand_ecc_read_oob() for * details about our policy for delivering the OOB. * * We fill the caller's buffer with set bits, and then copy the block * mark to the caller's buffer. Note that, if block mark swapping was * necessary, it has already been done, so we can rely on the first * byte of the auxiliary buffer to contain the block mark. */ memset(nand->oob_poi, 0xff, mtd->oobsize); nand->oob_poi[0] = nand_info->oob_buf[0]; memcpy(buf, nand_info->data_buf, mtd->writesize); rtn: mxs_nand_return_dma_descs(nand_info); return ret; } /* * Write a page to NAND. */ static int mxs_nand_ecc_write_page(struct mtd_info *mtd, struct nand_chip *nand, const uint8_t *buf, int oob_required) { struct mxs_nand_info *nand_info = nand->priv; struct mxs_dma_desc *d; uint32_t channel = MXS_DMA_CHANNEL_AHB_APBH_GPMI0 + nand_info->cur_chip; int ret; memcpy(nand_info->data_buf, buf, mtd->writesize); memcpy(nand_info->oob_buf, nand->oob_poi, mtd->oobsize); /* Handle block mark swapping. */ mxs_nand_swap_block_mark(mtd, nand_info->data_buf, nand_info->oob_buf); /* Compile the DMA descriptor - write data. */ d = mxs_nand_get_dma_desc(nand_info); d->cmd.data = MXS_DMA_DESC_COMMAND_NO_DMAXFER | MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM | MXS_DMA_DESC_WAIT4END | (6 << MXS_DMA_DESC_PIO_WORDS_OFFSET); d->cmd.address = 0; d->cmd.pio_words[0] = GPMI_CTRL0_COMMAND_MODE_WRITE | GPMI_CTRL0_WORD_LENGTH | (nand_info->cur_chip << GPMI_CTRL0_CS_OFFSET) | GPMI_CTRL0_ADDRESS_NAND_DATA; d->cmd.pio_words[1] = 0; d->cmd.pio_words[2] = GPMI_ECCCTRL_ENABLE_ECC | GPMI_ECCCTRL_ECC_CMD_ENCODE | GPMI_ECCCTRL_BUFFER_MASK_BCH_PAGE; d->cmd.pio_words[3] = (mtd->writesize + mtd->oobsize); d->cmd.pio_words[4] = (dma_addr_t)nand_info->data_buf; d->cmd.pio_words[5] = (dma_addr_t)nand_info->oob_buf; mxs_dma_desc_append(channel, d); /* Flush caches */ mxs_nand_flush_data_buf(nand_info); /* Execute the DMA chain. */ ret = mxs_dma_go(channel); if (ret) { printf("MXS NAND: DMA write error\n"); goto rtn; } ret = mxs_nand_wait_for_bch_complete(); if (ret) { printf("MXS NAND: BCH write timeout\n"); goto rtn; } rtn: mxs_nand_return_dma_descs(nand_info); return 0; } /* * Read OOB from NAND. * * This function is a veneer that replaces the function originally installed by * the NAND Flash MTD code. */ static int mxs_nand_hook_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd->priv; struct mxs_nand_info *nand_info = chip->priv; int ret; if (ops->mode == MTD_OPS_RAW) nand_info->raw_oob_mode = 1; else nand_info->raw_oob_mode = 0; ret = nand_info->hooked_read_oob(mtd, from, ops); nand_info->raw_oob_mode = 0; return ret; } /* * Write OOB to NAND. * * This function is a veneer that replaces the function originally installed by * the NAND Flash MTD code. */ static int mxs_nand_hook_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd->priv; struct mxs_nand_info *nand_info = chip->priv; int ret; if (ops->mode == MTD_OPS_RAW) nand_info->raw_oob_mode = 1; else nand_info->raw_oob_mode = 0; ret = nand_info->hooked_write_oob(mtd, to, ops); nand_info->raw_oob_mode = 0; return ret; } /* * Mark a block bad in NAND. * * This function is a veneer that replaces the function originally installed by * the NAND Flash MTD code. */ static int mxs_nand_hook_block_markbad(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd->priv; struct mxs_nand_info *nand_info = chip->priv; int ret; nand_info->marking_block_bad = 1; ret = nand_info->hooked_block_markbad(mtd, ofs); nand_info->marking_block_bad = 0; return ret; } /* * There are several places in this driver where we have to handle the OOB and * block marks. This is the function where things are the most complicated, so * this is where we try to explain it all. All the other places refer back to * here. * * These are the rules, in order of decreasing importance: * * 1) Nothing the caller does can be allowed to imperil the block mark, so all * write operations take measures to protect it. * * 2) In read operations, the first byte of the OOB we return must reflect the * true state of the block mark, no matter where that block mark appears in * the physical page. * * 3) ECC-based read operations return an OOB full of set bits (since we never * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads * return). * * 4) "Raw" read operations return a direct view of the physical bytes in the * page, using the conventional definition of which bytes are data and which * are OOB. This gives the caller a way to see the actual, physical bytes * in the page, without the distortions applied by our ECC engine. * * What we do for this specific read operation depends on whether we're doing * "raw" read, or an ECC-based read. * * It turns out that knowing whether we want an "ECC-based" or "raw" read is not * easy. When reading a page, for example, the NAND Flash MTD code calls our * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an * ECC-based or raw view of the page is implicit in which function it calls * (there is a similar pair of ECC-based/raw functions for writing). * * Since MTD assumes the OOB is not covered by ECC, there is no pair of * ECC-based/raw functions for reading or or writing the OOB. The fact that the * caller wants an ECC-based or raw view of the page is not propagated down to * this driver. * * Since our OOB *is* covered by ECC, we need this information. So, we hook the * ecc.read_oob and ecc.write_oob function pointers in the owning * struct mtd_info with our own functions. These hook functions set the * raw_oob_mode field so that, when control finally arrives here, we'll know * what to do. */ static int mxs_nand_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *nand, int page) { struct mxs_nand_info *nand_info = nand->priv; /* * First, fill in the OOB buffer. If we're doing a raw read, we need to * get the bytes from the physical page. If we're not doing a raw read, * we need to fill the buffer with set bits. */ if (nand_info->raw_oob_mode) { /* * If control arrives here, we're doing a "raw" read. Send the * command to read the conventional OOB and read it. */ nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); nand->read_buf(mtd, nand->oob_poi, mtd->oobsize); } else { /* * If control arrives here, we're not doing a "raw" read. Fill * the OOB buffer with set bits and correct the block mark. */ memset(nand->oob_poi, 0xff, mtd->oobsize); nand->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page); mxs_nand_read_buf(mtd, nand->oob_poi, 1); } return 0; } /* * Write OOB data to NAND. */ static int mxs_nand_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *nand, int page) { struct mxs_nand_info *nand_info = nand->priv; uint8_t block_mark = 0; /* * There are fundamental incompatibilities between the i.MX GPMI NFC and * the NAND Flash MTD model that make it essentially impossible to write * the out-of-band bytes. * * We permit *ONE* exception. If the *intent* of writing the OOB is to * mark a block bad, we can do that. */ if (!nand_info->marking_block_bad) { printf("NXS NAND: Writing OOB isn't supported\n"); return -EIO; } /* Write the block mark. */ nand->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page); nand->write_buf(mtd, &block_mark, 1); nand->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); /* Check if it worked. */ if (nand->waitfunc(mtd, nand) & NAND_STATUS_FAIL) return -EIO; return 0; } /* * Claims all blocks are good. * * In principle, this function is *only* called when the NAND Flash MTD system * isn't allowed to keep an in-memory bad block table, so it is forced to ask * the driver for bad block information. * * In fact, we permit the NAND Flash MTD system to have an in-memory BBT, so * this function is *only* called when we take it away. * * Thus, this function is only called when we want *all* blocks to look good, * so it *always* return success. */ static int mxs_nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) { return 0; } /* * Nominally, the purpose of this function is to look for or create the bad * block table. In fact, since the we call this function at the very end of * the initialization process started by nand_scan(), and we doesn't have a * more formal mechanism, we "hook" this function to continue init process. * * At this point, the physical NAND Flash chips have been identified and * counted, so we know the physical geometry. This enables us to make some * important configuration decisions. * * The return value of this function propogates directly back to this driver's * call to nand_scan(). Anything other than zero will cause this driver to * tear everything down and declare failure. */ static int mxs_nand_scan_bbt(struct mtd_info *mtd) { struct nand_chip *nand = mtd->priv; struct mxs_nand_info *nand_info = nand->priv; struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; uint32_t tmp; /* calculate ecc_strength, bbm_chunk, eec_for meta, if necessary */ mxs_nand_get_ecc_strength(mtd); /* Configure BCH and set NFC geometry */ mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); /* Configure layout 0 */ tmp = (mxs_nand_ecc_chunk_cnt(mtd->writesize) - 1) << BCH_FLASHLAYOUT0_NBLOCKS_OFFSET; tmp |= MXS_NAND_METADATA_SIZE << BCH_FLASHLAYOUT0_META_SIZE_OFFSET; tmp |= (ecc_strength >> 1) << BCH_FLASHLAYOUT0_ECC0_OFFSET; if (!ecc_for_meta) tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; else /* set data0 size as 0 */ tmp &= ~BCH_FLASHLAYOUT0_DATA0_SIZE_MASK; tmp |= (14 == galois_field ? 1 : 0) << BCH_FLASHLAYOUT0_GF13_0_GF14_1_OFFSET; writel(tmp, &bch_regs->hw_bch_flash0layout0); tmp = (mtd->writesize + mtd->oobsize) << BCH_FLASHLAYOUT1_PAGE_SIZE_OFFSET; tmp |= (ecc_strength >> 1) << BCH_FLASHLAYOUT1_ECCN_OFFSET; tmp |= chunk_data_size >> MXS_NAND_CHUNK_DATA_CHUNK_SIZE_SHIFT; tmp |= (14 == galois_field ? 1 : 0) << BCH_FLASHLAYOUT1_GF13_0_GF14_1_OFFSET; writel(tmp, &bch_regs->hw_bch_flash0layout1); /* Set *all* chip selects to use layout 0 */ writel(0, &bch_regs->hw_bch_layoutselect); /* Enable BCH complete interrupt */ writel(BCH_CTRL_COMPLETE_IRQ_EN, &bch_regs->hw_bch_ctrl_set); /* Hook some operations at the MTD level. */ if (mtd->_read_oob != mxs_nand_hook_read_oob) { nand_info->hooked_read_oob = mtd->_read_oob; mtd->_read_oob = mxs_nand_hook_read_oob; } if (mtd->_write_oob != mxs_nand_hook_write_oob) { nand_info->hooked_write_oob = mtd->_write_oob; mtd->_write_oob = mxs_nand_hook_write_oob; } if (mtd->_block_markbad != mxs_nand_hook_block_markbad) { nand_info->hooked_block_markbad = mtd->_block_markbad; mtd->_block_markbad = mxs_nand_hook_block_markbad; } /* We use the reference implementation for bad block management. */ return nand_default_bbt(mtd); } /* * Allocate DMA buffers */ int mxs_nand_alloc_buffers(struct mxs_nand_info *nand_info) { uint8_t *buf; const int size = NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE; nand_info->data_buf_size = roundup(size, MXS_DMA_ALIGNMENT); /* DMA buffers */ buf = memalign(MXS_DMA_ALIGNMENT, nand_info->data_buf_size); if (!buf) { printf("MXS NAND: Error allocating DMA buffers\n"); return -ENOMEM; } memset(buf, 0, nand_info->data_buf_size); nand_info->data_buf = buf; nand_info->oob_buf = buf + NAND_MAX_PAGESIZE; /* Command buffers */ nand_info->cmd_buf = memalign(MXS_DMA_ALIGNMENT, MXS_NAND_COMMAND_BUFFER_SIZE); if (!nand_info->cmd_buf) { free(buf); printf("MXS NAND: Error allocating command buffers\n"); return -ENOMEM; } memset(nand_info->cmd_buf, 0, MXS_NAND_COMMAND_BUFFER_SIZE); nand_info->cmd_queue_len = 0; return 0; } /* * Initializes the NFC hardware. */ int mxs_nand_init(struct mxs_nand_info *info) { struct mxs_gpmi_regs *gpmi_regs = (struct mxs_gpmi_regs *)MXS_GPMI_BASE; struct mxs_bch_regs *bch_regs = (struct mxs_bch_regs *)MXS_BCH_BASE; int i = 0, j, ret = 0; info->desc = malloc(sizeof(struct mxs_dma_desc *) * MXS_NAND_DMA_DESCRIPTOR_COUNT); if (!info->desc) { ret = -ENOMEM; goto err1; } /* Allocate the DMA descriptors. */ for (i = 0; i < MXS_NAND_DMA_DESCRIPTOR_COUNT; i++) { info->desc[i] = mxs_dma_desc_alloc(); if (!info->desc[i]) { ret = -ENOMEM; goto err2; } } /* Init the DMA controller. */ for (j = MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j <= MXS_DMA_CHANNEL_AHB_APBH_GPMI7; j++) { ret = mxs_dma_init_channel(j); if (ret) goto err3; } /* Reset the GPMI block. */ mxs_reset_block(&gpmi_regs->hw_gpmi_ctrl0_reg); mxs_reset_block(&bch_regs->hw_bch_ctrl_reg); /* * Choose NAND mode, set IRQ polarity, disable write protection and * select BCH ECC. */ clrsetbits_le32(&gpmi_regs->hw_gpmi_ctrl1, GPMI_CTRL1_GPMI_MODE, GPMI_CTRL1_ATA_IRQRDY_POLARITY | GPMI_CTRL1_DEV_RESET | GPMI_CTRL1_BCH_MODE); return 0; err3: for (--j; j >= MXS_DMA_CHANNEL_AHB_APBH_GPMI0; j--) mxs_dma_release(j); err2: for (--i; i >= 0; i--) mxs_dma_desc_free(info->desc[i]); free(info->desc); err1: if (ret == -ENOMEM) printf("MXS NAND: Unable to allocate DMA descriptors\n"); return ret; } /*! * This function is called during the driver binding process. * * @param pdev the device structure used to store device specific * information that is used by the suspend, resume and * remove functions * * @return The function always returns 0. */ int board_nand_init(struct nand_chip *nand) { struct mxs_nand_info *nand_info; int err; nand_info = malloc(sizeof(struct mxs_nand_info)); if (!nand_info) { printf("MXS NAND: Failed to allocate private data\n"); return -ENOMEM; } memset(nand_info, 0, sizeof(struct mxs_nand_info)); err = mxs_nand_alloc_buffers(nand_info); if (err) goto err1; err = mxs_nand_init(nand_info); if (err) goto err2; memset(&fake_ecc_layout, 0, sizeof(fake_ecc_layout)); nand->priv = nand_info; nand->options |= NAND_NO_SUBPAGE_WRITE; nand->cmd_ctrl = mxs_nand_cmd_ctrl; nand->dev_ready = mxs_nand_device_ready; nand->select_chip = mxs_nand_select_chip; nand->block_bad = mxs_nand_block_bad; nand->scan_bbt = mxs_nand_scan_bbt; nand->read_byte = mxs_nand_read_byte; nand->read_buf = mxs_nand_read_buf; nand->write_buf = mxs_nand_write_buf; nand->ecc.read_page = mxs_nand_ecc_read_page; nand->ecc.write_page = mxs_nand_ecc_write_page; nand->ecc.read_oob = mxs_nand_ecc_read_oob; nand->ecc.write_oob = mxs_nand_ecc_write_oob; nand->ecc.layout = &fake_ecc_layout; nand->ecc.mode = NAND_ECC_HW; nand->ecc.bytes = 9; nand->ecc.size = 512; nand->ecc.strength = 8; return 0; err2: free(nand_info->data_buf); free(nand_info->cmd_buf); err1: free(nand_info); return err; }